
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997 677

Explicit and Implicit Algorithms
for Binate Covering Problems

Tiziano Villa, Timothy Kam,Member, IEEE, Robert K. Brayton,Fellow, IEEE, and
Alberto L. Sangiovanni-Vincentelli,Fellow, IEEE

Abstract—We survey techniques for solving binate covering
problems, an optimization step often occurring in logic synthesis
applications. Standard exact solutions are found with a branch-
and-bound exhaustive search, made more efficient by bounding
away regions of the search space. Standard approaches are said
to be explicit because they work on a direct representation
of the binate table, usually as a matrix. Recently, covering
problems involving large tables have been attacked with implicit
techniques. They are based on the representation by reduced-
ordered binary decision diagrams of an encoding of the binate
table. We show how table reductions, computation of a lower
bound, and of a branching column can be performed on the
table so represented. We report experiments for two different
applications that demonstrate that implicit techniques handle
instances beyond the reach of explicit techniques. Various aspects
of our original research are presented for the first time, together
with a selection of the most important old and new results
scattered in many sources.

I. INTRODUCTION

A T the core of the exact solution of various logic syn-
thesis problems often lies a so-called covering step that

requires the choice of a set of elements of minimum cost
that cover a set of ground items, under certain conditions.
Prominent among these problems are the covering steps in the
Quine–McCluskey procedure for minimizing logic functions,
selection of a minimum number of encoding columns that
satisfy a set of encoding constraints, selection of a set of
encodable generalized prime implicants, state minimization
of finite-state machines, technology mapping, and Boolean
relations. Let us review first how covering problems are
defined formally.

Suppose that a set is given. The cost of
selecting is where . In a general formulation also
the cost of not selecting may be nonnegative, but here it will
be assumed that the cost of not selecting an item is strictly zero,
unless otherwise stated. Most problems of practical interest in
logic synthesis satisfy this assumption. The explicit algorithms
that will be described can be extended easily to handle the
general formulation. By associating a binary variableto

Manuscript received October 18, 1995; revised July 23, 1997. This work
was supported by DARPA, NSF, SRC, and industrial grants from Bell
Northern, Cadence, Digital, Fujitsu, Intel, MICRO, and Motorola. This paper
was recommended by Associate Editor M. Fujita.

T. Villa is with PARADES, 00186 Roma, Italy.
T. Kam is with the Strategic CAD Laboratories, Intel Corporation, Hills-

boro, OR 97124-6497 USA.
R. K. Brayton and A. L. Sangiovanni-Vincentelli are with the Department

of Electrical Engineering and Computer Science, University of California at
Berkeley, Berkeley, CA 94720 USA.

Publisher Item Identifier S 0278-0070(97)07802-0.

, which is 1 if is selected and 0 otherwise, the binate
covering problem (BCP) can be defined as finding
that minimizes

subject to the constraint

where is a Boolean function, sometimes called the constraint
function. The constraint function specifies a set of subsets of
that can be a solution. No structural hypothesis is made on.
Binate refers to the fact that is in general a binate function.1

BCP is the problem of finding an onset minterm of that
minimizes the cost function (i.e., a solution of minimum cost
of the Boolean equation).

If is given in product-of-sums form, it is possible to write
as an array of cubes (that form a matrix with coefficients

from the set). Each variable of is a column and each
sum (or clause) is a row, and the problem can be interpreted
as one of finding a subset of columns of minimum cost,
such that for every row , either

1) such that and , or
2) such that and .

In other words, each clause must be satisfied by setting to 1
a variable appearing in it in the positive phase or by setting
to 0 a variable appearing in it in the negative phase. In a
unate covering problem, the coefficients of are restricted
to the values 1 and 2, and only the first condition must hold.
Here, we shall consider the minimum binate covering problem
where is given in product-of-sums form. In this case, the
term covering is fully justified because one can say that the
assignment of a variable to 0 or 1 covers some rows that
are satisfied by that choice. The product-of-sumsis called
covering matrix or covering table.

An example of binate covering formulation of a well-known
problem is finding the minimum number of prime compatibles

1A function is binate if it is not unate. A functionf(x1; x2; � � � ; xn)
is unate if for every xi; i = 1; � � � ; n; f is either positive or
negative unate in the variablexi. f is said to be positive unate
in a variable xi, if for all 2n�1 possible combinations of the
remaining n � 1 variables, f(x1; x2; � � � ; xi�1; 1; xi+1; � � � ; xn) �

f(x1; x2; � � � ; xi�1; 0; xi+1; � � � ; xn): In other words, changing variable
x
i

from 0 to 1, f does not decrease. Similarly,f is said to be negative
unate in a variablexi, if for all 2n�1 possible combinations of the
remaining n � 1 variables, f(x1; x2; � � � ; xi�1; 0; xi+1; � � � ; xn) �

f(x1; x2; � � � ; xi�1; 1; xi+1; � � � ; xn):

0278–0070/97$10.00 1997 IEEE

678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

that are a minimum closed cover of a given FSM. A binate
covering problem can be set up, where each column of the
table is a prime compatible and each row is one of the covering
or closure clauses of the problem [18]. There are as many
covering clauses as states of the original machine, and each
of them requires that a state is covered by selecting any of
the prime compatibles in which it is contained. There are as
many closure clauses as prime compatibles, and each of them
states that if a given prime compatible is selected, then for
each implied class in its corresponding class set, one of the
prime compatibles containing it must be chosen too. In the
matrix representation, table entry is 1 or 0 according to
the phase of the literal corresponding to prime compatible
in clause ; if such a literal is absent, the entry is 2.

A special case of the binate covering problem is the unate
covering problem, where no literal in the negative phase is
present. Exact two-level logic minimization [33], [39] can be
cast as a unate covering problem. The columns are the prime
implicants, the rows are the minterms, and there is a 1 entry
in the matrix when a prime contains a minterm. Notice that
the feasibility (i.e., finding if there is a choice of columns
that cover all the rows) of unate covering is trivial to answer
(always yes), while the feasibility of binate covering is -
complete [16]. Moreover unate covering anda fortiori binate
covering are -complete problems [16].

Various techniques have been proposed to solve binate cov-
ering problems. A class of them [3], [29] is branch-and-bound
techniques that build explicitly the table of the constraints
expressed as product-of-sum expressions and explore in the
worst case all possible solutions, but avoid the generation of
some of the suboptimal solutions by a clever use of reduction
steps and bounding of search space for solutions. We will
refer to these methods as explicit.

A second approach of binate covering [31] formulates the
problem with binary decision diagrams (BDD’s), and reduces
to finding a minimum cost assignment to a shortest path
computation. A BDD [4], [1] is a canonical directed acyclic
graph that represents logic functions. The number of items
that a BDD can represent corresponds to the number of paths
of the BDD to the 1 terminal, while the size of the BDD
is determined by the number of nodes of the DAG. There
is no monotonic relation between the size of a BDD and
the number of elements or paths that it represents. It is an
experimental fact that often very large sets, that cannot be
represented explicitly, have a compact BDD representation. In
that case, the number of variables of the BDD is the number
of columns of the binate table. A mixed technique has been
proposed in [21]. It is a branch-and-bound algorithm, where
the clauses are represented as a conjunction of BDD’s. The
usage of BDD’s leads to an effective method to compute a
lower bound on the cost of the solution.

Existing explicit methods do quite well in solving exactly
small- and medium-sized examples, but fail to complete on
larger ones. The reason is that either they cannot build the
binate table because the number of rows and columns is too
large, or that the branch-and-bound procedure would take too
long to complete. The approach of building a BDD of the
constraint function and computing the shortest path fails when

the number of variables (i.e., columns) is too large because
a BDD with many thousands of variables usually cannot be
stored in available computer memory.

Explicit techniques fail when they are required to represent
sets of very large cardinality. Fortunately, as an alternative,
one may represent sets by encoding them over an appropriate
Boolean space. In this way, one operates on the Boolean
characteristic function of the encoded set, represented by
reduced ordered binary decision diagrams (ROBDD) [4], [1].
Set operations are easily turned into Boolean operations on the
corresponding BDD’s. So we can manipulate sets by a series
of BDD operations (Boolean connectives and quantifications)
with a complexity depending on the sizes of the manipulated
BDD’s, but not depending linearly on the cardinality of the
sets that are represented. One hopes that complex set manip-
ulations of a given application have as counterparts Boolean
propositions that can be represented with compact BDD’s. Of
course, this is not always the case, and it may happen that an
intermediate BDD computation blows up. Sometimes, it helps
to transform propositional sentences into logically equivalent
ones, easier to compute with BDD manipulations.

The previous insight has already been tested in a series of
applications from the implicit enumeration of subsets of states
of a finite-state machine (FSM) in [9] and [43] to the implicit
computation of implicants, primes, and essential primes of a
two-valued or multivalued function in [10], [30], [42], and
[13]. There are functions whose primes could be computed
only implicitly.

The fixed-point dominance computation in the covering
step of the Quine–McCluskey procedure has been implicitized
in [12] and [42]. A key technology in both cases has been
the use of quantifier-free recursive implementations of matrix
reductions (as was the case for prime generation). Actually,
Coudert went beyond the standard Quine–McCluskey formu-
lation using the concept of transposing functions by which
the problem is mapped into a lattice, and then row and
column dominance is replaced by the computation of least
upper bounds and greatest lower bounds of the lattice. Using
these techniques, he computed the cyclic core of all logic
functions of theESPRESSObenchmark, for some of which
ESPRESSOhad failed the task. Another difference between the
implementations in [12] and [42] is the usage of BDD’s in
the latter and of ZBDD’s [34] in the former. It appears that
ZBDD’s are a better data structure for this application. We
will not elaborate further on these techniques in this paper,
and we refer the reader to the original exposition by Coudert
in [7] and to [44] which also contains a worked-out example.

The implicit computation of prime compatibles of an FSM
was described in [24], [25], and [20]. In some cases, their
number is exponential in the number of states (the largest
recorded number is 2). Once prime compatibles have been
obtained, one must solve a binate covering problem to choose a
minimum closed cover. Of course, one cannot build and solve
explicitly a table of such dimensions (this would defeat the
purpose of computing implicitly prime compatibles in the first
place). So it is necessary to extend implicit techniques to the
solution of the binate covering problem. Another application of
interest is the selection of a set of encodable generalized prime

VILLA et al.: ALGORITHMS FOR BINATE COVERING PROBLEMS 679

Fig. 1. Detailed branch-and-bound algorithm.

implicants (GPI’s), as defined in [15] and [31]. It is not feasible
to generate GPI’s and to set up a related covering table by
explicit techniques on nontrivial examples. Using techniques
as in [30] and [42], GPI’s can be generated implicitly. An
implicit table solver is therefore needed there too. We will use
mainly the two latter applications to illustrate our techniques,
but one could list a host of other problems in logic synthesis
where a binate table solver would play an important role.
Another application reported in the literature is the implicit
selection of the minimum number of encoding dichotomies
that satisfy a set of encoding constraints [40], [14].

We describe an implicit formulation of the binate covering
problem and present an implementation. The implicit binate
solver has been tested for state minimization of ISFSM’s
and pseudo-NDFSM’s [24], [25], and for the selection of
an encodable set of GPI’s [44]. The reported experiments
show that implicit techniques have advanced the frontier
of instances where binate covering problems can be solved
exactly, resulting in better optimizations in key steps of
sequential logic synthesis.

In the following sections, we will review the known algo-
rithms to solve covering problems, and then we will describe a
new branch-and-bound algorithm based on implicit computa-
tions. The remainder is organized as follows. We have defined
the minimum cost binate covering problem in this section.
The classical solution based on a branch-and-bound scheme
is introduced in Section II. In Section III, we survey the

classical reduction rules used in explicit algorithms. Methods
to solve binate covering finding a shortest path in a graph-
based representation of the clauses are found in Section IV.
Our implicit binate covering algorithm is then outlined in
Section V. Section VI illustrates how reduction techniques can
be implicitized. Other kinds of implicit table manipulations
are introduced in Section VII. Finally, we give experimental
results in Section VIII, for two applications: state minimization
of ISFSM’s [18] and selection of generalized prime implicants
[15].

II. A B RANCH-AND-BOUND ALGORITHM

FOR MINIMUM COST BINATE COVERING

We will survey in this section a branch-and-bound solu-
tion of minimum cost binate covering. This technique has
been described in [19], [18], [2], and [3], and implemented
in successful computer programs [38], [36], and [41]. The
branch-and-bound solution of minimum binate covering is
based on a recursive procedure. A run of the algorithm can be
described by its computation tree. The root of the computation
tree is the input of the problem, an edge represents a call to
sm mincov, and an internal node is a reduced input. A leaf
is reached when a complete solution is found or the search is
bounded away. From the root to any internal node, there is a
unique path, that is the current path for that node. In the sequel,
we will describe in detail the binary recursion procedure. The

680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

presentation will refer to the pseudocodesm mincov, shown
in Fig. 1.

A. The Binary Recursion Procedure

We will see in the next section that BCP can be solved by
the following recursive equation:

BestSolution

where is the binate table that corresponds to a function
in product-of-sum form , and [respectively,

] is the subproblem expressed by the function
(respectively,). returns an onset minterm of
that minimizes the cost function. The previous equation can
potentially generate an exponential number of subproblems,
but powerful dominance and bounding techniques as well as
good branching heuristics help in keeping the combinatorial
explosion under control.
The inputs to the algorithm are

• a covering matrix ;
• a current-path partial solutionselect(initially empty);
• a row of nonnegative integersweight, whose th element

is the cost or weight of theth column of ;
• a lower boundlbound (initially set to 0), which is equal

to the cost of the partial solution on the current path
(a monotonic increasing quantity along each path of the
computation tree);

• an upper boundubound(initially set to the sum of weights
of all columns in), which is the cost of the best
overall complete solution previously obtained (a globally
monotonic decreasing quantity).

The output is the best column cover for input extended
from the partial solutionselectalong the current path, called
the best current solution, if this solution costs less than
ubound. An empty solution is returned if a solution cannot be
found which beatsuboundor an infeasibility is detected. By
infeasibility, we mean the case when no satisfying assignment
of the product of clauses exists. Even though the initial
problem in a typical logic synthesis application usually has at
least a solution, some subproblems in the branch-and-bound
tree may be infeasible. Whensmmincov is called with an
empty partial solutionselectand initial lboundandubound, it
returns a best global solution.

As shown in Fig. 1. the algorithmsmmincov first calls
a proceduresmreduce that applies to essential column
detection and dominance reductions. The type of domination
operations and the way in which they are applied are the sub-
ject of Section III. Another more complex reduction criterion
(Gimpel’s rule) can also be applied (see Section III-L). These
reduction operations delete from some rows, columns, and
entries. What is left after reduction is called a cyclic core.
The final goal is to get an empty cyclic core. The value of
the lower bound is updated using a maximal independent set
computation (see Section II-C1). If no bounding is possible
and the reductions do not suffice to completely solve the
problem, a partition of the reduced problem into disjoint
subproblems is attempted (see Section II-B), and each of them
is solved recursively. When everything fails, binary recursion

is performed by choosing a branch column (see Section II-
D). Solutions to the subproblems obtained by including the
chosen column in the covering set or by excluding it from the
covering set are computed recursively, and the best solution
is kept (the second recursion is skipped if the solution to the
first one matches the updated lower bound).

B. -Way Partitioning

If the covering matrix can be partitioned into two disjoint
blocks and , the covering problem can be reduced
to two independent covering subproblems, and the minimum
covering for is the union of the minimum coverings for

and . Such bipartition can be found by putting in a
row and all columns that have an element in common with the
row (i.e., the columns intersecting the row), and recursively
all rows and columns intersecting any row or column in.
The remaining rows and columns (i.e., not intersecting any
row or column in) are put in . This algorithm can be
generalized to find partitions made by blocks.

C. Lower Bounds

1) Maximal Independent Set:The cardinality of a maxi-
mum set of pairwise disjoint rows of (i.e., no 1’s in the
same column) is a lower bound on the cardinality of the
solution to the covering problem because a different element
must be selected for each of the independent rows in order to
cover them. If the size of current solution plus the size of the
independent set is greater than or equal to the best solution
seen so far, the search along this branch can be terminated
because no solution better than the current one can possibly
be found. It is also true that the size of the independent set
at the first level of the recursion is a lower bound for the
final minimum cover, so that the search can be terminated
if a solution is found of size equal to this lower bound.
Since finding a maximum independent set is an NP-complete
problem, in practice, a heuristic is used that provides a weaker
lower bound. Notice that even the lower bound provided by
solving exactly maximum independent set is not sharp. In [8],
an example of size is shown, whose minimal solution
has a cost, but whose lower bound by independent set
is a constant 1. In practice, a lower bound by independent set
is poor when the covering matrix is dense.

In [38], [36], and [41], the adjacency matrix of a
graph whose nodes correspond to rows in the cover matrix

is created. In the binate case, only rows are taken into
consideration which do not contain any 0 element. An edge
is placed between two nodes if the two rows have an element
in common. While is nonempty, a row of is found
that is disjoint from a maximum number of rows (i.e., the row
of minimum length in). The column of minimum weight
intersecting is also found. The weight is cumulated in the
independent set cost. All rows having elements in common
with are then deleted from . At the end of thewhile-
iteration, a set of pairwise disjoint rows (independent set) and
their minimum covering cost are found. Notice that one could
think of the problem in a dual way as finding a maximal clique
in a graph with the same rows as before, and edges between
two nodes representing two disjoint rows.

VILLA et al.: ALGORITHMS FOR BINATE COVERING PROBLEMS 681

In [8], a detailed analysis of independent set computations
is made. A quantitative ratio between a maximal cost inde-
pendent set and the independent set computed by a greedy
algorithm based on set packing is derived.

2) Logarithmic Ratio Lower Bound:There are problems
for which approximation algorithms have been developed
with a fixed ratio bound, i.e., independent of the sizeof the
input. For other problems, like the unate covering problem,
the best that can be done is to let the ratio bound grow as a
function of . Therefore, as the size of the instance gets larger,
the size of the approximate solution may grow with respect
to the size of an optimal solution. In [8], a logarithmic ratio
lower bound on unate problems has been presented. Since the
logarithm function grows slowly, this bound is of practical
value. The result is originally due to Chvatal; a textbook
exposition and references are in Leiserson [6]. Consider an
instance of a set-covering problem with a finite set

and a family of subsets of . A greedy algorithm2

that selects at each step the set that covers the most remaining
uncovered elements returns a solution whose ratio with respect
to the optimal solution is bounded by

where . The result holds also for positive
weights on the sets and for satisfiable binate problems. Strong
improvements are reported compared to the traditional lower
bound computed by approximating a maximum independent
set.

D. Selection of a Branching Column

The selection of a good branching column is essential for
the efficiency of the branch-and-bound algorithm. Since the
time taken by the selection is a significant part of the total, a
tradeoff must be made between quality and efficiency.

In [38], [36], and [41], the selection of the branching
variable is restricted to columns intersecting the rows of the
independent set because a unique column must eventually
be selected from each row of the maximal independent set.
Among those rows, the selection strategy favors columns with
large number of 1’s and intersecting many short rows. Short
rows are considered difficult rows, and choosing them first
favors the creation of essential columns. More precisely, the
column of highest merit is chosen. The merit of a given column
is computed as the product of the inverse of the weight of
the column multiplied by the sum of the contributions of all
rows intersected in a 1 by the column. The inverse of the
contribution of a row is equal to the number of all non-2
elements (each can contribute in covering the row) minus 1.
The inverse is well defined because at this stage, each row has
at least two elements (it is not essential).

E. New Bounding Criteria

In [11], two new rules to prune the search space have
been introduced. We are going to survey them here. Given

2The proof in [8] holds for a class of greedy algorithms parametrized in
a positive weighting function� that measures the difficulty of covering an
element.

a covering problem that corresponds to a nodeof the
computation tree, define the following notation.

• is the subproblem of generated assuming that a
given branching column is selected.

• is the subproblem of generated assuming that a
given branching column is not selected.

• is the cost of a minimum solution.
• lower is the value of a lower bound on .
• path is the cost of the partial solution from the root

to node .
• upper is the cost of the best solution found so far.

The algorithm described in Fig. 1 guarantees that the invariant
path lower upper is always true.
Theorem 2.1 (Left-Hand Side Lower Bound):Given a bi-

nate covering problem , suppose we branch on a unate
column . If

path lower upper

then both and can be pruned and lower is a strictly
better lower bound for .

For a proof, see [7] and [26].
The way in which the “old” lower bound and the “new”

left-hand side lower bound work together is: if the current
node is a left child andlbound new Cost ubound
then bound computation and return flag to skip also the
right branch (“new” left-hand side lower bound); otherwise, if
lbound new ubound then bound computation (“old” lower
bound).

Theorem 2.2 (Limit Lower Bound):Given a binate cover-
ing problem , let be an independent set of the rows, i.e., a
set of unate rows intersecting no common column. Letlower
be a lower bound from the independent set, i.e., the sum of
a minimum cost column for each row in. Consider the set

of the columns that do not intersect rows in and such
that only if

path lower Cost upper

Then the columns in and the rows that intersect them in
a 0 can be removed from the covering table, and a minimum
solution can still be found. For a proof, see [7] and [26].

In practice, in the common case that all columns have cost
1 if included in a solution, one needs only to check whether

path lower upper

i.e.,

lbound new upper

in which case all columns that do not intersect rows in the
independent set can be removed, together with the rows
that they intersect in a 0. Experimental results in [11] on exact
two-level minimization show strong gains by this new pruning
technique, resulting in reductions of the search space up to
three orders of magnitude.

III. REDUCTION TECHNIQUES

Three fundamental processes constitute the essence of the
reduction rules.

682 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

Fig. 2. Flow of reduction rules.

1) Selection of a column: a column must be selected if
it is the only column that satisfies a required constraint
(Section III-G). A dual statement holds for unacceptable
columns (Section III-H). Also related is the case of
unnecessary columns (Section III-I).

2) Elimination of a column: a column can be eliminated
if its elimination does not preclude obtaining a minimal
cover, i.e., if there exists in another column
that satisfies at least all the constraints satisfied by
(Section III-E).

3) Elimination of a row: a row can be eliminated if there
exists in another row that expresses the same or
a stronger constraint (Section III-A).

Even though more complex criteria of dominance have been
investigated, the previous ones are basic in any table-covering
solver. Reduction rules have previously been stated for the
binate covering case [18], [19], [3], [2], and also for the unate
covering case [33], [39], [2]. For each of them, we will first
define the reduction rule, and then a theorem showing how that
rule is applied. Proofs for the correctness of these reduction
rules have been given in [18] [19], [3], and [2], and they will
not be repeated here.

The effect of reductions depends on the order of their
application. Reductions are usually attempted in a given order,
until nothing changes any more (i.e., the covering matrix has
been reduced to a cyclic core). Fig. 2 shows how reductions
are applied in [38], [36], and [41].

A. Row Dominance

Definition 3.1: A row dominates another row if
has all the 1’s and 0’s of .

Theorem 3.1:If a row is dominated by another row
can be eliminated without affecting the solutions to the

covering problem.

B. Row Consensus

Theorem 3.2:If dominates , except for a (unique)
column where and have different values, element

can be eliminated from the matrix (i.e., the entry in
position becomes a 2) without affecting the solutions of
the covering problem.

C. Column -Dominance

Definition 3.2: A column -dominates another column
if

• ;
• has all the 1’s of ;
• has all the 0’s of .

Theorem 3.3:Let be satisfiable. If a column is
-dominated by another column , there is at least one

minimum cost solution with column eliminated ,
together with all the rows in which it has 0’s.

In [8], column dominance is formulated in a more general
way as follows.

Theorem 3.4:Suppose that and are elements of .
If the clauses satisfied by column set to the value are
satisfied at a lower cost by setting column to , and the
clauses satisfied by set to are also satisfied at zero cost
by set to , one can set to and remove the rows that
intersect in , without missing any optimal solution.

By restriction to negative literals of zero cost and positive
literals of positive cost, the criterion reduces to-dominance.

D. Column -Dominance

Definition 3.3: A column -dominates another column
if

• ;
• has all the 1’s of ;
• for every row in which has a 0, either has a 0

or there exists a row in which has a 0 and does
not have a 0, such that disregarding entries in columns

and dominates .

Theorem 3.5:Let be satisfiable. If -dominates ,
there is at least one minimum cost solution with column
eliminated , together with all the rows in which it
has 0’s.

E. Column Dominance

Definition 3.4: A column dominates another column
if either -dominates or -dominates .

Theorem 3.6:Let be satisfiable. If dominates ,
there is at least one minimum cost solution with column
eliminated , together with all the rows in which it
has 0’s.

VILLA et al.: ALGORITHMS FOR BINATE COVERING PROBLEMS 683

F. Column Mutual Dominance

Definition 3.5: Two columns and mutually dominate
each other if

• has a 0 in every row where has a 1;
• has a 0 in every row where has a 1.

Theorem 3.7:Let be satisfiable. If and mutually
dominate each other, there is at least one minimum cost
solution with columns and eliminated ,
together with all the rows in which they have 0’s.

In [8], column mutual dominance is formulated in a more
general way as follows.

Theorem 3.8:Suppose that and are elements of .
Suppose that column has minimum cost when set toand
column has minimum cost when set to. If the clauses
satisfied by setting column to are satisfied by setting
column to , and the clauses satisfied by setting to
are satisfied by setting to , then one can set to

to and remove the rows that intersect in and
in , without missing any optimal solution.

G. Essential Column

Definition 3.6: A column is an essential column if there
exists a row having a in column and 2’s everywhere
else.

Theorem 3.9:If is an essential column, it must be
selected in every solutions. Column must then
be deleted together with all the rows in which it has 1’s.

H. Unacceptable Column

Definition 3.7: A column is an unacceptable column
if there exists a row having a 0 in column and 2’s
everywhere else.

This reduction rule is a dual of the essential column rule.
Theorem 3.10:If is an unacceptable column, it must be

eliminated in every solution, together with all the
rows in which it has 0’s.

I. Unnecessary Column

Definition 3.8: A column of only 0’s and 2’s is an unnec-
essary column.

Notice that there is no symmetric rule for columns of 1’s
and 2’s. The reason is that selecting a column to be in the
solution has a cost, while eliminating it has no cost.

Theorem 3.11:If is an unnecessary column, it may be
eliminated , together with all the rows in which it
has 0’s.

J. Trial Rule

Theorem 3.12:If there exists in a covering table a row
having a 0 in column , a 1 in column , and 2’s in

the rest, then apply the following test:

• eliminate together with the rows in which it has 0’s;
• eliminate , which is now an unacceptable column,

together with the rows in which it has 0’s;

• continue as long as possible to eliminate the columns
which become unacceptable columns.

If at least one row of has only 2’s at the end of this
test, then column must be selected3 . Therefore,

can be deleted together with all of the columns in which
it has 1’s.

K. Infeasible Subproblem

Unlike the unate covering problem, the binate covering
problem may be infeasible. In particular, an intermediate
covering matrix may found to be unsatisfiable by the
following theorem. When an infeasible subproblem is found,
that branch of the binary recursion is pruned.

Definition 3.9: A covering problem is infeasible if there
exists a column which is both essential and unacceptable
(implying and).

L. Gimpel’s Reduction Step

Another heuristic for solving the minimum cover problem
has been suggested by Gimpel [17], [37]. Gimpel proposed a
reduction step which simplifies the covering matrix when it has
a special form. This simplification is possible without further
branching, and hence is useful at each step of the branch-
and-bound algorithm. In practice, Gimpel’s reduction step is
applied after reducing the covering matrix to the cyclic core.
An extended presentation can be found in [39]. In [36] and
[41], Gimpel’s rule has been extended to handle the binate
case.

IV. SEMI-IMPLICIT SOLUTION OF BINATE COVERING

A. Binary Decision Diagrams

Basic introductions to binary decision diagrams are found
in [4] and [1].

Definition 4.1: A binary decision diagram(BDD) is a
rooted, directed acyclic graph. Each nonterminal vertex
is labeled by a Boolean variablevar . Vertex has two
outgoing arcs,child and child . Each terminal vertex

is labeled 0 or 1.
Each vertex in a BDD represents a binary input, binary

output function, and all accessible vertices are roots. The
terminal vertices represent the constants (functions) 0 and
1. For each nonterminal vertex representing a function ,
its child vertexchild represents the function , and its
other child vertexchild represents the function , i.e.,

.
For a given assignment to the variables, the value yielded

by the function is determined by tracing a decision path from
the root to a terminal vertex, following the branches indicated
by the values assigned to the variables. The function value is
then given by the terminal vertex label.

Definition 4.2: A BDD is ordered if there is a total order
over the set of variables such that for every nonterminal

3It is possible that a row is left with only 2’s by a sequence of reduction
steps.

684 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

vertex , var var child if child is nonterminal,
and var var child if child is nonterminal.

Definition 4.3: A BDD is reducedif

1) it contains no vertex such thatchild child ;
2) it does not contain two distinct verticesand such

that the subgraphs rooted atand are isomorphic.

Definition 4.4: A reduced ordered binary decision diagram
(ROBDD) is a BDD which is both reduced and ordered.

Definition 4.5: The ITE operator returns function if
function evaluates true; else, it returns function:

if
otherwise

where range .

B. The Shortest Path Method

In [32], the solution of a binate covering problem was re-
duced to a shortest path computation on the BDD representing
the clauses. The constraints are expressed as a product-of-sums
(POS), and are represented by a matrix where each row is a
clause (i.e., a minterm represented as a path from root to the 1
terminal) and each column is a variable. The attractive feature
of a BDD-based algorithm is that finding the solution only
requires computing the shortest path to the 1 terminal in the
BDD. We will present the theorem supporting the reduction.

Suppose that the length (or cost) of a 0-edge of a BDD is
0 and the length of a 1-edge is a positive constant. A shortest
path between two nodes is a path of total minimum length.

Theorem 4.1:A minimum cost assignment satisfying a
Boolean formula is given by a shortest path
from the root to the terminal 1 of an ROBDD representing.

C. The Method Based on a Product of BDD’s

In [21] and [22], a branch-and-bound algorithm for the
binate covering problem expressed as a product of general
Boolean formulas and represented by a conjunction of multiple
BDD’s is presented. Since in cases of practical interest, it
happens often that a single BDD representing all clauses is
too large to be built, it has been proposed to represent the
constraints as a product of subconstraints, each of which
can be represented by a BDD. The question is how to find
a minimum solution, having a product of BDD’s, instead
of a single BDD. It is clear that if each subconstraint is a
sum-of-products (SOP) clause, the BDD-based formulation is
analogous to the one based on a matrix. This motivates the
extension to a conjunction of BDD’s of the reduction and
bounding techniques devised to solve a table.

The algorithm assumes that the constraint function is in the
form where each is represented by a BDD

. Each or is called a subconstraint. The conjunction
of the is called . Under this assumption, BCP amounts
to finding an assignment for that minimizes
the cost function and that satisfies all’s simultaneously.
If , we have a single BDD, and the minimum cost
assignment that satisfies can be found by computing the
shortest path connecting the root ofto the “1” leaf. If

a branch-and-bound algorithm as in the matrix-based case can
be devised. Reduction and bounding techniques are extended
as shown next.

A variable is essential for if and only if , for
some . A variable is unacceptable for if
and only if , for some .

Row dominance is extended to the more general definition
of constraint dominance. Function dominates function
if and only if . Constraint dominance reduces to row
dominance if subconstraints coincide with SOP clauses.

Column dominance is extended to the following definition
of variable dominance. Variable dominates variable if
and only if and . Since the constraint

is in the form of conjunction of subconstraints, the previous
definition cannot be checked directly. However, the following
sufficient conditions can be checked efficiently. If either of the
following conditions is satisfied:

• for each
• for each

where then dominates . As another special case,
if for each , then any variable
dominates variable .

When has cost 0, a more general definition of variable
dominance is that variable dominates variable if and
only if or .

In [21], variable is said to dominate variable if and
only if and one of the following conditions is satisfied

:

1)

2) , i.e., does not depend on
, and there exists a such that

If subconstraints coincide with SOP clauses, the first con-
dition gives the definition of -dominance. If subconstraints
coincide with SOP clauses, the first and second conditions
together give the definition of -dominance.

A lower bound to the cost of satisfying is given by
the sum of the minimum costs of satisfying each BDD in
a set of BDD’s with disjoint supports (an independent set of
BDD’s). These minimum costs can be found by computing
the shortest paths of those BDD’s. If the shortest paths satisfy
all of the other subconstraints, the solution determined by the
independent set is optimal, and the current recursion node can
be pruned.

A most common variable in the BDD’s is chosen as a
splitting variable (i.e., a variable whose corresponding column
in the dependence matrix intersects most rows). This favors the
simplification of as many BDD’s as possible, the partitioning
of the BDD’s in sets with disjoint support, and the generation
of larger independent sets. Experiments show that this splitting
variable criterion is less effective that the one (in Section II-
D) used for a matrix-based formulation, and as a consequence,
the number of recursion nodes is greater.

We notice that in both approaches presented in this section,
the usage of BDD’s potentially allows us to handle problems
with many clauses (if they have a compact BDD representa-

VILLA et al.: ALGORITHMS FOR BINATE COVERING PROBLEMS 685

tion), but does not address the problem of covering matrices
with many columns. In such problems, it is unlikely that the
BDD can be built at all because each column is a variable in
the support of the BDD.

It may be worthy of mention at this point that in [27]
and [28], a more general algorithm to solve integer linear
programming based on edge-valued binary decision diagrams
has been presented.

V. IMPLICIT SOLUTION OF BINATE COVERING

The classical branch-and-bound algorithm [18], [19] for
minimum cost binate covering has been described in previous
sections, and implemented by means of efficient computer pro-
grams (ESPRESSOand STAMINA). These state-of-the-art binate
table solvers represent binate tables efficiently using sparse
matrix packages. But the fact that each nonempty table entry
still has to be explicitly represented puts a bound on the size
of the tables that can be handled by these binate solvers. For
example, one would not expect these binate solvers to handle
examples requiring over 10columns (up to 2 columns),
reported in state minimization of FSM’s [26]. To keep with
our stated objective, the binate table has to be represented
implicitly. We do not represent (even implicitly) the elements
of the table, but we make use only of a set of row labels and
a set of column labels, each represented implicitly as a BDD.
They are chosen so that the existence and value of any table
entry can be readily inferred by examining its corresponding
row and column labels. In the sequel, we shall assume that
every row has a unit cost.

A. Implicit Set Manipulation

In [26], it is shown how to represent and manipulate sets
and sets of sets with BDD’s.

Given a ground set of cardinality less or equal to ,
any subset can be represented in a Boolean space by
a unique Boolean function , which is called its
characteristic function[5], such that

if and only if is in

Alternatively, a subset can also be represented inpositional-set
or positional-cubenotation form,4 using Boolean variables,

. The presence of an element in the set
is denoted by the fact that variable takes the value 1 in
the positional set, whereas takes the value 0 if element
is not a member of the set. One Boolean variable is needed
for each element because the element can either be present or
absent in the set. As an example, for , the set with a
single element is represented by 000 100, and the set
is represented by 011 010. The elements which are
not present correspond to 0’s in the positional set.

A set of subsets of can be represented by a Boolean
function, whose minterms correspond to the single subsets. In
other words, a set of sets is represented as a setof positional

4Called also1-hot encoding.

sets by a characteristic function as

if and only if the set represented by the

positional set is in the set of sets

Any relation between a pair of Boolean variables can also
be represented by a characteristic function as

if and only if is in relation to

can be a one-to-many relation over the two sets in.
These definitions can be extended to any relationbetween
Boolean variables, and can be represented by a characteristic
function as

if and only if the -tuple

is in relation

In this way, useful relational operators on sets can
be derived. Operator acts on two sets of variables

and and returns a relation
(as a characteristic function) of pairs of positional

sets. Alternatively, they can also be viewed as constraints
imposed on the possible pairs out of two sets of objects,
and . For example, given two sets of sets and , the set
pairs where contains are given by the product of
and and the containment constraint, .
A detailed list of these operators is presented in [26].

B. Setting of Implicit Solution

A binate covering problem instance can be characterized by
a 6-tuple , defined as follows:

• the group of variables for labeling the rows:;
• the group of variables for labeling the columns:;
• the set of row labels: ;
• the set of column labels: ;
• the 0-entries relation at the intersection of rowand

column : ;
• the 1-entries relation at the intersection of rowand

column : .

In other words, the user of our implicit binate solver would
first choose an encoding for the rows and columns. Given a
binate table, the user will then supply a set of row labels as a
BDD and a set of column labels as a BDD , and also
the two inference rules in the form of BDD relations,
and , capturing the 0-entries and 1-entries.

The classical branch-and-bound solution of minimum cost
binate covering is based on the recursive procedure as shown
in Fig. 1. In our implicit formulation, we keep the standard
branch-and-bound scheme, but we replace the traditional de-
scription of the table as a (sparse) matrix with an implicit
representation, using BDD’s for the characteristic functions of
the rows and columns of the table. Moreover, we have implicit
versions of the manipulations of the binate table required to
implement the branch-and-bound scheme, namely, we per-
form implicitly table reduction, branching column selection,
computation of the lower bound, and table partitioning.

At each call of the binate cover routinemincov, the binate
table undergoes a reduction stepReduceand, if termination

686 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

conditions are not met, a branching column is selected and
mincovis called recursively twice, once assuming the selected
column in the solution set (on the table), and once
out of the solution set (on the table). Some suboptimal
solutions are bounded away by computing a lower boundon
the current partial solution and comparing it against an upper
bound (best solution obtained so far). A good lower bound
is based on the computation of a maximal independent set.

C. Implicit Table Generation

Here, we define different ways of specifying the binate
covering table in decreasing order of generality of the binate
covering problem. A table is defined implicitly by generating
BDD-based representations of the rows and columns and by
giving relations specifying the 1 and 0 entries, given the rows
and columns. By imposing restrictions on the way in which
rows and columns are labeled and entries are defined, one
gets representations with varying degrees of generality. We
distinguish between 1) the case of a general binate covering
table and 2) a specialized representation, sufficient to solve
tables for exact state minimization of ISFSM’s [23] (applicable
to problems with similar covering tables, e.g., technology
mapping for area minimization [39]). There is a tradeoff
between generality of the representation and efficiency of the
computations: “hard wiring” the rules that define a table may
speed up table manipulations, at the price of more limited
applicability.

1) General binate covering table
• the group of variables for labeling the rows:;
• the group of variables for labeling the columns:;
• the set of row labels: ;
• the set of column labels: ;
• the 0-entries relation at the intersection of rowand

column : ;
• the 1-entries relation at the intersection of rowand

column : .
2) Specialized binate covering table for exact state mini-

mization and similar problems:
• the group of variables for labeling the rows (each

label is a pair): ;
• the group of variables for labeling the columns:;
• the set of row labels: ;
• the set of column labels: ;
• the 0-entries relation at the intersection of row

and column : ;
• the 1-entries relation at the intersection of row

and column :

As an example, for the problem of exact state minimization,
is the set of labels that denote the prime compatiblesof

an FSM, i.e., is in set if it is the label of a prime compatible
. Prime compatibles are sets of states and they are represented

using positional set notation. For instance, if an FSM has five
states and is a compatible, set
is represented with five Boolean variables, andis labeled as
10 010. is the relation expressing covering clauses and
closure clauses. A covering clause for a state says that the state

must be contained in at least one prime compatible. A binate
clause for a compatible says that if the compatible is chosen in
a solution, then at least another compatible from a related set
must be in that solution, e.g., clause ,
meaning that if is in a solution, either one of
must be in that solution. A covering clause yields a unate
row, labeled by a part that denotes an empty set and by a

part that denotes a singleton set, requiring that a given state
be covered. Whenever , there is a 1 at the intersection
of the row labeled by and the column representing prime
compatible , meaning that the compatiblecontains state .
A closure clause yields a binate row, labeled by apart that is
the label of the unique prime compatible whose corresponding
column has a zero at the intersection with this row (condition

), and by a part that is the label of a compatible such
that there is a 1 at the intersection of this row and any column
whose label is a prime compatible that contains compatible

. We refer to [24] for a complete treatment of implicit state
minimization of incompletely specified FSM’s.

If the covering problem is unate, the relation is
empty. A typical example is exact two-level minimization
where , for labeling minterms, ,
for labeling prime implicants, and .
The label of an implicant can be constructed by representing
each Boolean variable in multivalued notation, for instance,
encoding 0 as 10, 1 as 01, andas 11. A complete treatment
of this special case can be found in [42] and [7]. The more
complex case of implicit exact minimization of generalized
prime implicants is described in [44].

In the next section, we will describe how a binate covering
table can be manipulated implicitly so as to solve the minimum
cost binate covering problem.

VI. I MPLICIT TABLE REDUCTION TECHNIQUES

Reduction rules aim at the following.

1) Selection of a column. A column must be selected if
it is the only column that satisfies a given row. A dual
statement holds for columns that must not be part of the
solution in order to satisfy a given row.

2) Elimination of a column. A column can be eliminated
if its elimination does not preclude obtaining a minimum
cover, i.e., if there is another column that satisfies at
least all the rows satisfied by.

3) Elimination of a row. A row can be eliminated if
there exists another row that expresses the same or a
stronger constraint.

The order of the reductions affects the final result. Reduc-
tions are usually attempted in a given order, until nothing
changes any more (i.e., the covering matrix has been reduced
to a cyclic core).

In the reduction, there are two cases when no solution is
generated.

1) The added cardinality of the set of essential columns,
and of the partial solution computed so far,Sol, is larger
than or equal to the upper bound. In this case, a better
solution is known than the one that can be found from

VILLA et al.: ALGORITHMS FOR BINATE COVERING PROBLEMS 687

TABLE I
BINATE COVERING TABLE WITH CONSTRAINT

(xAB + xA)(xAB + xBC + xB)(xBC + xCD)
(xCD)(xAB + xCD)(xBC + xCD) GENERATED

FROM AN ISFSM STATE MINIMIZATION EXAMPLE

TABLE II
TABLE AFTER DELETING THE ESSENTIAL COLUMN LABELED 0011FROM TABLE I

TABLE III
TABLE AFTER DELETING DOMINATED COLUMNS FROM TABLE II

now on, and so the current computation branch can be
bounded away.

2) After having eliminated essential, unacceptable, and
unnecessary columns and covered rows, it may happen
that the rest of the rows cannot be covered by the
remaining columns. In this case, the current partial
solution cannot be extended to any full solution.

In the rest of the section, we will describe how reduction
operations are performed implicitly on the general binate
covering table. Proofs of each proposition can be found in [26],
together with other equations for reducing the general binate
covering table and for the specialized binate covering table. A
simple example of implicit reduction is shown in Tables I–III.

A. Essential Columns

Definition 6.1: A column is an essential columnif there
is a row having a 1 in column and 2 everywhere else.

Proposition 6.1: The set of essential columns can be com-
puted by

esscol

Essential columns must added to the solution. Each essential
column must then be deleted from the table together with all
rows where it has 1’s.

solution solution esscol

esscol

esscol

B. Column Dominance

Some columns need not be considered in a binate table, if
they are dominated by others. Classically, there are two notions
of column dominance: -dominance and -dominance.

Definition 6.2: A column -dominatesanother column
if has all the 1’s of , and has all the 0’s of .

Proposition 6.2: The -dominance relation can be com-
puted as

dom

Definition 6.3: A column -dominatesanother column
if: 1) has all the 1’s of , and 2) for every row in which
contains a 0, there exists another rowin which has a 0 such
that, disregarding entries in column has all the 1’s of .

Proposition 6.3: The -dominance relation can be com-
puted by

dom

The conditions for -dominance are a strict subset of those
for -dominance, but -dominance is easier to compute im-
plicitly. Either of them can be used as the column dominance
relation col dom.

Proposition 6.4: The set of dominated columns in a table
can be computed as

col dom

Proposition 6.5: The following computations delete a set of
columns from a table and all rows intersecting
these columns in a 0

C. Row Dominance

Definition 6.4: A row dominatesanother row if has
all the 1’s and 0’s of .

Proposition 6.6: The row dominance relation can be com-
puted by

row dom

Proposition 6.7: The set of rows not dominated by other
rows can be computed as

row dom

VII. OTHER IMPLICIT TABLE MANIPULATIONS

To have a fully implicit binate covering algorithm as de-
scribed in Section V, we must also compute implicitly a
branching column and a lower bound. These computations as
well as table partitioning involve solving a common subprob-
lem of finding columns in a table which have the maximum
number of 1’s.

688 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

Fig. 3. Pseudocode for theLmax operator.

A. Selection of Columns with Maximum Number of 1’s

Given a binary relation as a BDD, the abstracted
problem is to find a subset of’s, each of which relates to the
maximum number of ’s in . An inefficient method is
to cofactor with respect to taking each possible value,
count the number of onset minterms of each , and
pick the ’s with the maximum count. Instead, our algorithm,

, traverses each node of exactly once as shown by
the pseudocode in Fig. 3.

takes a relation and the variable set as
arguments, and returns the setof ’s which are related to
the maximum number of’s in , together with the maximum
count. Variables in are required to be ordered before variables
in . Starting from the root of BDD , the algorithm traverses
down the graph by recursively calling on its then and
elsesubgraphs. This recursion stops when the top variable
of is within the variable set. In this case, the BDD rooted
at corresponds to a cofactor for some . The
minterms in its onset are counted and returned ascount, which
is the number of ’s that are related to .

During the upward traversal of , we construct a new BDD
in a bottom-up fashion, representing the set of’s with

maximum count. The two recursive calls of return
the sets and with maximum countscount and
count for the and the subgraphs. The larger of
the two counts is returned. If the two counts are the same,
the columns in and are merged by and
returned. Ifcount is larger, only is retained as the updated
columns of maximum count, and symmetrically for the other
case. To guarantee that each node of BDD is traversed
once, the results of andbdd count onsetare memorized
in computed tables. Note that returns a set of ’s of
maximum count. If we need only one, some heuristic can
be used to break the ties.

Example 7.1:To understand how works, consider
the explicit binate table

Fig. 4. BDD of F (r; c) to illustrate the routineLmax.

with four rows and four columns. The columns that maximize
the number of 1’s are the second and the fourth. If the rows and
columns are encoded by two Boolean variables each, using the
encodings given at the top of each column and to the left of
each row, the 1 entries of the table are represented implicitly
by the relation 5 whose minterms are

The BDD representing is shown in Fig. 4. The result
of invoking on is a BDD representing the
relation whose minterms are , corresponding to
the encodings of the second and fourth columns.

B. Implicit Selection of a Branching Column

The selection of a branching column is a key ingredient
of an efficient branch-and-bound covering algorithm. A good
choice reduces the number of recursive calls, by helping to
discover more quickly a good solution. We adopt a simplified
selection criterion: select a column with a maximum number
of 1’s. By defining which
evaluates true if and only if table entry is a 1, our column
selection problem reduces to one of finding therelated to the
maximum number of ’s in the relation , and so it can
be found implicitly by calling . A more refined
strategy is to restrict our selection of a branching column
to columns intersecting rows of a maximal independent set
because a unique column must eventually be selected from
each independent row. A maximal independent set can be
computed as follows.

5r andc are swapped inF so that minterms are listed in the order of the
BDD variables.

VILLA et al.: ALGORITHMS FOR BINATE COVERING PROBLEMS 689

TABLE IV
RANDOM FSM’s

C. Implicit Selection of a Maximal Independent Set of Rows

Usually, a lower bound is obtained by computing a maxi-
mum independent set of the unate rows. A maximum indepen-
dent set of rows is a (maximum) set of rows, no two of which
intersect the same column at a 1. Maximum independent set is
an -hard problem, and an approximate one (only maximal)
can be computed by a greedy algorithm. The strategy is to se-
lect short unate rowsfrom the table, so we construct a relation

unaterow . Variables in
are orderedbeforethose in . The rows with the minimum

number of 1’s in can be computed by ,
by replacing in the expression count count
with count count . Once a shortest row,shortest ,
is selected, all rows having 1-elements in common with
shortest are discarded from by

shortest

Another shortest row can then be extracted from the remaining
table and so on, until becomes empty. The maximum
independent set consists of all rowsshortest so selected.

VIII. E XPERIMENTAL RESULTS OFIMPLICIT BINATE COVERING

We implemented a specialized solver where the table is
specified as in case 2) of Section V-C (“specialized binate cov-
ering table for exact state minimization and similar problems”),
and we applied it to the problem of exact state minimization
of incompletely specified FSM’s (ISFSM’s).

We also implemented a more general solver that is a variant
of case 1) of Section V-C (“general binate covering table”). It
works with relations and to determine 0 entries
and 1 entries, but it makes the assumption that each row of the
binate covering table has at most one 0 in order to simplify the
table reduction operations.6 We applied it to the problem of
exact state minimization of pseudodeterministic FSM’s [25].
The same binate solver was also applied to the problem of
selection of generalized prime implicants [44].

In this section, we report results of two applications of the
previous implicit binate covering algorithms. We will con-
centrate on the experimental performance of binate covering,
referring to the original papers for a full-fledged description
of the specific applications.

6See [26] for a more detailed description of variant formulations of the
binate covering table in the implicit setting.

A. State Minimization of ISFSM’s

Here, we provide data for a subset of them, sufficient
to characterize the capabilities of our prototype program.
Comparisons of our programISM are made withSTAMINA.
The binate covering step ofSTAMINA was run with no row
consensus, because row consensus has not been implemented
in our implicit binate solver. Our implicit binate program
does not feature Gimpel’s reduction rule, that was instead
invoked in the version ofSTAMINA used for comparison.
This might sometimes favorSTAMINA, but for simplicity, we
will not elaborate further on this effect. Missing from our
package is also table partitioning. All run times are reported
in CPU seconds on a DECstation 5000/260 with 440 Mbytes
of memory.

The following explanations refer to the tables of results.

• Under “table size,” we provide the dimensions of the
original binate table and of its cyclic core, i.e., the
dimensions of the table obtained when the first cycle of
reductions converges.

• “# mincov” is the number of recursive calls of the binate
cover routine.

• “ ” and “ ” mean, respectively, and dominance.
• Data are reported with a “” in front when only the first

solution was computed.
• Data are reported with a “” in front when only the first

table reduction was performed.
• “# cover” is the cardinality of a minimum cost solution

(when only the first solution has been computed, it is the
cardinality of the first solution).

• “CPU time” refers only to the binate covering algorithm.
It does not include the time to find the prime compatibles.

Table IV presents a few randomly generated FSM’s. They
generate giant binate tables. The experiments show that ISM is
capable of reducing those tables, and of producing a minimum
solution or at least a solution. This is beyond the reach of an
explicit technique, and substantiates the claim that implicit
techniques advance decisively the size of instances that can
be solved exactly.

Examples in Table IV demonstrate dramatically the ca-
pability of implicit techniques to build and solve huge bi-
nate covering problems on suites of contrived examples.
Do similar cases arise in real synthesis applications? The
examples reported in Table V answer the question in the
affirmative. They are from the suite of FSM’s described
in [35]. It is not possible to build and solve these binate
tables with explicit techniques. Instead, we can manipulate

690 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

TABLE V
LEARNING I/O SEQUENCES BENCHMARK

TABLE VI
EXAMPLES FROM SYNTHESIS OF INTERACTING FSM’s

them with our implicit binate solver and find a solution.
In the examplefourr.40, only the first table reduction was
performed.

Table VI reports FSM’s expressing the permissible behav-
iors in the synthesis of interacting FSM’s. Prime compatibles
are required only for the state minimization of and

. For , ISM can find a first solution faster than
STAMINA using -dominance. But as the table sizes are not
very big, the run times thatISM takes are usually longer than
those forSTAMINA.

B. Selection of Generalized Prime Implicants

Table VII reports the results of running our programISA to
select a minimal encodable cover of generalized prime impli-
cants (GPI’s). GPI’s are an extension of the concept of prime
implicants to the case of multivalued input and multivalued
output Boolean functions. An encodable selection of GPI’s
translates into a two-valued implementation of the same size.
Details can be found in [15] and [44]. For these experiments,
ISA has been run with option , which computes a subset of
the GPI’s, to generate smaller tables. The tables provide the
following information.

• Under the column “table size,” we provide the dimensions
of the original table and of its cyclic core, i.e., the
dimensions of the table obtained when the first cycle of
reductions converges.

• The column “mincov calls” is the number of recursive
calls of the implicit table solver.

• The column “table sol.” is the cardinality of the cover of
GPI’s returned by the table solver.

• The column “CPU time table red.” gives the time for
the binate table solver. The time to compute the prime
compatibles is not included.

TABLE VII
SELECTION OF A MINIMAL ENCODABLE GPI COVER

The part of ISA that computes an encodable cover of GPI’s
and gets the codes by a second call to an implicit table solver
is not reported here.

ISA fails to complete some examples due to time-out or no
more memory in the collapse column step of the first table
reduction. For instance,ISA fails to complete the first table
reduction ofslavefor time-out at 18 000 s, during the step of
collapse columns.

FSM’s cse, dk512, keyb, ex2, maincont, pkheader, mark1
were run on a DEC 7000 Model 610 AXP with 1 Gbyte of
memory. There is no program against which to compare.

VILLA et al.: ALGORITHMS FOR BINATE COVERING PROBLEMS 691

We underline that the covering problems faced to select
covers of GPI’s, even though they are unate, are often harder
than those encountered to select covers of prime implicants in
the ESPRESSObenchmark [42], [7], a reason being the larger
variable support of the BDD representations of columns and
rows. To be able to solve the examples of the previous tables,
the package described in [24] had to be further optimized, and
inadequacies still remain to be addressed.

IX. CONCLUSION

Binate covering is a very useful paradigm for a host of opti-
mization problems in automatic design. We have presented the
main features of explicit and implicit algorithms to find an ex-
act solution. The former solve routinely small and medium in-
stances. The latter may solve large instances, but we cannot an-
alyzea priori when they will succeed because it is difficult to
determine tight bounds on the size of ROBDD representations.

Research is still in progress to improve the lower
bound and column selection procedures to generate fewer
subproblems. On the front of implicit techniques, work still
must be done to make the implicit procedures more robust.
When applicable, quantifier-free implicit table reductions
are surely a useful tool as shown for unate covering of
two-level exact minimization [7].

REFERENCES

[1] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a BDD
package,” inProc. Design Automation Conf., June 1990, pp. 40–45.

[2] R. Brayton, A. Sangiovanni-Vincentelli, G. Hachtel, and R. Rudell,
Multi-Level Logic Synthesis, unpublished book, 1992.

[3] R. Brayton and F. Somenzi, “An exact minimizer for Boolean relations,”
in Proc. Int. Conf. Computer-Aided Design, Nov. 1989, pp. 316–319.

[4] R. Bryant, “Graph based algorithm for Boolean function manipulation,”
IEEE Trans. Comput., vol. C-35, pp. 667–691, Aug. 1986.

[5] E. Cerny, “Characteristic functions in multivalued logic systems,”
Digital Processes, vol. 6, pp. 167–174, June 1980.

[6] T. H. Cormen, C. E. Leiserson, and R. l. Rivest,Introduction to
Algorithms. MIT Press, McGraw-Hill, 1990.

[7] O. Coudert, “Two-level logic minimization: An overview,”Integration,
vol. 17, pp. 97–140, Oct. 1994.

[8] , “On solving binate covering problems,” inProc. Design Au-
tomation Conf., June 1996, pp. 197–202.

[9] O. Coudert, C. Berthet, and J. C. Madre, “Verification of sequential ma-
chines using functional Boolean vectors,” inProc. IFIP Int. Workshop,
Applied Formal Methods for Correct VLSI Design, Nov. 1989.

[10] O. Coudert and J. C. Madre, “Implicit and incremental computation of
prime and essential prime implicants of Boolean functions,” inProc.
Design Automation Conf., June 1992, pp. 36–39.

[11] , “New ideas for solving covering problems,” inProc. Design
Automation Conf., June 1995, pp. 641–646.

[12] O. Coudert, J. C. Madre, and H. Fraisse, “A new viewpoint on two-level
logic minimization,” in Proc. Design Automation Conf.,June 1993, pp.
625–630.

[13] O. Coudert, J. C. Madre, H. Fraisse, and H. Touati, “Implicit prime cover
computation: An overview,” inProc. SASIMI Conf., 1993, pp. 413–422.

[14] O. Coudert and C.-J. Shi, “Ze-Dicho: An exact solver for dichotomy-
based constrained encoding” inProc. Int. Conf. Comput. Design, 1996,
pp. 426–431.

[15] S. Devadas and R. Newton, “Exact algorithms for output encoding,
state assignment and four-level Boolean minimization,”IEEE Trans.
Computer-Aided Design, vol. 10, pp. 13–27, Jan. 1991.

[16] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco: Freeman, 1979.

[17] J. Gimpel, “A reduction technique for prime implicant tables,”IRE
Trans. Electron. Comput., vol. EC-14, pp. 535–541, Aug. 1965.

[18] A. Grasselli and F. Luccio, “A method for minimizing the number of
internal states in incompletely specified sequential networks,”IRE Trans.
Electron. Comput., vol. EC-14, pp. 350–359, June 1965.

[19] , “Some covering problems in switching theory,” inNetworks and
Switching Theory. New York: Academic, 1968, pp. 536–557.

[20] H. Higuchi and Y. Matsunaga, “Implicit prime compatible generation for
minimizing incompletely specified finite state machines,” inProc. Asia
and South Pacific Design Automation Conf., Sept. 1995, pp. 229–234.

[21] S.-W. Jeong and F. Somenzi, “A new algorithm for 0–1 programming
based on binary decision diagrams,” inProc. ISKIT-92, Int. Symp. Logic
Synthesis and Microprocessor Architecture, Iizuka, Japan, July 1992, pp.
177–184.

[22] , “A new algorithm for the binate covering problem and its
application to the minimization of boolean relations,” inProc. Int. Conf.
Computer-Aided Design, Nov. 1992, pp. 417–420.

[23] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli, “A fully
implicit algorithm for exact state minimization,” Tech. Rep. UCB/ERL
M93/79, Nov. 1993.

[24] , “A fully implicit algorithm for exact state minimization,” in
Proc. Design Automation Conf., June 1994, pp. 684–690.

[25] , “Implicit state minimization of nondeterministic FSM’s,” in
Proc. Int. Conf. Computer Design, Oct. 1995, pp. 250–257.

[26] , Synthesis of FSMs: Functional Optimization. Boston, MA:
Kluwer Academic, 1996.

[27] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula, “FGILP: An integer
linear program solver based on function graphs,” inProc. Int. Conf.
Computer-Aided Design, Nov. 1993, pp. 685–689.

[28] , “EVBDD-based algorithms for integer linear programming,
spectral transformation, and function decomposition,”IEEE Trans.
Computer-Aided Design, vol. CAD–13, pp. 959–975, Aug. 1994.

[29] L. Lavagno, “Heuristic and exact methods for binate covering,” EE290ls
Rep., May 1989.

[30] B. Lin, O. Coudert, and J. C. Madre, “Symbolic prime generation for
multiple-valued functions,” inProc. Design Automation Conf., June
1992, pp. 40–44.

[31] B. Lin and F. Somenzi, “Minimization of symbolic relations,” inProc.
Int. Conf. Computer-Aided Design, Nov. 1990, pp. 88–91.

[32] , “Minimization of symbolic relations,” in Proc. Int. Conf.
Computer-Aided Design, Nov. 1990.

[33] E. McCluskey, “Minimization of Boolean functions,”Bell Lab. Tech. J.,
vol. 35, pp. 1417–1444, Nov. 1956.

[34] S. Minato,Binary Decision Diagrams and Applications for VLSI CAD.
Boston, MA: Kluwer Academic, 1996.

[35] A. L. Oliveira and S. A. Edwards, “Inference of state machines from
examples of behavior,” UCB/ERL Tech. Rep. M95/12, Berkeley, CA,
1995.

[36] J.-K. Rho and F. Somenzi, “Stamina,” computer program, 1991.
[37] S. Robinson, III and R. House, “Gimpel’s reduction technique extended

to the covering problem with costs,”IRE Trans. Electron. Comput., vol.
EC-16, pp. 509–514, Aug. 1967.

[38] R. Rudell, “Espresso,” computer program, 1987.
[39] , “Logic synthesis for VLSI design,” Ph.D. dissertation, Univ.

California, Berkeley, Apr. 1989; Tech. Rep. UCB/ERL M89/49.
[40] A. Saldanha, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli,

“A uniform framework for satisfying input and output encoding con-
straints,” inProc. Design Automation Conf., June 1991, pp. 170–175.

[41] F. Somenzi, “Cookie,” computer program, 1989.
[42] G. Swamy, R. Brayton, and P. McGeer, “A fully implicit Quine-

McCluskey procedure using BDD’s,” Tech. Rep. UCB/ERL M92/127,
1992.

[43] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-
Vincentelli, “Implicit state enumeration of finite state machines using
BDD’s,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1990, pp.
130–133.

[44] T. Villa, T. Kam, R. Brayton, and A. Sangiovanni-Vincentelli,Synthesis
of FSMs: Logic Optimization. Boston, MA: Kluwer Academic, 1997.

Tiziano Villa , for a photograph and biography, see this issue, p. 675.

Timothy Kam (M’87), for a photograph and biography, see this issue, p. 675.

Robert K. Brayton (M’75–SM’78–F’81), for a photograph and biography,
see this issue, p. 676.

Alberto L. Sangiovanni-Vincentelli (M’74–SM’81–F’83), for a biography,
see this issue, p. 676.

