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Abstract. Caches impose a major problem for predicting execution times of real-time systems since the cache
behavior depends on the history of previous memory references. Too pessimistic assumptions on cache hits can
obtain worst-case execution time estimates that are prohibitive for real-time systems.

This paper presents a novel approach for deriving a highly accurate analytical cache hit function for C-programs
at compile-time based on the assumption that no external cache interference (e.g. process dispatching or DMA
activity) occurs. First, asymbolic tracefileof an instrumented C-program is generated based onsymbolic evalu-
ation, which is a static technique to determine the dynamic behavior of programs. All memory references of a
program are described by symbolic expressions and recurrences and stored in chronological order in the symbolic
tracefile. Second, a cache hit function for several cache architectures is computed based on acache evaluation
technique. Our approach goes beyond previous work by precisely modelling program control flow and program
unknowns, modelling large classes of cache architectures, and providing very accurate cache hit predictions.

Examples for the SPARC architecture are used to illustrate the accuracy and effectiveness of our symbolic cache
prediction.
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1. Introduction

Due to high-level integration and superscalar architectural designs the computational capa-
bility of microprocessors has increased significantly in the last few years. Unfortunately the
gap between processor cycle time and memory latency increases. In order to fully exploit
the potential of processors, the memory hierarchy must be efficiently utilized.

To guide scheduling for real-time systems, information about execution times is required
at compile-time. Modelling caches presents a major obstacle towards predicting execution
times for modern computer architectures. Worst-case assumptions—e.g. every memory
access results in a cache miss1—can cause very poor execution time estimates. The focus
of this paper is on accurate cache behavior analysis. Note that modelling caches is only one
performance aspect that must be considered in order to determine execution times. There
are many other performance characteristics (Blieberger, 1994; Blieberger and Lieger, 1996;
Blieberger, 1997; Fahringer, 1996; Park, 1993; Healy, Whalley, and Harmon, 1995) to be
analyzed which however are beyond the scope of this paper.
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Figure 1. Overview of predicting cache performance.

In this paper we introduce a novel approach for deriving a highly accurate analytical
function of theprecisenumber of cache hits2 implied by a program. Our approach is based
onsymbolic evaluation(cf. e.g. Fahringer and Scholz, 1997) which at compile-time collects
runtime properties (control and data flow information) of a given program. The number of
cache hits is described by symbolic expressions and recurrences defined over the program’s
input data so as to maintain the relationship between the cache cost function and the input
data.

Figure 1 depicts an overview of our framework described in this paper. The C-program
is compiled which results in an instrumented C-program. The source-code level instru-
mentation inserts code at those points, where main memory data is referenced (read or
written). Then, the instrumented source-code is symbolically evaluated and asymbolic
tracefile is created. All memory references of a program are described by symbolic ex-
pressions and recurrences which are stored in a symbolic tracefile. Based on the cache
parameters, which describe the cache architecture, an analytical cache hit function is com-
puted by symbolically evaluating the symbolic tracefile. Note that our model strictly sep-
arates machine specific cache parameters from the program model which substantially
alleviates portability of our approach to other cache architectures and programming lan-
guages.

Performing a worst-case cache analysis according to our approach can be divided into the
following steps:

1. Build the symbolic tracefile based on the instrumented program sources by using sym-
bolic evaluation.
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2. Compute an analytical cache hit function by symbolically evaluating the symbolic
tracefile.

3. Find a closed form expression for the cache hit function.

4. Determine a lower bound of the cache hit function in order to derive the worst-case
caching behavior of the program.

Steps 1 and 2 are treated in this paper. These steps guarantee a precise description of the
cache hits and misses.

Step 3 requires to solve recurrence relations. We have implemented a recurrence solver
which is described in Fahringer and Scholz (1997), Fahringer and Scholz (1999). The
current implementation of our recurrence solver handles recurrences of the following kind:
linear recurrence variables (incremented inside a loop by a symbolic expression defined
over constants and invariants), polynomial recurrence variables (incremented by a linear
symbolic expression defined over constants, invariants and recurrence variables) and geo-
metric recurrence variables (incremented by a term which contains a recurrence variable
multiplied by an invariant). Our algorithm (Fahringer, 1998b) for computing lower and up-
per bounds of symbolic expressions based on a set of constraints is used to detect whether
a recurrence variable monotonically increases or decreases. Even if no closed form can be
found for a recurrence variable, monotonicity information may be useful, for instance, to
determine whether a pair of references can ever touch the same address. The current imple-
mentation of our symbolic evaluation framework models assignments, GOTO, IF, simple
I/O and array statements, loops and procedures.

The result of Step 3 is a conservative approximation of the number of exact cache hits
and misses, i.e., the computed upper and lower bounds are used to find a lower bound
for the cache hit function. The output form of Step 3 (suitably normalized) is a case-
structure that possibly comprises several cache hit functions. The conditions attached to
the different cases correspond to the original program structure and are affected by the
cache architecture.

In Step 4 we only have to determine the minimum of the cache hit functions of the case-
structure mentioned above. Note that it is not necessary to determine the worst-case input
data because the program structure implies the worst-case cache behavior.

Steps 3 and 4 are described in detail in Fahringer and Scholz (1997), Fahringer and Scholz
(1999), and Fahringer (1998b).

The rest of the paper is organized as follows. In Section 2 we discuss our architecture
model for caches. In Section 3 we describe symbolic evaluation and outline a new model
for analyzing arrays. Section 4 contains the theoretical foundations of symbolic tracefiles
and illustrates a practical example. In Section 5 symbolic cache evaluation techniques are
presented for direct mapped and set associative caches. In Section 6 we provide experimental
results. Although our approach will be explained and experimentally examined based on the
C-programming language, it can be similarly applied to most other procedural languages
including Ada and Fortran. In Section 7 we compare our approach with existing work.
Finally, we conclude this paper in Section 8.
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Figure 2. CPU, cache and main memory.

2. Caches

The rate at which the processor can execute instructions is limited by the memory cycle time.
This limitation has in fact been a significant problem because of the persistent mismatch
between processor and main memory speeds. Caches—which are relatively small high-
speed memories—have been introduced in order to hold the contents of most recently used
data of main memory and to exploit the phenomenon of locality of reference (see Hennessy
and Patterson, 1990). The advantage of a cache is to improve the average access time for
data located in main memory. The concept is illustrated in Figure 2.

The cache contains a small portion of main memory. A cache hit occurs, when the
CPU requests a memory reference that is found in the cache. In this case the reference
(memory word) is transmitted to the CPU. Otherwise, a cache miss occurs which causes a
block of memory (a fixed number of words) to be transferred from the main memory to the
cache. Consequently, the reference is transmitted from the cache to the CPU. Commonly
the CPU is stalled on a cache miss. Clearly, memory references that cause a cache miss are
significantly more costly than if the reference is already in the cache.

In the past, various cache organizations (Hennessy and Patterson, 1990) were introduced.
Figure 3(a) depicts a general cache organization. A cache consists ofnsslots. Each slot
can holdn cache linesand one cache line contains a block of memory consisting ofcls
contiguous bytes and a tag that holds the first address bits of the memory block. Figure 3(b)
shows how an address is divided into three fields to find data in the cache: theblock
offsetfield used to select the desired data from the block, theindex field to select the
slot and the tag field used for comparison. Note that not all bits of the index are used if
n > 1.

A cache can be characterized by three major parameters. First, thecapacityof a cache
determines the number of bytes of main memory it may contain. Second, the line sizecls
gives the number of contiguous bytes that are transferred from memory on a cache miss.
Third, the associativity determines the number of cache lines in a slot. If a block of memory
can reside in exactly one location, the cache is calleddirect mappedand a cache set can
only contain one cache line. If a block can reside in any cache location, the cache is called
fully associativeand there is only one slot. If a block can reside in exactlyn locations and
n is the size of a cache set, the cache is calledn-way set associative.

In case of fully associative or set associative caches, a memory block has to be se-
lected for replacement when the cache set of the memory block is full and the processor
requests further data. This is done according to areplacement strategy(Smith, 1982).
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Figure 3. Cache organization.

Common strategies areLRU (Least Recently Used),LFU (Least Frequently Used), and
random.

Furthermore, there are two common cache policies with respect to write accesses of the
CPU. First, thewrite throughcaches write data to memory and cache. Therefore, both
memory and cache are in line. Second,write backcaches only update the cache line where
the data item is stored. For write back caches the cache line is marked with adirty bit.
When a different memory block replaces the modified cache line, the cache updates the
memory.

A write access of the CPU to an address that does not reside in the cache is called a
write miss. There are two common cache organizations with respect to write misses. First,
the write-allocatepolicy loads the referenced memory block into the cache. This policy
is generally used for write back caches. Second, the no-write-allocate policy updates the
cache line only if the address is in cache. This policy is often used for write through cache
and has the advantages that memory always contains up-to-date information and the elapsed
time needed for a write access is constant.

Caches can be further classified. A cache that holds only instructions is calledinstruction
cache. A cache that holds only data is calleddata cache. A cache that can hold instructions
and data is called amixedor unified cache.

Cache design has been extensively studied. Good surveys can be found in Alt et al. (1996),
Mueller (1997), Ottosson and Sjoedin (1997), Li, Malik, and Wolfe (1996), Li, Malik, and
Wolfe (1995), Healy, Whalley, and Harmon (1995), Arnold et al. (1994), Nilsen and Rygg
(1995), Liu and Lee (1994), Hennessy and Patterson (1990).
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3. Symbolic Evaluation

Symbolic evaluation3 (Cheatham et al., 1979, Ploedereder, 1980; Fahringer and Scholz,
1997; Fahringer and Scholz, 1999)z is a constructive description of the semantics of a
program. Moreover, symbolic evaluation is not merely an arbitrary alternative semantic
description of a program. As in the relationship between arithmetic and algebra the specific
(arithmetic) computations dictated by the program operators are generalized and “delayed”
using the appropriate formulas. The dynamic behavior ispreciselyrepresented.

Symbolic evaluation satisfies a commutativity property.

(Sconc[[p]] , i)
Symbolic Evaluation−−−−−−−−−−→ (z[[p]] , i)

Set parameters
to i

y y Substitutei

into result

Sconc[[p]] i
Conventional Execution−−−−−−−−−−−−→ z[[p]] i

If a programp is conventionally executed with the standard semanticsSconc[[p]] over a
given inputi, the result of the symbolically evaluated programz[[p]] instantiated byi is the
same. Clearly, symbolic evaluation can be seen as a compiler, that translates a program
into a different language. Here, we use as a target languagesymbolic expressionsand
recurrencesto model the semantics of a program.

The semantic domain of our symbolic evaluation is a novel representation calledprogram
context(Fahringer and Scholz, 1997; Fahringer and Scholz, 1999). Every statement is
associated with a program contextc that describes the variable values, assumptions regarding
and constraints between variable values and a path condition. The path condition holds for
a given input if the statement is executed. Formally, a contextc is defined by a triple [s, t, p]
wheres is a state,t a state condition andp a path condition.

— The states is described by a set of variable/value pairs{v1 = e1, . . . , vn = en} where
vi is a program variable andei a symbolic expression describing the value ofvi for
1≤ i ≤ n. For all program variablesvi there exists exactly one pairvi = ei in states.

— The state condition contains constraints on variable values such as those implied by
loops, variable declarations and user assertions.

— Path condition is a predicate, which is true if and only if the program statement is
reached.

Note that all components of a context—including state information—are described as sym-
bolic expressions and recurrences. An unconditional sequence of statements`j (1≤ j ≤ r )
is symbolically evaluated by [s0, t0, p0] `1 [s1, t1, p1] . . . `r [sr , tr , pr ]. The initial context
[s0, t0, p0] represents the context that holds before`1 and [sr , tr , pr ] the context that holds
after `r . If `i in the sequence. . . [si , ti , pi ] `i [si+1, ti+1, pi+1] . . . does not contain any
side effects (implying a change of a variable value) thensi = si+1.

Furthermore, a contextc = [s, t, p] is a logical assertionc = s ∧ t ∧ p, wherec is a
predicate over the set of program variables and the program input which are free variables.
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If for all input valuesci−1 holds before executing the statement`i thenci is the strongest
post condition (Dijkstra, 1976) and the program variables are in a state satisfyingci after
executing̀ i .

For further technical details we refer the reader to (Fahringer and Scholz, 1997; Fahringer
and Scholz, 1999; Blieberger and Burgstaller, 1998; Blieberger, Burgstaller, and Scholz,
1999). In the following we discuss a novel approach to evaluate arrays.

3.1. Arrays

Let a be a one-dimensional array withn (n ≥ 1) array elements. Consider the simple array
assignmenta[i]=v . The element with indexi is substituted by the value ofv . Intuitively,
we may think of an array assignment being an array operation that is defined for an array.
The operation is applied to the array and changes its internal state. The arguments of such
an array operation are a value and an index of the new assigned array element. A sequence
of array assignments implies a chain of operations. Formally, an array is represented as an
element of anarray algebraA. The array algebraA is inductively defined as follows.

1. If n is a symbolic expression then⊥n ∈ A.

2. If a ∈ A andα, β are symbolic expressions thena⊕ (α, β) ∈ A.

3. Nothing else is inA.

In the state of a context, an array variable is associated with an element of the array
algebraA. Undefined array states are denoted by⊥n, wheren is thesizeof the array and
determines the number of array elements. An array assignment is modelled by a⊕-function.
The semantics of the⊕-function is given by

a⊕ (α, β) = (v1, . . . , vβ−1, α, vβ+1, . . . , vn)

where(v1, . . . , vn) represents the elements of arraya andβ denotes the index of the element
with a new valueα. For the following general array assignment

. . .

[si−1 = {. . . ,a = a, . . .}, ti−1, pi−1]
`i : a[ β] = α;

[si =
{
. . . ,a = a⊕ (α, β), . . .} , ti = ti−1, pi = pi−1]

. . .

[si−1, ti−1, pi−1] is the context before and [si , ti , pi ] the context after statement`i . The
symbolic value of variablea before evaluating the statement`i is denoted bya. Furthermore,
an elementa in A with at least one⊕-function is a⊕-chain. Every⊕-chain can be written
as⊥n

⊕m
k=1(αk, βk). Thelength of a chain|a| is the number of⊕-functions in chaina.

The C-program fragment in Figure 4 illustrates the evaluation of several array assignments.
The context of statement`j is represented bycj = [. . .]. At the beginning of the program
fragment the value of variablex is a symbolic expression denoted byx. Arraya is undefined
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Figure 4. C-program fragment.

(⊥100). For all array assignment statements the state and path conditions are set totrue
because the code fragment implies no branches.

Most program statements imply a change of only a single variable’s value. In order to
avoid large lists of variable values in state descriptions only those variables whose value
changes after evaluation of the associated statement are explicitly specified. For this reason
we introduce a functionδ,

si = δ(sj ; v1 = e1, . . . , vl = el )

which specifies a statesi whose variable binding is equal to that of statesj except for variable
vi (1≤ i ≤ l ). Variablevi is assigned a new valueei .

Therefore, in the previous example, states1 is the same as states0 except for the symbolic
value of arraya.

After the last statement arraya is symbolically described bya = ⊥100⊕ (1, x)⊕ (1−
x, x+1)⊕ (x, x)⊕ (1+ x, x+1). The left-most⊕-function relates to the first assignment
of the example program—the right-most one to the last statement.

Note that the last two statements overwrite the values of the first two statements. There-
fore, a simplified representation ofa is given by⊥100⊕ (x, x)⊕ (1+ x, x + 1).

Although the equivalence of two symbolic expressions is undecidable (Fahringer, 1998;
Haghighat and Polychronopoulos, 1996), a wide class of equivalence relations can be solved
in practice. The set of conditions among the used variables in the context significantly
improves the evaluation of equivalence relations. A partialsimplification operatorθ is
introduced to simplify⊕-chains. Operatorθ is defined as follows.

θ

(
⊥n

m⊕
l=1

(αl , βl )

)
=
{
⊥n
⊕m

l=1,l 6=i (αl , βl ), if ∃1≤ i < j ≤ m: βi = βj

⊥n
⊕m

l=1(αl , βl ), otherwise
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Figure 5. Examples ofρ.

The partial simplification operatorθ seeks for two equalβ expressions in a⊕-chain. If a
pair exists, the result ofθ will be the initial⊕-chain without the⊕-function, which refers to
theβ expression with the smaller indexi . If no pair exists, the operator returns the initial⊕-
chain; the chain could not be simplified. Semantically, the right-mostβ expression relates
to the latest assignment and overwrites the value of the previous assignment with the same
symbolic index.

The partial simplification operatorθ reduces only one redundant⊕-function. In the
previous exampleθ must be applied twice in order to simplify the⊕-chain. Moreover, each
⊕-function in the chain is a potentially redundant one. Therefore, the chain is potentially
simplified in less than|a| applications ofθ . A partially complete simplification is an
iterative application of the partial simplification operator and it is written asθ∗(a). If θ∗(a)
is applied toa, further applying ofθ will not simplify a anymore:θ(θ∗(a)) = θ∗(a).

In order to access elements of an array we need to model a symbolic access function.
Operatorρ in a symbolic expressionse (described by a⊕-chain) reads an element with
index i of an arraya. If index i can be found in the⊕-chain,ρ yields the corresponding
symbolic expression otherwiseρ is the undefined value⊥. In the latter case it is not possible
to determine whether the array element with indexi was written. Leta be an element ofA
anda = ⊥n

⊕m
l=1(αl , βl ). The operatorρ is defined as

ρ

(
⊥n

m⊕
l=1

(αl , βl ), i

)
=
{
αl , if ∃l = max{l | 1≤ l ≤ m∧ βl = i }
⊥, otherwise

wherei is thesymbolic indexof the array element to be found. In general determining
whether the symbolic indexi matches with a⊕-function is undecidable. In practice a
wide class of symbolic relations can be solved by our techniques for comparing symbolic
expressions (Fahringer, 1998). If our symbolic evaluation framework cannot prove that
the result ofρ is βl or ⊥ thenρ is not resolvable and remains unchanged in symbolic
expressione.

We present four examples in Figure 5, which are based on the value ofa at the end of the
program fragment in Figure 4. For every example we insert one of the following statements
at the end of the code fragment shown in Figure 4. For (1)x=a[x]; (2) x=a[x+1];
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(3) x=a[x-1]; and (4)x=a[y]; wherey is a new variable with the symbolic value ofy.
The figure shows the symbolic value ofx after the inserted statement.

Note that in the first equation the element with indexx is uniquely determined. The
second equation is resolved as well. In the third example the indexx − 1 does not exist in
the⊕-chain. Therefore, the access returns the undefined symbol⊥. In the last equation we
do not have enough information to determine a unique value for array element with index
i . Here, we distinguish between several cases to cover all possibilities.

3.2. Array Operations Inside of Loops

Modelling loops implies a problem withrecurrence variables4. We will use functions to
model recurrences as follows:i (k + 1) = i (k)+ 1 wherei (k + 1) is the value of a scalar
variablei at the end of iterationk+ 1.

Our symbolic evaluation framework detects recurrence variables, determines the recur-
rence system and finally tries to find closed forms for recurrence variables at the loop exit
by solving the recurrence system. Therecurrence systemis given by theboundary condi-
tions(initial values for recurrence variables in the loop preheader), therecurrence relations
(implied by the assignments to the recurrence variables in the loop body) and therecurrence
condition(loop or exit condition).

We have implemented a recurrence solver (Scheibl, Celic, and Fahringer, 1996) written on
top of Mathematica. The recurrence solver tries to determine closed forms for recurrence
variables based on their recurrence system which is directly obtained from the program
context. The implementation of our recurrence solver is largely based on methods described
in (Gerlek, Stoltz, and Wolfe, 1995; Lueker, 1980) and improved by our own techniques
(Fahringer and Scholz, 1997; Fahringer and Scholz, 1999).

Similar to scalar variables the array manipulation inside of loops are described by re-
currences. A recurrence system overA consists of a boundary condition and a recurrence
relation

a(0) = b,b ∈ A

a(k+ 1) = a(k)
m⊕

l=1

(αl (k), βl (k))

whereαl (k) andβl (k) are symbolic expressions andk is the recurrence index withk ≥ 0.
Clearly, every instance of the recurrence is an element ofA. Without changing the semantics
of an array recurrence,θ∗ can be applied to simplify the recurrence relation.

Operatorρ needs to be extended for array recurrences, such that arrays written inside of
loops can be accessed, e.g.ρ(a(z), i ). The symbolic expressionz is the number of loop
iterations determined by the loop exit condition andi is the index of the accessed element.
Furthermore, the recurrence indexk is bounded to 0≤ k ≤ z. To determine a possible
⊕-function, where the accessed element is written, apotential index set Xl (i ) of the l -th
⊕-function is computed.

∀1≤ l ≤ m: Xl (i ) = {k | βl (k) = i ∧ 0≤ k ≤ z}
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Figure 6. C-program fragment.

Xl (i ) contains all possibleβl (k), 0 ≤ k ≤ z equal to the indexi . If an index set has
more than one element, the array elementi is written in different loop iterations by thel -th
⊕-function. Only the last iteration that writes array elementi is of interest. Consequently,
we choose the element with the greatest index. Thesupremum xl (i ) of an index setXl (i )
is the greatest index such that

∀1≤ l ≤ m: xl (i ) = maxXl (i )

Finally, we define operatorρ as follows.

ρ (a(z), i ) =
{
αl (xl (i )), if ∃1≤ l ≤ m: xl (i ) = max1≤l≤m xl (i )
ρ(a(0), i ), otherwise

The maximum of the supremum indicesxl (i ) determines the symbolic valueαl (xl (i )). If
no supremum index exists,ρ returns the access to the value before the loop.

The example code of the program in Figure 6 shows how to symbolically evaluate an array
access. The recurrence ofi (k) is resolved in states3 of `3. Due to the missing information
abouta the recurrence of arraya is not resolvable but our symbolic evaluation still models
the dynamic behavior of the example code.
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Figure 7. SPARC code of example in Figure 6.

4. Symbolic Tracefile

Tracing is the method of generating a sequence of instruction and data references encoun-
tered during program execution. The trace data is commonly stored in a tracefile and
analyzed at a later point in time. For tracing, instrumentation is needed to insert code at
those points in a program, where memory addresses are referenced. The tracefile is cre-
ated as a side-effect of execution. Tracing requires a careful analysis of the program to
ensure that the instrumentation correctly reflects the data or code references of a program.
Moreover, the instrumentation can be done at the source-code level or machine code level.
For our framework we need a source-code level instrumentation. In the past a variety of
different cache profilers were introduced, e.g. MTOOL (Goldberg and Hennessy, 1991),
PFC-Sim (Callahan, Kennedy, and Portfield, 1990), CPROF (Lebeck and Wood, 1994).

The novelty of our approach is to compute the trace data symbolically at compile-time
without executing the program. Asymbolic tracefileis a constructive description for all pos-
sible memory references in chronological order. It is represented as symbolic expressions
and recurrences.

In the following we discuss the instrumentation of the program in Figure 6. The SPARC
assembler code is listed in Figure 7. The first part of the code is a loop preparation phase. In
this portion of code the contents of variablen is loaded into a work register. Additionally,
the address ofa is built up in register%g2. Inside the loop, the storage location ofn is
not referenced anymore and there are four read accessess , a[i] , a[i] , a[i+1] and two



SYMBOLIC CACHE ANALYSIS 193

Figure 8. C-program fragment with symbolic tracefile.

write accessess , a[i] . Furthermore, the variablei is held in a register. Based on this
information we can instrument the example program. In Figure 8 the instrumented program
is shown where functionr ref( r, nb) denotes a read reference of addressr with the length
of nbbytes. For a write reference the functionw ref() is used.

A symbolic tracefileis created by using a chain algebra. The references are stored as a
chain. A symbolic trace filet ∈ T is inductively defined as follows.

1. ⊥ ∈ T.

2. If t ∈ T andr andnb are symbolic expressions thent ⊕ σ(r,nb) ∈ T.

3. If t ∈ T andr andnb are symbolic expressions thent ⊕ λ(r,nb) ∈ T.

4. Nothing else is inT.

Semantically, functionσ is a write reference to the memory with symbolic addressr whereby
the number of referenced bytes is denoted bynb. We have similar semantics for read
referencesλ, wherer is the address andnb is the number of referenced bytes.

For instance, a 32-bit bus between the cache and CPU can only transfer aword references
with 4 bytes. Therefore, adouble data item (comprises 8 bytes)λ(r,8)must be loaded in
two consecutive steps byλ(r,4) ⊕ λ(r + 4,4). For a word reference we do not need the
number of referenced bytes anymore because it is constant. In the example above it is legal
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to rewriteλ(r,8) asλ(r )⊕ λ(r + 4). This notation is extensively used in the examples of
Section 5.

For loops we need recurrences

t(0) = t, t ∈ T
t(k+ 1) = t(k)

m⊕
l=1

µl (k)

whereµl (k) is a read or write reference (λ(rl (k),nb) or λ(rl (k),nb)).
Symbolic evaluation is used to automatically generate the symbolic tracefile of a C-

program. Instead of symbolically evaluating instrumentation calls we associatew ref and
r ref with specific semantics. A pseudo variablet ∈ T is added to the program. A read
referencer ref( r, nb) is translated tot ⊕ λ(r,nb), wheret is the state of the pseudo
variablet before evaluating the instrumentation. The same is done for write references
except thatλ is replaced byσ .

Let us consider the example in Figure 8. Before entering the loop,t needs to log reference
r ref(&n,4) . Therefore,t is equal to⊥ ⊕ λ(&n,4) where &n denotes the address of
variablen. Inside the loop a recurrence is used to describet symbolically. The boundary
conditiont(0) is equal to⊥⊕λ(&n,4) and reflects the state before the loop. The recurrence
relation is given by

t(k+ 1) = t (k)⊕ λ(&s,1)⊕ λ(&a[k],1)⊕ σ(&s,1)

⊕ λ(&a[k],1)⊕ λ(&a[k+ 1],1)⊕ σ(&a[k],1).

Note that an alternative notation of &a[k] is a+ k wherea is the start address of arraya.
Finally, the last value ofk in the recurrencet(k) is max(0,n− 1) which is determined by
the loop condition.

For the symbolic tracefile only small portions of the final program context are needed.
Therefore, we extract the necessary parts from the final context to describe the symbolic
tracefile. Here, the state condition and symbolic valuet are of relevance. For example in
Figure 8 the symbolic tracefile is given by

t = t (max(0,n− 1)) ,

t(0) = ⊥⊕ λ(&n,4) ∧
t(k+ 1) = t(k)⊕ λ(&s,1)⊕ λ(&a[k],1)⊕ σ(&s,1)⊕ λ(&a[k],1)

⊕ λ(&a[k+ 1],1)⊕ σ(&a[k],1) (1)

The length of the symbolic tracefile corresponds to the number of read/write references.
If either the number of reads or the number of writes are of interest we selectively count
elements (λ andσ ). For instance the number of read references is|t|λ = 1+4 max(0,n−1),
the number of write references is|t|σ = 2 max(0,n−1), and the overall number of memory
references is given by|t| = 1+ 6 max(0,n− 1).
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5. Symbolic Evaluation of Caches

A symbolic tracefile of a program describes all memory references (issued by the CPU) in
chronological order. Based on the symbolic tracefile we can derive an analytical function
over the input, which computes the number of hits. The symbolic tracefile contains all
information to obtain the hit function. Moreover, the symbolic cache analysis is decoupled
from the original program. Thus, our approach can be used to tailor the cache organization
due to the needs of a given application. In the following we introduce two formalisms to
compute a hit function for direct mapped and set associative data caches. To symbolically
simulate the cache hardware, hit sets are introduced. Hit sets symbolically describe which
addresses are held in the cache and keep track of the number of hits.

5.1. Direct Mapped Caches

Direct mapped caches are the easiest cache organization to analyze. For each item of data
there is exactly one location in a direct mapped cache where it can be placed5 and the cache
containsnscache lines. The size of a cache line,cls, determines the amount of data that is
moved between main memory and the cache. In the following we introduce the symbolic
cache evaluation of direct mapped caches with write through and no-write-allocate policy.
Compare Section 2.

A new cache evaluation operator̄ is defined to derive ahit set for a given tracefilet,
where a hit set is a pairH = (C, h). The first component ofH is asymbolic cache, which is
element ofA—the second component represents the number of cache hits and is a symbolic
expression.

Symbolic cacheC of a hit setH hasnselements and each element corresponds to a cache
line of the cache. More formally, the algebraic operationC ⊕ (r, β) loads the memory
block with start addressr into the cache wherebyβ is the index of the cache line. Note
that when the CPU issues addressr , the start addressr of the corresponding memory
block must be selected to describe the reference. Moreover, acache placement function
χ maps a reference to an index of cacheC such that the load operation of referencer is
written asC⊕ (r , χ(r )). In the following we assume that functionχ is a modulo operation
χ(r ) = r mod(ns∗ cls).

5.1.1. Definition of the Cache Evaluation Operator

Let Hi ¯ t = Hf , whereHi = (⊥ns,0) denotes the initial hit set,Hf = (Cf , hf ) the final
hit set, andt the tracefile. The final hit setHf is the analytical description of the number
of cache hits and the final state of the cache. In the following we describe the operator¯
inductively.

First, for an empty tracefile⊥ the hit set is

H ¯⊥ = H.
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Second, if a write reference is the first reference in the tracefile, it does not change the hit
set at all and is to be removed.

H ¯
(
⊥⊕ σ(r )

m⊕
l=1

µl

)
= H ¯

(
⊥

m⊕
l=1

µl

)
(2)

whereµl is either a read referenceλ(rl ) or write referenceσ(rl ). Third, for read references
a new hit set must be computed

H ¯
(
⊥⊕ λ(r )

m⊕
l=1

µl

)
= (C′, h′)¯

(
⊥

m⊕
l=1

µl

)
(3)

whereh′ = h+ d and

d =
{

1, if ρ (C, χ(r )) = r
0, otherwise

(4)

and

C′ =
{

C ⊕ (r , χ(r )), if d = 0
C, otherwise

(5)

Incrementd is 1 if referencer is in the cache. Otherwise,d is zero and the referencer
must be loaded. For loading data item with addressr into the cache, C’ is assigned the new
symbolic valueC ⊕ (r , χ(r )).

In order to symbolically describe the conditional behavior of caches (data item is in the
cache or not), we introduce aγ -function (see (Fahringer and Scholz, 1997)).

γ (c; x1 = e1, . . . , xk = ek; x1 = f1, . . . , xk = fk) (6)

whereγ (c; x1 = e1, . . . , xk = ek; x1 = f1, . . . , xk = fk) is semantically equivalent to
(c ∧ x1 = e1 ∧ · · · ∧ xk = ek) ∨ (¬ c ∧ x1 = f1 ∧ · · · ∧ xk = fk). c is a conditional
expression and¬c the negation ofc. Moreover,xi (1 ≤ i ≤ k) represent variable values
andei , fi are symbolic expressions.

Based on the definition ofγ (6) we can aggregate formulas given in (3),(4), and (5).
Depending on conditionρ(C, χ(r )) = r either the number of cache hitsh′ is incremented
by one or the symbolic cache is assigned a new symbolic valueC′ = C ⊕ (r , χ(r )).

H ¯
(
⊥⊕ λ(r )

m⊕
l=1

µl

)
= (C′, h′)¯

(
⊥

m⊕
l=1

µl

)
, (7)

γ
(
ρ(C, χ(r )) = r ;C′ = C, h′ = h+ 1;C′ = C ⊕ (r , χ(r )), h′ = h

)
Similar to tracefiles, hit sets are written as a pair. The first component of the pair symbolically
describes the hit set. The second component contains constraints on variable values such
as conditionals and recurrences stemming from loops.
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Furthermore, for recursively-defined tracefiles we need to generalize hit sets to hit set
recurrences. Lett (k+ 1) = t (k)

⊕m
l=1µl (k) be the tracefile recurrence relation andH the

initial hit set, the hit set recurrence is expressed by

H(0) = H ¯ t (0)
(8)

H(k+ 1) = H(k)¯
(
⊥

m⊕
l=1

µl (k)

)

5.1.2. Example

For the sake of demonstration, we study our example of Figure 6 with a cache size of 4
cache lines and each cache line comprises one byte. The cache placement functionχ(r ) is
r mod 4. It maps the memory addresses to slots of the cache. Moreover, all references are
already transformed to word references and references&n, &s, and&a[0] are aligned to
the first cache line. Note that in our example a word reference can only transfer one byte
from the CPU to the cache and vice versa.

The initial hit set isHi = (⊥4,0). Based on the symbolic tracefile given in (1) the hit
set recurrence is to be derived. First of all we apply operator¯ to the hit set recurrence
according to (8).

Hf = H(z),

H(0) = Hi ¯ (⊥⊕ λ(&n)⊕ λ(&n+ 1)⊕ λ(&n+ 2)⊕ λ(&n+ 3))

H(k+ 1) = H(k)¯ (⊥⊕ λ(&s)⊕ λ(&a[k])⊕ σ(&s)

⊕ λ(&a[k])⊕ λ(&a[k+ 1])⊕ σ(&a[k]))

The final hit set is given byHf = H(z) wherez= max(0,n− 1) is the highest indexk of
the recurrence and is determined by the loop condition. In the following we evaluate the
boundary condition of the hit set recurrence. We successively apply the evaluation rule (7)
of operator̄ to the initial hit set(⊥4,0).

H(0) = (⊥4,0)¯ (⊥⊕ λ(&n)⊕ λ(&n+ 1)⊕ λ(&n+ 2)⊕ λ(&n+ 3))

= (⊥4⊕ (&n,0),0)¯ (⊥⊕ λ(&n+ 1)⊕ λ(&n+ 2)⊕ λ(&n+ 3))

= (⊥4⊕ (&n,0)⊕ (&n+ 1,1),0)¯ (⊥⊕ λ(&n+ 2)⊕ λ(&n+ 3))

= (⊥4⊕ (&n,0)⊕ (&n+ 1,1)⊕ (&n+ 2,2),0)¯ (⊥⊕ λ(&n+ 3))

= (⊥4⊕ (&n,0)⊕ (&n+ 1,1)⊕ (&n+ 2,2)⊕ (&n+ 3,3),0)¯⊥
= (⊥4⊕ (&n,0)⊕ (&n+ 1,1)⊕ (&n+ 2,2)⊕ (&n+ 3,3),0)

Note that conditionρ(C, χ(r )) = r of rule (7) is false for all read references in the boundary
condition. After evaluating the boundary condition there is still no cache hit and the cache
is fully loaded with the contents of variablen. In the next step we analyze the loop iteration.
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We continue to apply operator̄ to the recurrence relation.

H(k+ 1)
= (C′k, h

′
k)¯ (⊥⊕ λ(&a[k])⊕ σ(&s)⊕ λ(&a[k])⊕ λ(&a[k+ 1])⊕ σ(&a[k]))

∧ γ (ρ(Ck,0) = &s;C′k = Ck, h
′
k = hk + 1;C′k = Ck ⊕ (&s,0), h′k = hk)

whereCk andhk denote symbolic cache and number of hits in thekth iteration of the hit
set recurrence. The global variables is mapped to the first cache line. If the first slot
of the cache contains the address ofs then a cache hit occurs and the number of hits is
incremented, otherwise the new element is loaded and the number of hits remains the same.
We further apply operator̄ and obtain

H(k+ 1) = (C′′k , h
′′
k)¯ (⊥⊕ σ(&s)⊕ λ(&a[k])⊕ λ(&a[k+ 1])⊕ σ(&a[k]))

∧ γ (ρ(Ck,0) = &s;C′k = Ck, h
′
k = hk + 1;C′k = Ck ⊕ (&s,0), h′k = hk)

∧ γ (ρ(C′k, k mod 4) = k;C′′k = C′k, h
′′
k = h′k + 1;

C′′k = C′k ⊕ (k, k mod 4), h′′k = h′k).

In the next step we eliminate the write referenceσ(&s) according to rule (2) and further
apply operator̄ to λ(&a[k]).

H(k+ 1) = (C′′′k , h
′′′
k )¯ (⊥⊕ λ(&a[k+ 1])⊕ σ(&a[k]))

∧ γ (ρ(Ck,0) = &s;C′k = Ck, h
′
k = hk + 1;C′k = Ck ⊕ (&s,0), h′k = hk)

∧ γ (ρ(C′k, k mod 4) = k;C′′k = C′k, h
′′
k = h′k + 1;

C′′k = C′k ⊕ (k, k mod 4), h′′k = h′k)

∧ γ (ρ(C′′k , k mod 4) = k;C′′′k = C′′k , h
′′′
k = h′′k + 1;

C′′′k = C′′k ⊕ (k, k mod 4), h′′′k = h′′k)

= (C′′k , h
′′
k + 1)¯ (⊥⊕ λ(&a[k+ 1])⊕ σ(&a[k]))

∧ γ (ρ(Ck,0) = &s;C′k = Ck, h
′
k = hk + 1;C′k = Ck ⊕ (&s,0), h′k = hk)

∧ γ (ρ(C′k, k mod 4) = k;C′′k = C′k, h
′′
k = h′k + 1;

C′′k = C′k ⊕ (k, k mod 4), h′′k = h′k)

Here, we can simplify theγ -function. The contents of symbolic cacheC′′k at k mod 4 isk
because the reference &a[k] is loaded from the step before the previous one. Note that the
write referenceσ(&s) does not destroy the reference &a[k]. In the last step the references
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λ(&a[k+ 1]) andσ(&a[k]) are evaluated. We continue with

H(k+ 1)
= (C′′′k , h

′′′
k )∧γ (ρ(Ck,0)=&s;C′k = Ck, h

′
k=hk + 1;C′k=Ck⊕(&s,0), h′k=hk)

∧γ (ρ(C′k, k mod 4) = k;C′′k = C′k, h
′′
k = h′k + 1;

C′′k = C′k ⊕ (k, k mod 4), h′′k = h′k)

∧γ (ρ(C′′k , k+ 1 mod 4) = k+ 1;C′′′k = C′k, h
′′′
k = h′′k + 2;

C′′′k = C′k ⊕ (k+ 1, k+ 1 mod 4), h′′′k = h′′k + 1)

= (C′′k ⊕ (k+ 1, k+ 1 mod 4), h′′k + 1)

∧γ (ρ(Ck,0) = &s;C′k = Ck, h
′
k = hk + 1;

C′k = Ck ⊕ (&s,0), h′k = hk)

∧γ (ρ(C′k, k mod 4) = k;C′′k = C′k, h
′′
k = h′k + 1;

C′′k = C′k ⊕ (k, k mod 4), h′′k = h′k).

The thirdγ -function can be reduced since elementk + 1 has never been written before
because conditionρ(C′′k , k + 1 mod 4) = k + 1 is false. The hit set recurrence is still
conditional. Further investigations are necessary to derive a closed form for the number of
hits. We know that the number of cache lines is four. We consider all four modulo classes
of indexk which for the given example results in an unconditional recurrence.

— k mod 4 = 0: The conditionρ(Ck,0) = &s of the first γ -function is false since
ρ(Ck,0) can be rewritten ask, if k > 1 or ⊥ otherwise. The condition of second
γ -functionρ(C′k, k mod 0) = k is false as well because the cache line has been loaded
with the reference &sbefore. For the casek mod 4= 0 the hit set recurrence is reduced
to an unconditional recurrence.

H(k+ 1) = (Ck ⊕ (&s,0)⊕ (k,0)⊕ (k+ 1,1), hk + 1) (9)

— k mod 4= 1: In the firstγ -function the conditionρ(Ck,0) = &s can never be true
because in the previous step of the recurrence the cache line 1 has been loaded with
the contents of &a[k − 1]. Furthermore, the element &a[k] has been fetched in the
previous step and, therefore, the condition of the secondγ -function evaluates to true
and the hit set recurrence can be written as

H(k+ 1) = (Ck ⊕ (&s,0)⊕ (k+ 1,1), hk + 2) (10)

— k mod 4= 2, k mod 4= 3: For both cases the conditions of theγ -functions are true.
The load reference &s does not interfere with &a[k] and &a[k+ 1]. The recurrence is
given by

H(k+ 1) = (Ck ⊕ (&s,0)⊕ (k+ 1,1), hk + 3) (11)
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Now, we can extract the number of hits from hit sets (9), (10), (11). The modulo classes
can be rewritten such thatk is replaced by 4i and the modulo class.

h0 = 0

h4i = h4i−1+ 1

h4i+1 = h4i + 2

h4i+2 = h4i+1+ 3

h4i+3 = h4i+2+ 3

The boundary conditions stem from the number of hits ofH(0). The recurrence is linear
and after resolving it, we obtain

hz =


9i if ∃i : z= 4i,

9i + 1 if ∃i : z= 4i + 1,

9i + 3 if ∃i : z= 4i + 2,

9i + 6 otherwise.

(12)

The indexz of the final hit setHf = H(z) is determined byz = max(0,n − 1). The
analytical cache hit functionhz, given by (12), can be approximated by9

4 max(0,n− 1) =
2.25 max(0,n− 1).

In the example above the conditional recurrence collapsed to an unconditional one. In
general, we can obtain closed forms only for specific–although very important–classes
of conditional recurrences. If recurrences cannot be resolved, we employ approximation
techniques as described in Fahringer (1998a).

5.2. Set Associative and Fully Associative Caches

In this section we investigaten-way set associative write through data caches with write-
allocate policy and least recently used replacement (LRU) strategy. The organization of
set-associative is more complex than direct mapped data caches due to placing a memory
block ton possible locations in a slot (compare Section 2).

Similar to direct mapped caches we define a cache evaluation operator¯ to derive a hit
set for a given tracefilet. For set associative caches a hit set is a tupleH = (C, h, τmax)

whereC is a symbolic cache,h the number of hits, andτmax is a symbolic counter that is
incremented for every read or write reference. Note that the symbolic counter is needed to
keep track of the least recently used reference of a slot. Figure 9 illustrates the symbolic
representation ofC for set associative caches.C is an array ofnsslots. Each slot, denoted
asS(ι) where 0≤ ι ≤ ns− 1, can holdn cache lines. ArrayC and slotsS(ι) are elements
of array algebraA.

More formally, algebraic operationS⊕ ((r, τ ), β) loads the memory block with start
addressr into setSwherebyβ is the index(0 ≤ β < n) andτ the current symbolic value
of τmax. Reading valuer from S is denoted byρr (S, β) while reading the time stamp is
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Figure 9. An n-way set associative cache.

writtenρτ (S, β). A whole set is loaded into cacheC viaC⊕(S, ι). Note that when the CPU
issues addressr , the start addressr of the corresponding memory block must be selected
to describe the reference. Similar to direct mapped caches, a cache placement functionχ

maps a memory reference to slotSsuch that the load operation of referencer is written as
C⊕ (ρ(C, χ(r ))⊕ ((r , τ ), ν(r ))) whereν(r ) is a function determining the index of slotS
according to the LRU strategy and is defined by

ν(r ) =
{

minι(ι | ρ(S, ι) = ⊥), if there exists aι such thatρ(S, ι) = ⊥
minτ (ι | ρτ (S, ι)), otherwise.

Note that the first case determines if there is a spare location in slotS. If so, the first spare
location is determined byν. The second case computes the least recently used cache line
of slot S.

5.2.1. Definition of the Cache Evaluation Operator

Let Hi ¯ t = Hf , whereHi = (⊥ns,0,0) denotes the initial hit set,Hf = (Cf , hf , τ f )

the final hit set, andt the tracefile. The final hit setHf is the analytical description of the
number of cache hits and the final state of the cache. In the following we describe the
operator̄ inductively.

First, for an empty tracefile⊥ the hit set is

H ¯⊥ = H.

Second, if a read or write operationµ(r ) is the first memory reference in the tracefile, a
new hit set is deduced as follows

H ¯
(
⊥⊕ µ(r )

m⊕
l=1

µl

)
= (C′, h′, τmax+ 1)¯

(
⊥

m⊕
l=1

µl

)
(13)
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whereh′ = h + d. The symbolic counterτmax is incremented by one. Furthermore, the
slot of referencer is determined byS= ρ (C, χ(r )) and incrementd is given by

d =
{

1, if
∨n

j=1 ρr (ρ (C, χ(r )) , j ) = r
0, otherwise.

(14)

If there exists an element in slotS, which is equal tor , a cache hit occurs and increment
d = 1 and referencer must be updated with a new time stamp.

C′ = C ⊕ (S′, χ(r )) (15)

where

S′ = S⊕ ((r , τmax), π(r )) . (16)

Functionπ(r ) looks up the index, where referencer is stored in slotS; π(r ) can be described
by a recurrence. Ifd = 0, a cache miss occurs and the reference is loaded into the cache

C′ = C ⊕ (S′, χ(r )) (17)

where

S′ = S⊕ ((r , τmax), ν(r )) . (18)

We can aggregate formulas (13)–(18) withγ -functions. Depending on condition∨2
j=1ρr (ρ(C, χ(r )), j ) = r a new element is updated with a new time stamp or loaded into

the cache.

H ¯
(
⊥⊕ µ(r )

m⊕
l=1

µl

)
= (C′, h′, τmax+ 1)¯

(
⊥

m⊕
l=1

µl

)
,

C′ = C ⊕ (S′, χ(r )) ∧ S= ρ(C, χ(r )) ∧ γ
(∨2

j=1ρr (ρ(C, χ(r )), j ) = r ;
h′ = h+ 1, S′ = S⊕ ((r , τmax), π(r )) ; h′ = h, S′ = S⊕ ((r , τmax), ν(r )) ,

γ (∃ι: ρ(S, ι) = ⊥; ν(r ) = min
ι
(ι | ρ(S, ι) = ⊥); ν(r ) = min

τ
(ι | ρτ (S, ι)))

)
(19)

Note thatγ functions are nested in formula (19). A nestedγ is recursively expanded
(compare (6)) such that the expanded boolean expression is added to the corresponding
true or false term of the higher-levelγ -function. Furthermore, for recursively-described
tracefiles we need to generalize hit sets to hit set recurrences (compare (8)).

5.2.2. Example

We symbolically evaluate the example of Figure 6 with a 2-way set associative cache and
two slots and a cache line size of one byte. For this cache organization a word reference
can transfer one byte from the CPU to the cache and vice versa. Thus, the cache size is
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the same as in Section 5.1, only the cache organization has changed. The cache placement
function χ(r ) is r mod 2. We assume that the references of the symbolic tracefile are
already transformed to word references and references&n, &s, and&a[0] are aligned to
the first slot.

The initial hit set isHi = (⊥2,0,0). Based on the tracefile given in (1) the hit set
recurrence is to be derived. Similar to example in Section 5.1 we apply operator¯ to the
hit set recurrence according to (8).

H(0) = (⊥2 ⊕ (⊥2⊕ ((&n,0),0)⊕ ((&n+ 2,2),1))

⊕ (⊥2⊕ ((&n+ 1,1),0)⊕ ((&n+ 3,3),1)),0,4).

For all read references in the boundary no cache hit occurred. The cache is loaded with the
contents of variablen and the number of cache hits is zero. In the next step we evaluate the
recurrence relation. We continue to apply operator¯ according to rule (19).

H(k+ 1)
= (C′k, h

′
k, τk + 1)¯(⊥⊕λ(&a[k])⊕σ(&s)⊕λ(&a[k])⊕λ(&a[k+ 1])⊕σ(&a[k]))

∧C′k=Ck⊕(S′k,0)∧Sk=ρ(Ck,0)

∧γ
(∨2

j=1ρr (ρ(Ck,0), j )=&s; h′k=hk+1, S′k=Sk⊕((&s, τk), π
′
k(0));

h′k=hk, S′k=Sk⊕((&s, τk), ν
′
k(0)),

γ
(∃ι: ρ(Sk, ι)=⊥; ν ′k(0)= min

ι
(ι |ρ(Sk, ι)=⊥);

ν ′k(0)= min
τ
(ι |ρτ (Sk, ι))

))
(20)

whereCk, hk, andτk denote symbolic cache, number of hits and time stamp counter of the
kth iteration of the hit set recurrence. In order to keep the description of hit set recurrences
as small as possible we rewrite the outerγ -function of (20) asP. We further apply operator
¯ and obtain

H(k+ 1) = (C′′k , h
′′
k, τk + 2)¯ (⊥⊕σ(&s)⊕λ(&a[k])⊕λ(&a[k+ 1])⊕σ(&a[k]))

∧ P′ ∧ C′′k = C′k ⊕ (S′′k , k mod 2) ∧ S′k = ρ(C′k, k mod 2)

∧ γ
(∨2

j=1ρr (ρ(C
′
k, k mod 2), j ) = k;

h′′k = h′k + 1, S′′k = S′k ⊕
(
(k, τk + 1), π ′′k (k)

) ;
h′′k = h′k, S′′k = S′k ⊕

(
(k, τk + 1), ν ′′k (k)

)
,

γ
(∃ι: ρ(S′k, ι) = ⊥; ν ′′k (k) = min

ι
(ι | ρ(S′k, ι) = ⊥);

ν ′′k (k) = min
τ
(ι | ρτ (S′k, ι))

))
.
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In the next step we evaluate write referenceσ(&s) and get

H(k+ 1) = (C′′′k , h
′′
k, τk + 3)¯ (⊥⊕ λ(&a[k])⊕ λ(&a[k+ 1])⊕ σ(&a[k]))

∧ P′ ∧ P′′ ∧ C′′′k = C′′k ⊕ (S′′′k ,0) ∧ S′′k = ρ(C′′k ,0)
∧ γ

(∨2
j=1ρr (ρ(C

′′
k ,0), j ) = &s;

S′′′k = S′′k ⊕
(
(&s, τk + 2), π ′′′k (0)

) ;
S′′′k = S′′k ⊕

(
(&s, τk + 2), ν ′′′k (0)

)
,

γ
(∃ι: ρ(S′′k , ι) = ⊥; ν ′′′k (0) = min

ι
(ι | ρ(S′′k , ι) = ⊥);

ν ′′′k (0) = min
τ
(ι | ρτ (S′′k , ι))

))
.

Here, we can simplify theγ -function because variables has been read within the current
iteration of the loop without being overwritten in the cache, the condition of the outer
γ -function evaluates to true. Hence, we obtain

H(k+ 1) = (C′′′k , h
′′
k, τk + 3)¯ (⊥⊕ λ(&a[k])⊕ λ(&a[k+ 1])⊕ σ(&a[k]))

∧ P′ ∧ P′′ ∧ C′′′k = C′′k ⊕ (S′′′k ,0) ∧ S′′k = ρ(C′′k ,0)
∧ S′′′k = S′′k ⊕

(
(&s, τk + 2), π ′′′k (0)

)
Similar to the previous step we can reduce bothγ -functions.

H(k+ 1) =
(
C(ıv)

k , h(ıv)k , τk + 4
)
¯ (⊥⊕ λ(&a[k+ 1])⊕ σ(&a[k]))

∧ P′ ∧ P′′ ∧ P′′′ ∧ C(ıv)
k = C′′′k ⊕

(
S(ıv)k , k mod 2

)
∧ S′′′k = ρ(C′′′k , k mod 2) ∧ h(ıv)k = h′′k + 1

∧ S(ıv)k = S′′′k ⊕
(
(k, τk + 3), π(ıv)k (k)

)
Read reference &a[k+1] produces a cache miss. Thus, the next step can be simplified too.

H(k+ 1) =
(
C(v)

k , h(v)k , τk + 5
)
¯ (⊥⊕ σ(&a[k])) ∧ P′ ∧ P′′ ∧ P′′′ ∧ P(ıv)

∧ C(v)
k = C(ıv)

k ⊕
(

S(v)k , k mod 2
)
∧ S(ıv)k = ρ

(
C(ıv)

k , k mod 2
)

∧ h(v)k = h(ıv)k , S(v)k = S(ıv)k ⊕
(
(k, τk + 4), ν(v)k (k)

)
,

γ
(
∃ι: ρ

(
S(ıv)k , ι

)
= ⊥; ν(v)k (k) = min

ι

(
ι | ρ

(
S(ıv)k , ι

)
= ⊥

)
;

ν
(v)
k (k) = min

τ

(
ι | ρτ

(
S(ıv)k , ι

)) )
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In the last step thē operator is applied to write reference &s. It is a cache hit and we can
eliminate theγ functions.

H(k+ 1) =
(
C(vı)

k , h(v)k , τk + 6
)
¯ (⊥) ∧ P′ ∧ P′′ ∧ P′′′ ∧ P(ıv) ∧ P(v)

∧ C(vı)
k = C(v)

k ⊕
(

S(vı)k , k mod 2
)
∧ S(v)k = ρ

(
C(v)

k , k mod 2
)

∧ S(vı)k = S(v)k ⊕
(
(k, τk + 5), π(vı)k (k)

)
Arguments similar to those in Section 5.1 show that the conditions of the outerγ -function in
P′ andP′′ are true fork ≥ 1 and false fork = 0. Therefore, we can derive an unconditional
recurrence relation for the number of cache hits (k ≥ 1).

h0 = 0,

h1 = 1,

hk+1 = hk + 3.

A closed form solution is given by (k ≥ 1)

h0 = 0,

hk = 3k− 2.

The indexz of the final hit setHf = H(z) is determined byz= max(0,n− 1). Thus, the
analytical cache hit function is

hz =
{

0, for n ≤ 1,

3n− 5, otherwise

which shows that for our example the set associative cache performs better than the direct
mapped cache of the same size.

6. Experimental Results

In order to assess the effectiveness of our cache hit prediction we have chosen a set of C-
programs as a benchmark. We have adopted the symbolic evaluation framework introduced
in Fahringer and Scholz (1997) and Fahringer and Scholz (1999) for the programming
language C and the cache evaluation. The instrumentation was done by hand although
an existing tool such as CPROF (Lebeck and Wood, 1994) could have instrumented the
benchmark suite. Our symbolic evaluation framework computed the symbolic tracefiles
and symbolically evaluated data caches. In order to compare predictions against real values
we have measured the cache hits for a given cache and problem size. For measuring
the empirical data we used the ACS cache simulator (Hunt, 1997). The programs of
the benchmark suite were amended by the instrumentation routines of a provided library
bin2pdt . The generated tracefiles were stored as PDATS (Johnson and Ha, 1994) files
and later read by the ACS cache simulator.
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Table Ia. Experiments of the C-pro-
gram in Figure 10.

ProblemSize

n R-Ref. W-Ref. T-Ref.

10 19 9 28
100 199 99 298

1000 1999 999 2998
10000 19999 9999 29998

Table Ib.D-Cache256/4.

n M-Miss M-Hit P-Hit

10 4 15 15
100 26 173 173

1000 251 1748 1748
10000 2501 17498 17498

Table Ic.D-Cache16K/8.

n M-Miss M-Hit P-Hit

10 3 16 16
100 14 185 185

1000 126 1873 1873
10000 1251 18748 18748

Table Id.D-Cache64K/16.

n M-Miss M-Hit P-Hit

10 2 17 17
100 8 181 181

1000 64 1935 1935
10000 626 19373 19373

The first program of the benchmark suite is example program in Figure 10. In con-
trast to Section 5 we have analyzed a direct mapped data cache with a cache line size
greater than one byte. Furthermore, the first byte of arraya is aligned to the first byte
of an arbitrary cache line and the cache has more than one cache line. Our frame-
work computes a cache hit function, where the number of cache hits is determined by
2(n − 1) − ⌈ n

cls

⌉
andcls is the cache line size of 4, 8 and 16 bytes. Intuitively, we get

2(n − 1) potential cache hits. For every new cache line a miss is implied. Therefore,
we have to subtract the number of touched cache lines

⌈
n

cls

⌉
from the number of read

references.
Table Ia describes problem sizesn (n—first column), number of read (R-Ref.—second

column) and write (W-Ref.—third column) references, and sum of read and write references
(T-Ref.—fourth column). Tables Ib–Id compare measured with predicted cache hits for
various data cache configurations (capacity/cache line size). For instance, D-Cache 256/4
corresponds to a cache with 256 bytes and a cache line size of 4 bytes. Every table comprises
four columns.M-Miss tabulates the measured cache misses,M-Hits the measured cache
hits, andP-Hits the predicted cache hits. In accordance with our accurate symbolic cache
analysis we observe that the predicted hits are identical with the associated measurements
for all cache configurations considered.

The same benchmark program was taken to derive the analytical cache hit function for
set associative data caches. Note that the result is the same as for direct mapped caches.
Even the empirical study with two way data caches of the same capacity delivered the same
measurements given in Tables Ib–Id.

The second programmcnt of the benchmark suite counts the number of negative elements
of ann×m-matrix. The counter is held in a register and does not interfere with the memory
references of the matrix. Again, we analyzed the program with three different direct mapped
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Figure 10.Benchmark program.

Table IIa. Experiment ofmcnt

Problem Size

n×m R-Ref. W-Ref. T-Ref.

10×10 100 0 100
50×50 2500 0 2500

100×100 10000 0 10000
150×150 22500 0 22500
100×200 200000 0 200000

Table IIb. D-Cache 64K/16

n×m M-Miss M-Hit P-Hit

10×10 50 50 50
50×50 1250 1250 1250

100×100 5000 5000 5000
150×150 11250 11250 11250
100×200 100000 100000 100000

cache configurations 256/4, 16K/8 and 64K/16. For the data cache sizes 256/4 and 16K/8
the cache hit function is zero. This is due to the usage ofdouble elements of the matrix.
Only for the 64K/16 configuration the program can benefit from a data cache and the cache
hits are given by

⌈
n·m
2

⌉
. In Tables IIa and IIb the analytical function is compared to the

measured results. Similar to the first benchmark the cache hit function remains the same
for set associative data caches with the same capacity and the measurements are identical
to Table IId.

The third programjacobi relaxation in Figure 11 calculates the Jacobi relaxation
of ann× n float matrix. In a doubly nested loop the value of the resulting matrixnew is
computed. Both loop variablesi andj are held in registers. Therefore, for direct mapped
data caches interference can only occur between the read references of arraysf andu. We
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Table IIIa. Experiment of Jacobi relax-
ation.

Problem Size

n×n R-Ref. W-Ref. T-Ref.

10×10 320 64 384
30×30 3920 784 4704
50×50 11520 2304 69120
90×90 48020 9604 288120

Table IIIb. D-Cache 256/4

n×n M-Miss M-Hit P-Hit

10×10 222 98 98
30×30 2462 1458 1458
50×50 11332 188 188
90×90 48020 0 0

Table IIIc. D-Cache 512/4

n×n M-Miss M-Hit P-Hit

10×10 222 98 98
30×30 2462 1458 1458
50×50 7102 4418 4418
90×90 47672 348 348

Table IIId. D-Cache 1K/4

n×n M-Miss M-Hit P-Hit

10×10 222 98 98
30×30 2462 1458 1458
50×50 7102 4418 4418
90×90 32882 15138 15138

investigated the Jacobi relaxation code with a cache configuration of 256/4, 512/4 and 1K/4.
The number of cache hits is given by

hf =



2(n− 3)2, if 4 ≤ n ≤ ns
2

4(n− 3), if ns
2 + 1≤ n ≤ ns− 3

2(n− 3), if n = ns− 2
(n− 3)2, if n = ns− 1
(n− 3), if ns≤ n ≤ ns+ 1
0, otherwise

according to Section 4 wherens is the number of cache lines. We compared the measured
cache hits with the values of the cache hit function. The results of our experiments are
shown in Tables IIIa–IIId.

The fourth programgauss jordan in Figure 12 is a linear equation solver. Note
that this program contains an if-statement inside the loop. Variablesi , ip , j , andk are
held in registers. For direct mapped data caches interference can only occur between the
read references of arraya. We have analyzed the Gauss Jordan algorithm with a cache
configuration of 256/4.

We could classify three different ranges ofn where the behavior of the hit function varies.

hf =
n(2n2− n− 2), if 2 ≤ n ≤ 32

C(n), if 33 ≤ n ≤ 128
P(n), if n ≥ 129

C(n)must be described for eachn in the range. Furthermore,P(n) is a function containing
64 cases. Note that the number 64 stems from the number of cache lines. For sake of
demonstration we only enlist some cases.
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Figure 11.Jacobi relaxation.

P(n) =



2n2− 2n if n ≡ 0 mod 64
7813
8192n

3+ 12255
4096 n2+ 5296949

8192 n− 667183
1024 if n ≡ 1 mod 64

961
1024n

3+ 6111
2048n

2+ 345331
512 n− 379593

512 if n ≡ 2 mod 64
7813
8192n

3+ 12255
4096 n2+ 5755845

8192 n− 1696833
2048 if n ≡ 3 mod 64

465
512n

3+ 3023
1024n

2+ 93219
128 − 58077

64 if n ≡ 4 mod 64
...

...

7813
8192n

3+ 12255
4096 n2+ 5547181

8192 n− 2989859
2048 if n ≡ 63 mod 64

Figure 12.Gauss Jordan.
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Table IVa.Experiment of Gauss Jordan

Problem Size

n×n R-Ref. W-Ref. T-Ref.

200×200 15999600 3999900 19999500
400×400 127999200 31999800 159999000
600×600 431998800 107999700 539998500

2000×2000 15999996000 3999999000 19999995000

Table IVb.D-Cache 256/4

D-Cache 256/4

n×n M-Hit P-Hit

200×200 7060901 7060901
400×400 47324017 47324017
600×600 184781660 184781660

2000×2000 5825464317 5825464317

In Tables IVa and IVb we compare the measured results with function values of the hit
function.

The ability to determine accurate number of cache hits depends on the complexity of
the input programs. The quality of our techniques to resolve recurrences, analyse complex
array subscript expressions, loop bounds, branching conditions, interprocedural effects,
and pointer operations impacts the accuracy of our cache hit function. For instance, if
closed forms cannot be computed for recurrences, then we introduce approximations such
as symbolic upper and lower bounds (Fahringer, 1998a). We have provided a detailed
analysis of codes that can be handled by our symbolic evaluation in Fahringer and Scholz
(1999).

7. Related Work

Traditionally, the analysis of cache behavior for worst-case execution time estimates in
real-time systems (Park, 1993; Puschner and Koza, 1989; Chapman, Burns, and Wellings,
1996) was far too complex. Recent research (Arnold et al., 1994) has proposed meth-
ods to estimate tighter bounds for WCET in systems with caches. Most of the work has
been successfully applied to instruction caches (Liu and Lee, 1994) and pipelined architec-
tures (Healy, Whalley, and Harmon, 1995). Lim et al. (1994) extend the original timing
schemas, introduced by Puschner and Koza (1989), to handle pipelined architectures and
cached architectures. Nearly all of these methods rely on frequency annotations of state-
ments. If the programmer provides wrong annotations, the quality of the prediction can be
doubtful. Our approach does not need user (programmer) interaction since it derives all
necessary information from the program’s code6 and it does not restrict program structure
such as (Ghosh et al., 1997).
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A major component of the framework described in Arnold et al. (1994) is a static cache
simulator (Mueller, 1997) realized as a data flow analysis framework. In Alt et al. (1996) an
alternate formalization which relies on the technique of abstract interpretation is presented.
Both of these approaches are based on data-flow analysis but do not properly model control
flow. Among others, they cannot deal with dead paths and zero-trip loops all of which are
carefully considered by our symbolic evaluation framework (Fahringer and Scholz, 1997;
Blieberger, 1997).

Implicit path enumeration (IPET) (Li, Malik, and Wolfe, 1995; Li, Malik, and Wolfe,
1996) allows to express semantic dependencies as constraints on the control flow graph by
using integer linear programming models, where frequency annotations are still required.
Additionally, the problem of IPET is that it only counts the number of hits and misses
and cannot keep track of the history of cache behavior. Only little work has been done
to introduce history variables (Ottosson and Sjoedin, 1997). While IPET can model if-
statements correctly (provided the programmer supplies correct frequency annotations), it
lacks adequate handling of loops. Our symbolic tracefiles exactly describe the data and
control flow behavior of programs which among others enables precise modeling of loops.
In Theiling and Ferdinand (1998) IPET was enriched with information of the abstract
interpretation described in Alt et al. (1996).

A graph coloring approach is used in Rawat (1993) to estimate the number of cache misses
for real-time programs. The approach only supports data caches with random replacement
strategy7. It employs standard data-flow analysis and requires compiler support for plac-
ing variables in memory according to the results of the presented algorithm. Alleviating
assumptions about loops and cache performance improving transformations such as loop
unrolling make their analysis less precise than our approach. It is assumed that every mem-
ory reference that is accessed inside of a loop at a specific loop iteration causes a cache
miss. Their analysis does not consider that a reference might have been transmitted to the
cache due to a cache miss in a previous loop iteration.

Much research has been done to predict cache behavior in order to support performance
oriented program development. Most of these approaches are based on estimating cache
misses for loop nests. Ferrante, Sarkar, and Trash, (1991) compute an upper bound for the
number of cache lines accessed in a sequential program which allows them to guide various
code optimizations. They determine upper bounds of cache misses for array references
in innermost loops, the inner two loops, and so on. The number of cache misses of the
innermost loop that causes the cache to overflow is multiplied by the product of the number
of iterations of the overflow loop and all its containing loops. Their approximation technique
may entail polynomial evaluations and suffers by a limited control flow modeling (unknown
loop bounds, branches, etc.).

Lam, Rothberg, and Wolf (1991) developed another cache cost function based on the
number of loops carrying cache reuse which can either be temporal (relating to the same
data element) or spatial (relating to data elements in the same cache line). They employ
a reuse vector space in combination with localized iteration space. Cross interference
(elements from different arrays displace each other from the cache) and self interferences
(interference between elements of the same array) are modeled. Loop bounds are not
considered even if they are known constants.
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Temam, Fricker, and Jalby (1994) examine the source code of numerical codes for cache
misses induced by loop nests.

Fahringer (1996, 1997) implemented an analytical model that estimates the cache be-
havior for sequential and data parallel Fortran programs based on a classification of array
references, control flow modeling (loop bounds, branches, etc. are modeled by profiling),
and an analytical cache cost function.

Our approach goes beyond existing work by correctly modeling control flow of a program
even in the presence of program unknowns and branches such as if-statements inside of
loops. We cover larger classes of programming languages and cache architectures, in par-
ticular data caches, instruction caches and unified caches including direct mapped caches,
set associative, and fully associative caches. We can handle most important cache replace-
ment and write policies. Our approach accurately computes cache hits, whereas most other
methods are restricted to approximations.

Closed form expressions and conservative approximations can be found according to the
steps described in Section 1.

Symbolic evaluation can also be used for WCET analysis without caching (Blieberger,
1997), thereby solving the dead paths problem of program path analysis (Park, 1993; Al-
tenbernd, 1996). In addition, it can be used for performing “standard” compiler optimiza-
tions, thus being an optimal framework for integrating optimizing compilers and WCET
analysis (compare Engblom et al. (1998) for a different approach).

8. Conclusion and Future Work

In this paper we have described a novel approach for estimating cache hits as implied
by programs written in most procedural languages (including C, Ada, and Fortran). We
generate asymbolic tracefilefor the input program based onsymbolic evaluationwhich is
a static technique to determine the dynamic behavior of programs. Symbolic expressions
and recurrences are used to describe all memory references in a program which are then
stored chronologically in the symbolic tracefile. A cache hit function for several cache
architectures is computed based on acache evaluation technique.

In the following we describe the contributions of our approach: While most other research
targets upper bounds for cache misses, we focus on deriving the accurate number of cache
hits. We can automatically determine an analytical cache hit function at compile-time
without user interaction. Symbolic evaluation enables us to represent the cache hits as a
function over program unknowns (e.g. input data). Our approach allows a comparison of
various cache organizations for a given program with respect to cache performance. We
can easily port our techniques across different architectures by strictly separating machine
specific parameters (e.g. cache line sizes, replacement strategies, etc.) from machine-
independent parameters (e.g. loop bounds, array index expressions, etc.). A novel approach
has been introduced to model arrays as part of symbolic evaluation which maintains the
history of previous array references.

We have shown experiments that demonstrate the effectiveness of our approach. The
predicted cache behavior for our example codes perfectly match with the measured data.
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Although we have applied our techniques to direct mapped data caches with write through
and no write-allocate policy and set associative data caches with write through and write-
allocate policy, it is possible to generalize our approach for other cache organizations as
well. Moreover, our approach is also applicable for instruction and unified caches.

In addition our work can be extended to analyze virtual memory architectures. A com-
bined analysis of caching and pipelining via symbolic evaluation will be conducted in the
near future (compare Healy et al. (1999) for a different approach).

The quality of our cache hit function depends on the complexity (e.g. recurrences, in-
terprocedural effects, pointers, etc.) of the input programs. If, for instance, we cannot
find closed forms for recurrences, then we employ approximations such as upper bounds.
We are currently extending our symbolic evaluation techniques to handle larger classes of
input programs. Additionally, we are building a source-code level instrumentation system
for the SPARC processor architecture. We investigate the applicability of our techniques
for multi-level data and instruction caches. Finally, we are in the process to conduct more
experiments with larger codes.

Notes

1. A cache miss occurs if referenced data is not in cache and needs to be loaded from main memory.

2. A cache hit occurs if referenced data is in cache.

3. Symbolic evaluation is not to be confused with symbolic execution (see e.g. King, 1976)).

4. All variables which are written inside a loop—including the loop variable—are called recurrence variables.

5. A slot consists of one cache line. See Section 2.

6. Clearly our approach cannot bypass undecidability.

7. Random replacement seems very questionable for real-time applications because of its indeterministic
behavior.
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