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Explicit and Implicit Algorithms
for Binate Covering Problems
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Abstract—We survey techniques for solving binate covering s;, which is 1 if s; is selected and 0 otherwise, the binate
problems, an optimization step often occurring in logic synthesis covering problem (BCP) can be defined as findisigC S
applications. Standard exact solutions are found with a branch- that minimizes
and-bound exhaustive search, made more efficient by bounding
away regions of the search space. Standard approaches are said i
to be explicit because they work on a direct representation Zkﬂ%
of the binate table, usually as a matrix. Recently, covering i=1
problems involving large tables have been attacked with implicit
techniques. They are based on the representation by reduced-
ordered binary decision diagrams of an encoding of the binate Ay, Lo, n) =1
table. We show how table reductions, computation of a lower
bound, and of a branching column can be performed on the whereA is a Boolean function, sometimes called the constraint
table so represented. We report experiments for two different ¢,4ction, The constraint function specifies a set of subsefs of
applications that demonstrate that implicit techniques handle that b luti No structural hvoothesis i de
instances beyond the reach of explicit techniques. Various aspects _a Can be a solution. NO S ruc ural nypo e_S'S IS ma : on
of our original research are presented for the first time, together Binate refers to the fact that is in general a binate function.

with a selection of the most important old and new results BCP is the problem of finding an onset minterm .4fthat

subject to the constraint

scattered in many sources. minimizes the cost function (i.e., a solution of minimum cost
of the Boolean equatiod(xy,z2,- -, z,) = 1).
|. INTRODUCTION If A is given in product-of-sums form, it is possible to write

T the core of the exact solution of various logic synd @S an array of cubes (that form a matiik with coefficients
Athesis problems often lies a so-called covering step tH&@™ the sef0, 1,2}). Each variable ofi is a column and each
requires the choice of a set of elements of minimum cotM (Or clause) is a row, and the problem can be interpreted

that cover a set of ground items, under certain condition@S one of finding a subs&t of columns of minimum cost,
Prominent among these problems are the covering steps in $H&N that for every row:;, either

Quine-McCluskey procedure for minimizing logic functions, 1) 3; such thata;; = 1 and¢; € C, or
selection of a minimum number of encoding columns that 2) 3; such thata;; = 0 and¢; € C.

satisfy a set of encoding constraints, selection of a set of o )
encodable generalized prime implicants, state minimizatiéf Other words, each clause must be satisfied by setting to 1

of finite-state machines, technology mapping, and Boolednvariable appearing in it in the positive phase or by setting

relations. Let us review first how covering problems arff® O @ variable appearing in it in the negative phase. In a
defined formally. unate covering problem, the coefficients dfare restricted

Suppose that a s&t = {s,---,s,} is given. The cost of to the values 1 and 2, and only the first condition must hold.
selectings; is k; wherek; > 0’ In’a general formulation also Here, we shall consider the minimum binate covering problem

the cost of not selecting; may be nonnegative, but here it willWhere A is given in product-of-sums form. In this case, the
be assumed that the cost of not selecting an item is strictly zef@fm coveringis fully justified because one can say that the
unless otherwise stated. Most problems of practical interest3@Signment of a variable to 0 or 1 covers some rows that
logic synthesis satisfy this assumption. The explicit algorithn?é€ Satisfied by that choice. The product-of-sumss called
that will be described can be extended easily to handle theVering matrix or covering table.

general formulation. By associating a binary variableto An example of binate covering formulation of a well-known

_ , _ _ Problem is finding the minimum number of prime compatibles
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that are a minimum closed cover of a given FSM. A binatine number of variables (i.e., columns) is too large because
covering problem can be set up, where each column of taeBDD with many thousands of variables usually cannot be
table is a prime compatible and each row is one of the coveriatpred in available computer memory.
or closure clauses of the problem [18]. There are as manyExplicit techniques fail when they are required to represent
covering clauses as states of the original machine, and eaels of very large cardinality. Fortunately, as an alternative,
of them requires that a state is covered by selecting any afe may represent sets by encoding them over an appropriate
the prime compatibles in which it is contained. There are &oolean space. In this way, one operates on the Boolean
many closure clauses as prime compatibles, and each of themracteristic function of the encoded set, represented by
states that if a given prime compatible is selected, then faeduced ordered binary decision diagrams (ROBDD) [4], [1].
each implied class in its corresponding class set, one of tBet operations are easily turned into Boolean operations on the
prime compatibles containing it must be chosen too. In tle@rresponding BDD’s. So we can manipulate sets by a series
matrix representation, table ent¢y, j) is 1 or 0 according to of BDD operations (Boolean connectives and quantifications)
the phase of the literal corresponding to prime compatjblewith a complexity depending on the sizes of the manipulated
in clausez; if such a literal is absent, the entry is 2. BDD'’s, but not depending linearly on the cardinality of the
A special case of the binate covering problem is the unaets that are represented. One hopes that complex set manip-
covering problem, where no literal in the negative phase ugations of a given application have as counterparts Boolean
present. Exact two-level logic minimization [33], [39] can bg@ropositions that can be represented with compact BDD'’s. Of
cast as a unate covering problem. The columns are the priamrse, this is not always the case, and it may happen that an
implicants, the rows are the minterms, and there is a 1 eninfermediate BDD computation blows up. Sometimes, it helps
in the matrix when a prime contains a minterm. Notice thab transform propositional sentences into logically equivalent
the feasibility (i.e., finding if there is a choice of column®nes, easier to compute with BDD manipulations.
that cover all the rows) of unate covering is trivial to answer The previous insight has already been tested in a series of
(always yes), while the feasibility of binate coveringA&P- applications from the implicit enumeration of subsets of states
complete [16]. Moreover unate covering aadortiori binate of a finite-state machine (FSM) in [9] and [43] to the implicit
covering areN P-complete problems [16]. computation of implicants, primes, and essential primes of a
Various techniques have been proposed to solve binate ctwe-valued or multivalued function in [10], [30], [42], and
ering problems. A class of them [3], [29] is branch-and-bour{d3]. There are functions whose primes could be computed
techniques that build explicitly the table of the constraintsnly implicitly.
expressed as product-of-sum expressions and explore in th&he fixed-point dominance computation in the covering
worst case all possible solutions, but avoid the generation siép of the Quine—McCluskey procedure has been implicitized
some of the suboptimal solutions by a clever use of reductiom [12] and [42]. A key technology in both cases has been
steps and bounding of search space for solutions. We viltle use of quantifier-free recursive implementations of matrix
refer to these methods as explicit. reductions (as was the case for prime generation). Actually,
A second approach of binate covering [31] formulates tHeoudert went beyond the standard Quine—McCluskey formu-
problem with binary decision diagrams (BDD’s), and reducdation using the concept of transposing functions by which
to finding a minimum cost assignment to a shortest pathe problem is mapped into a lattice, and then row and
computation. A BDD [4], [1] is a canonical directed acycliccolumn dominance is replaced by the computation of least
graph that represents logic functions. The number of itempper bounds and greatest lower bounds of the lattice. Using
that a BDD can represent corresponds to the number of pathese techniques, he computed the cyclic core of all logic
of the BDD to the 1 terminal, while the size of the BDDfunctions of theesprEssobenchmark, for some of which
is determined by the number of nodes of the DAG. ThemspPresschad failed the task. Another difference between the
iS no monotonic relation between the size of a BDD anichplementations in [12] and [42] is the usage of BDD’s in
the number of elements or paths that it represents. It is dre latter and of ZBDD’s [34] in the former. It appears that
experimental fact that often very large sets, that cannot BBDD's are a better data structure for this application. We
represented explicitly, have a compact BDD representation.vill not elaborate further on these techniques in this paper,
that case, the number of variables of the BDD is the numband we refer the reader to the original exposition by Coudert
of columns of the binate table. A mixed technique has be@n[7] and to [44] which also contains a worked-out example.
proposed in [21]. It is a branch-and-bound algorithm, where The implicit computation of prime compatibles of an FSM
the clauses are represented as a conjunction of BDD’s. Twas described in [24], [25], and [20]. In some cases, their
usage of BDD’s leads to an effective method to computermimber is exponential in the number of states (the largest
lower bound on the cost of the solution. recorded number is'2°9), Once prime compatibles have been
Existing explicit methods do quite well in solving exactlyobtained, one must solve a binate covering problem to choose a
small- and medium-sized examples, but fail to complete aninimum closed cover. Of course, one cannot build and solve
larger ones. The reason is that either they cannot build teeplicitly a table of such dimensions (this would defeat the
binate table because the number of rows and columns is fmarpose of computing implicitly prime compatibles in the first
large, or that the branch-and-bound procedure would take tolace). So it is necessary to extend implicit techniques to the
long to complete. The approach of building a BDD of theolution of the binate covering problem. Another application of
constraint function and computing the shortest path fails whérterest is the selection of a set of encodable generalized prime
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sm.mincov(M, select, weight, lbound, ubound) {

/* Apply row dominance, column dominance, and select essentials */ )
if (!sm.reduce(M, select, weight, ubound)) return empty_solution
/* See if Gimpel's reduction technique applies */ 2)
if (gimpel reduce(M, select, weight, lbound, ubound, &best)) return best
/* Find lower bound from here to final solution by independent set */ 3)
indep = sm_mazimal_independent_set(M, weight)
/* Make sure the lower bound is monotonically increasing */ 4
lbound_new = mazx(cost(select) + cost(indep), lbound)
/* Bounding based on no better solution possible */ (©)]
if (lbound_new > ubound) best = empty_solution
else if (M is empty) { /* New best solution at current level */ ©6)
best = solution_dup(select)
} else if (smm_block_partition(M, &M, &M,) gives non-trivial bi-partitions) { (@]
select] = empty_solution
bestl = sm_mincov{M), selectl, weight, 0, ubound — cost{select)) [€))
/* Add best solution to the selected set */ 9
if (bestl = empty_solution) best = empty_solution
else { (10)

select = select U bestl
best = sm_mincov(Mz, select, weight, lbound_new, ubound)

} else { /* Branch on cyclic core and recur */ (11)
branch = select_column(M, weight, indep)
select] = solution_dup(select) U branch

let Mpyancr be the reduced table assuming branch column in solution (12)
bestl = sm_mincov(Mpranch, select], weight, lbound_new, ubound)

/* Update the upper bound if we found a better solution */ (13)
if (bestl # empty_solution) and (ubound > cost(bestl)) ubound = cost(bestl)

/* Do not branch if lower bound matched */ 14
if (bestl # empty_solution) and (cost(bestl) = lbound_new) return best1

let Mp—— be the reduced table assuming brench column not in solution (15)

best2 = sm-mincov(Mg—, select, weight, lbound_new, ubound)
best = best_solution(bestl, best2)

}

return best

}

Fig. 1. Detailed branch-and-bound algorithm.

implicants (GPI's), as defined in [15] and [31]. It is not feasiblelassical reduction rules used in explicit algorithms. Methods
to generate GPI's and to set up a related covering table toy solve binate covering finding a shortest path in a graph-
explicit techniques on nontrivial examples. Using techniquésmsed representation of the clauses are found in Section IV.
as in [30] and [42], GPI's can be generated implicitly. ADur implicit binate covering algorithm is then outlined in
implicit table solver is therefore needed there too. We will usgection V. Section VI illustrates how reduction techniques can
mainly the two latter applications to illustrate our techniquebge implicitized. Other kinds of implicit table manipulations
but one could list a host of other problems in logic synthesige introduced in Section VII. Finally, we give experimental
where a binate table solver would play an important roléesults in Section VIII, for two applications: state minimization
Another application reported in the literature is the implicief ISFSM’s [18] and selection of generalized prime implicants
selection of the minimum number of encoding dichotomidd5].
that satisfy a set of encoding constraints [40], [14].

We describe an implicit formulation of the binate covering
problem and present an implementation. The implicit binate Il. A BRANCH-AND-BOUND ALGORITHM
solver has been tested for state minimization of ISFSM’s FOR MINIMUM COST BINATE COVERING

and pseudo-NDFSM’s [24], [25], and for the selection of we will survey in this section a branch-and-bound solu-
an encodable set of GPI's [44]. The reported experimenign of minimum cost binate covering. This technique has
show that implicit techniques have advanced the frontigeen described in [19], [18], [2], and [3], and implemented
of instances where binate covering problems can be sol@dsuccessful computer programs [38], [36], and [41]. The
exactly, resulting in better optimizations in key steps diranch-and-bound solution of minimum binate covering is
sequential logic synthesis. based on a recursive procedure. A run of the algorithm can be
In the following sections, we will review the known algo-described by its computation tree. The root of the computation
rithms to solve covering problems, and then we will describetgee is the input of the problem, an edge represents a call to
new branch-and-bound algorithm based on implicit computsm mincoy and an internal node is a reduced input. A leaf
tions. The remainder is organized as follows. We have definedreached when a complete solution is found or the search is
the minimum cost binate covering problem in this sectiolmounded away. From the root to any internal node, there is a
The classical solution based on a branch-and-bound schaméjue path, that is the current path for that node. In the sequel,
is introduced in Section Il. In Section Ill, we survey thewve will describe in detail the binary recursion procedure. The
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presentation will refer to the pseudocosier mincoy shown is performed by choosing a branch column (see Section II-

in Fig. 1. D). Solutions to the subproblems obtained by including the
chosen column in the covering set or by excluding it from the
A. The Binary Recursion Procedure covering set are computed recursively, and the best solution

kept (the second recursion is skipped if the solution to the

We will see in the next section that BCP can be solved l#?/
rst one matches the updated lower bound).

the following recursive equation:
BCP(M;) = BestSolutioBCP(My, ) U {z;},BCP(M_)) B. N-Way Partitioning

where M is the binate table that corresponds to a function If the covering matrix}/ can be partitioned into two disjoint

in product-of-sum formf, and BCP(M;, ) [respectively, blocks M, and M, the covering problem can be reduced
BCP(M/_)] is the subproblem expressed by the functjpn to two mdependgnt covering subprob!ems, and the_ minimum
(respectively,fz). BCP(M;) returns an onset minterm gf ~ covering for M is the union of the minimum coverings for
that minimizes the cost function. The previous equation cdd1 andM». Such bipartition can be found by putting i, a
potentially generate an exponential number of subproblenfi@w and all columns that have an element in common with the
but powerful dominance and bounding techniques as well B3V (i.e., the columns intersecting the row), and recursively

good branching heuristics help in keeping the combinatori@ll rows and columns intersecting any row or columniify.
explosion under control. The remaining rows and columns (i.e., not intersecting any

The inputs to the algorithm are row or column inM;) are put inM,. This algorithm can be

. . generalized to find partitions made By blocks.
* a covering matrix;

* a current-path partial solutiogelect(initially empty); C. Lower Bounds
* arow of nonnegative integerseight whose:th element 1) pmaximal Independent SefThe cardinality of a maxi-
is the cost or weight of theth column of M; mum set of pairwise disjoint rows af/ (i.e., no 1's in the

* & lower boundbound (initially set to 0), which is equal same column) is a lower bound on the cardinality of the
to the cost of the partial solution on the current patlyytion to the covering problem because a different element
(2 monotonic increasing quantity along each path of thg,st he selected for each of the independent rows in order to
computation tree); _ cover them. If the size of current solution plus the size of the
* an upper boundbound(initially set to the sum of weights j,qependent set is greater than or equal to the best solution
of all columns in M), which is the cost of the bestgeen 5o far, the search along this branch can be terminated
overall complete solution previously obtained (a globalljecayse no solution better than the current one can possibly
monotonic decreasing quantity). be found. It is also true that the size of the independent set
The output is the best column cover for ingut extended at the first level of the recursion is a lower bound for the
from the partial solutiorselectalong the current path, calledfinal minimum cover, so that the search can be terminated
the best current solution, if this solution costs less thdha solution is found of size equal to this lower bound.
ubound An empty solution is returned if a solution cannot b&ince finding a maximum independent set is an NP-complete
found which beatsiboundor an infeasibility is detected. By problem, in practice, a heuristic is used that provides a weaker
infeasibility, we mean the case when no satisfying assignméeiver bound. Notice that even the lower bound provided by
of the product of clauses exists. Even though the initigplving exactly maximum independent set is not sharp. In [8],
problem in a typical logic synthesis application usually has an example of siz&(n?) is shown, whose minimal solution
least a solution, some subproblems in the branch-and-bouras aO(n) cost, but whose lower bound by independent set
tree may be infeasible. Whesmmincovis called with an is a constant 1. In practice, a lower bound by independent set
empty partial solutiorselectand initial Iboundandubound it  iS poor when the covering matrix is dense.
returns a best global solution. In [38], [36], and [41], the adjacency matriB of a
As shown in Fig. 1. the algorithnsmmincov first calls graph whose nodes correspond to rows in the cover matrix
a proceduresmreduce that applies todd essential column A is created. In the binate case, only rows are taken into
detection and dominance reductions. The type of dominatioansideration which do not contain any 0 element. An edge
operations and the way in which they are applied are the sub{laced between two nodes if the two rows have an element
ject of Section Ill. Another more complex reduction criterioin common. WhileB is nonempty, a row; of B is found
(Gimpel's rule) can also be applied (see Section llI-L). Thegbat is disjoint from a maximum number of rows (i.e., the row
reduction operations delete frodd some rows, columns, andof minimum length inB). The column of minimum weight
entries. What is left after reduction is called a cyclic coreéntersectingR; is also found. The weight is cumulated in the
The final goal is to get an empty cyclic core. The value ohdependent set cost. All rows having elements in common
the lower bound is updated using a maximal independent gdth R, are then deleted fronB. At the end of thewhile-
computation (see Section 1I-C1). If no bounding is possibiteration, a set of pairwise disjoint rows (independent set) and
and the reductions do not suffice to completely solve thkeir minimum covering cost are found. Notice that one could
problem, a partition of the reduced problem into disjoirthink of the problem in a dual way as finding a maximal clique
subproblems is attempted (see Section II-B), and each of thema graph with the same rows as before, and edges between
is solved recursively. When everything fails, binary recursiomvo nodes representing two disjoint rows.
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In [8], a detailed analysis of independent set computatioascovering problem' that corresponds to a nodeof the
is made. A quantitative ratio between a maximal cost indeemputation tree, define the following notation.
pendent set and the independent set computed by a greedy
algorithm based on set packing is derived.

2) Logarithmic Ratio Lower BoundThere are problems
for which approximation algorithms have been developed . ) .

. . . . . . given branching columibd is not selected.
with a fixed ratio bound, i.e., independent of the sizef the o . i
. . . e C.man is the cost of a minimum solution.
input. For other problems, like the unate covering problem, . .

. . » C.lower is the value of a lower bound ofi.min.
the best that can be done is to let the ratio bound grow as a . : .
. . . ¢ (C.pathis the cost of the partial solution from the root

function ofn. Therefore, as the size of the instance gets larger, 10 node ¢
the size of the apprc_mmate sgluuon may grow ywth_respgct. C.upperis the cost of the best solution found so far.
to the size of an optimal solution. In [8], a logarithmic ratio
lower bound on unate problems has been presented. SinceThe algorithm described in Fig. 1 guarantees that the invariant
logarithm function grows slowly, this bound is of practicalC.path+ C.lower < C.upperis always true.
value. The result is originally due to Chvatal; a textbook Theorem 2.1 (Left-Hand Side Lower Bound@iven a bi-
exposition and references are in Leiserson [6]. Consider mate covering problenC, suppose we branch on a unate
instance(.X, F) of a set-covering problem with a finite setcolumn b. If
X and a family 7 of subsets ofX. A greedy algorithrf
that selects at each step the set that covers the most remaining , )
uncovered elements returns a solution whose ratio with respt&" PothC; and €. can be pruned andj.lower is a strictly
to the optimal solution is bounded by better lower bound focC'.

For a proof, see [7] and [26].
H(max{|S|: 5 € F}) = In|X]| +1 The way in which the “old” lower bound and the “new”

where H(d) = ¥¢, 1/i. The result holds also for positiveleft-hand side lower bound work together is: if the current
weights on the sets and for satisfiable binate problems. Stramgge is a left child andboundnew — Cost{b) > ubound

improvements are reported compared to the traditional lowien bound computation and return flag to skip also the
bound computed by approximating a maximum independeight branch (“new” left-hand side lower bound); otherwise, if

C; is the subproblem of” generated assuming that a
given branching columi is selected.
C, is the subproblem of” generated assuming that a

C.path+ C;.lower > C.upper

set. Ibound new > ubound then bound computation (“old” lower
] ] bound).
D. Selection of a Branching Column Theorem 2.2 (Limit Lower Bound)Given a binate cover-

The selection of a good branching column is essential fisrg problemc, let I be an independent set of the rows, i.e., a
the efficiency of the branch-and-bound algorithm. Since tiset of unate rows intersecting no common column.Céower
time taken by the selection is a significant part of the total,kke a lower bound from the independent fgt.e., the sum of
tradeoff must be made between quality and efficiency. a minimum cost column for each row ih Consider the set

In [38], [36], and [41], the selection of the branchingB of the columnsb that do not intersect rows ifi and such
variable is restricted to columns intersecting the rows of theatb € B only if
independent set because a unique column must eventually C.path-+ C.lower + Cos{b) > C.upper

be selected from each row of the maximal independent s% th | i and th that int t th .
Among those rows, the selection strategy favors columns wi en the columns I an € rows fhat Intersect them in
0 can be removed from the covering table, and a minimum

large number of 1's and intersecting many short rows. shétt” © )
rows are considered difficult rows, and choosing them fir§9lu“0n can SJ.“" be found. For a proof, see [7] and [26].
favors the creation of essential columns. More precisely, the_ln. practice, in the common case that all columns have cost
column of highest merit is chosen. The merit of a given columjnIf included in a solution, one needs only to check whether
is computed as the product of the inverse of the weight of C.path+ C.lower+ 1 > C.upper

the column multiplied by the sum of the contributions of alj ¢
rows intersected in a 1 by the column. The inverse of the
contribution of a row is equal to the number of all non-2
elements (each can contribute in covering the row) minus 1.

The inverse is well defined because at this stage, each row has , . ; .
i . In"which case all columns that do not intersect rows in the
at least two elements (it is not essential).

independent sef can be removed, together with the rows
E. New Bounding Criteria that they intersect in a 0. Experimental results in [11] on exact
two-level minimization show strong gains by this new pruning

In [11], two new rules to prune the search space ha\@chnique, resulting in reductions of the search space up to

been introduced. We are going to survey them here. GiVﬁﬂ,ee orders of magnitude

Iboundnew+ 1 > C.upper

I1l. REDUCTION TECHNIQUES

2The proof in [8] holds for a class of greedy algorithms parametrized in .
a positive weighting functiony that measures the difficulty of covering an Three fundamental processes constitute the essence of the

element. reduction rules.
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sm_reduce(A, solution, weight, ubound) {
do {
apply 3-dominance or a-dominance
find essential columns
find unacceptable columns
if (a column is both essential and unacceptable)
return empty_solution
for each essential column {
delete each row intersecting the columnin a 1
if (a row of length 1 intersects the column in a 0)
return empty_solution
delete column
add column to solution
if (cost of solution > ubound)
return emnpty_solution
}

for each unacceptable column {
delete each row intersecting the column in a 0
if (a row of length 1 intersects the column ina 1)
return empty_solution
delete column
}
apply row_consensus
apply row_dominance
} while (reductions are applicable)
return solution

}

Fig. 2. Flow of reduction rules.

1)

2)

3)

Selection of a column: a column must be selected

Theorem 3.1:1f a row R; is dominated by another row;,
R; can be eliminated without affecting the solutions to the
covering problem.

B. Row Consensus

Theorem 3.2:If R, dominatesR,;, except for a (unique)
column ¢, where R; and R; have different values, element
M; i can be eliminated from the matrix/ (i.e., the entry in
position M; ;, becomes a 2) without affecting the solutions of
the covering problem.

C. Columna-Dominance

Definition 3.2: A column C; a-dominates another column
C; if

o ki < Ky
* C; has all the 1's ofCj;
* C; has all the 0's ofC;.

Theorem 3.3:Let M be satisfiable. If a columrC; is
«a-dominated by another colum@;, there is at least one
minimum cost solution with colum@’; eliminated(z; = 0),
together with all the rows in which it has 0’s.

In [8], column dominance is formulated in a more general
way as follows.

o L _ I Theorem 3.4:Suppose that and+’ are elements of0,1}.
it is the only column that satisfies a required constraift i, cjauses satisfied by colunt, set to the value are

(Section III-G)..A dual statement holds fpr unacceptab@atisﬁed at a lower cost by setting colurdly to ', and the
columns (Section lll-H). Also related is the case Ofj,ses satisfied by, set tov’ are also satisfied at zero cost
unnecessary columns (.Sectlon Hi-1). . by C, set to7, one can se€’, to 7 and remove the rows that
_EI_|m|n<'_it|(_)n O_f a column: a columa; can be ehmmgt_ed intersectCy, in 7, without missing any optimal solution.

if its elimination does not preclude obtaining a minimal By restriction to negative literals of zero cost and positive

cover, i.e., if there exists iM/ another columnC; |itarais of positive cost, the criterion reducesdealominance.
that satisfies at least all the constraints satisfied_by

(Section IlI-E). '
Elimination of a row: a row®; can be eliminated if there D. Columnj-Dominance

exists inM another rowR; that expresses the same or Definition 3.3: A column C; 3-dominates another column
a stronger constraint (Section IlI-A). o if

Even though more complex criteria of dominance have been. 1, < f;;
investigated, the previous ones are basic in any table-covering ¢, has all the 1's ofC;;
solver. Reduction rules have previously been stated for thes for every rowR, in which C; has a 0, eithe€’; has a 0

binate covering case [18], [19], [3], [2], and also for the unate
covering case [33], [39], [2]. For each of them, we will first

or there exists a rowr, in which C; has a 0 and’; does
not have a 0, such that disregarding entries in columns

define the reduction rule, and then a theorem showing how that ¢, and C;, R, dominatesR,,.
rule is applied. Proofs for the correctness of these reduction

rules have been given in [18] [19], [3], and [2], and they will
not be repeated here.

Theorem 3.5:Let M be satisfiable. If{C; g-dominatesC;,
there is at least one minimum cost solution with colugin

The effect of reductions depends on the order of theéifiminated(z; = 0), together with all the rows in which it

application. Reductions are usually attempted in a given ord8RS 0'S-
until nothing changes any more (i.e., the covering matrix has
been reduced to a cyclic core). Fig. 2 shows how reductiogs Column Dominance

are applied in [38], [36], and [41].

A. Row Dominance

Definition 3.1: A row R; dominates another roR; if R;
has all the 1's and 0's ofz;.

Definition 3.4: A columnC; dominates another columi;
if either C; «-dominatesC; or C; S-dominatesC;.

Theorem 3.6:Let A be satisfiable. IfC; dominatesCy,
there is at least one minimum cost solution with coludin
eliminated(xz; = 0), together with all the rows in which it
has 0O’s.
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F. Column Mutual Dominance e continue as long as possible to eliminate the columns
Definition 3.5: Two columnsC; andC; mutually dominate which become unacceptable columns.
each other if If at least one row ofA/ has only 2’s at the end of this
« C; has a 0 in every row wher€; has a 1: test, then columrC), must be selectédz;, = 1). Therefore,
) 1 ' Cy can be deleted together with all of the columns in which

* C; has a 0 in every row wher€; has a 1. )
it has 1's.

Theorem 3.7:Let M be satisfiable. IIC; and C; mutually
dominate each other, there is at least one minimum Cq@t

) . . Infeasible Subproblem
solution with columnsC; and C; eliminated(z; = z; = 0),

together with all the rows in which they have 0's. Unlike the unate covering problem, the binate covering
In [8], column mutual dominance is formulated in a mor@roblem may be infeasible. In particular, an intermediate
general way as follows. covering matrix M may found to be unsatisfiable by the

Theorem 3.8: Suppose that and«’ are elements of0, 1}. following theorem. When an infeasible subproblem is found,
Suppose that colum@, has minimum cost when set toand that branch of the binary recursion is pruned.
columnC,, has minimum cost when set . If the clauses Definition 3.9: A covering problem}! is infeasible if there
satisfied by setting colum@, to v/ are satisfied by setting exists a columrC’; which is both essential and unacceptable
columnC, to v, and the clauses satisfied by settifig to 7 (IMPlying z; = 1 andx; = 0).
are satisfied by setting’,s to +/, then one can set, to v,

C, to v' and remove the rows that intersec} in v andC,, L. Gimpel's Reduction Step

in ¢/, without missing any optimal solution. Another heuristic for solving the minimum cover problem
has been suggested by Gimpel [17], [37]. Gimpel proposed a
G. Essential Column reduction step which simplifies the covering matrix when it has

Definition 3.6: A columnC; is an essential column if there@ special form. This simplification is possible without further
exists a rowR; having al in columnC; and 2's everywhere Pranching, and hence is useful at each step of the branch-
else. and-bound algorithm. In practice, Gimpel's reduction step is

Theorem 3.9:If C; is an essential column, it must pe?Pplied after reducing t_he covering matri>§ to the cyclic core.
selected(z; = 1) in every solutions. Columi€; must then An extended presentation can be found in [39]. In [36] and

be deleted together with all the rows in which it has 1's. [41], Gimpel's rule has been extended to handle the binate
case.

H. Unacceptable Column

Definition 3.7: A column C; is an unacceptable column V. SEMI-IMPLICIT SOLUTION OF BINATE COVERING

if there exists a rowR; having a 0 in columnC; and 2's
everywhere else. A. Binary Decision Diagrams

This reduction rule is a dual of the essential column rule. Basic introductions to binary decision diagrams are found
Theorem 3.10:1f Cj is an unacceptable column, it must ben [4] and [1].

eliminated (z; = 0) in every solution, together with all the Definition 4.1: A binary decision diagram(BDD) is a

rows in which it has 0's. rooted, directed acyclic graph. Each nonterminal vertex
is labeled by a Boolean variablear(v). Vertex v has two
I. Unnecessary Column outgoing arcsgchildy(v) and child; (v). Each terminal vertex

u is labeled 0 or 1.

Each vertex in a BDD represents a binary input, binary
gutput function, and all accessible vertices are roots. The
heerminal vertices represent the constants (functions) 0 and
1. For each nonterminal vertexrepresenting a functiod’,
éts child vertexchildy(v) represents the functiofy, and its
other child vertexchild; (v) represents the functio#,, i.e.,
FP=7-F;+v-F,

For a given assignment to the variables, the value yielded
) by the function is determined by tracing a decision path from
J. Trial Rule the root to a terminal vertex, following the branches indicated

Theorem 3.12:If there exists in a covering tabl&/ a row by the values assigned to the variables. The function value is
R; having a 0 in columnC;, a 1 in columnCy, and 2's in then given by the terminal vertex label.
the rest, then apply the following test: Definition 4.2: A BDD is orderedif there is a total order
< over the set of variables such that for every nonterminal

Definition 3.8: A column of only 0's and 2’s is an unnec-
essary column.

Notice that there is no symmetric rule for columns of 1’
and 2’s. The reason is that selecting a column to be in t
solution has a cost, while eliminating it has no cost.

Theorem 3.11:If C; is an unnecessary column, it may b
eliminated(x; = 0), together with all the rows in which it
has O’s.

« eliminate C}, together with the rows in which it has 0’s;
* eliminate Qj' which is _nOW .an 'unacceptable column, 3It is possible that a row is left with only 2's by a sequence of reduction
together with the rows in which it has 0’s; steps.
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vertexw, var(v) < var(childy(v)) if childy(v) is nonterminal, a branch-and-bound algorithm as in the matrix-based case can
andvar(v) < var(child; (v)) if child;(v) is nonterminal. be devised. Reduction and bounding techniques are extended
Definition 4.3: A BDD is reducedif as shown next.

1) it contains no vertex such thatchildy(v) = child; (v); f‘n\{arll.afligj 1S ess?tllalrifogl‘ i ?Pd (r)]nly i J;” t?l x; fci)fr
2) it does not contain two distinct verticesand v/ such Soret b= 1,2 0o, A Vanabier; 1S uhacceptable of
and only if f; < z7, for somei, i = 1,2,---,n.

that the subgraphs rooted @atand+’ are isomorphic. P= N
grap v P Row dominance is extended to the more general definition

Definition 4.4: A reduced ordered binary decision diagramof constraint dominance. Functiofy dominates functionf;
(ROBDD) is a BDD which is both reduced and ordered. if and only if f; < f;. Constraint dominance reduces to row
Definition 4.5: The ITE operator returns functiod:; if dominance if subconstraints coincide with SOP clauses.

function F' evaluates true; else, it returns functiof: Column dominance is extended to the following definition
G it =1 of variable dominance. Variable; dominates variable:; if
ITE(F,G1,Gy) = { G07 otherwise and only ifk; < k; and3z; f., < Jz;f, . Since the constraint
’ f isin the form of conjunction of subconstraints, the previous
where rangéf”) = {0,1}. definition cannot be checked directly. However, the following
sufficient conditions can be checked efficiently. If either of the
B. The Shortest Path Method following conditions is satisfied:

In [32], the solution of a binate covering problem was re- ¢ (fi)z; < (fx)z2 for eachfi
duced to a shortest path computation on the BDD representing (f;),, < (fk)ac,.acf. for each f;,
the clauses. The constraints are expressed as a product-of-sums v ) .
(POS), and are represented by a matrix where each row i¥/Rerek; < k;, thenz; dominatesc;. As another special case,
clause (i.e., a minterm represented as a path from root to théf {/x)z;, < (fx)e: for each fi, then any variabler;, (i # j)
terminal) and each column is a variable. The attractive feat#f@Mminates variabler;.
of a BDD-based algorithm is that finding the solution only Whenz; has cost 0, a more general definition of variable
requires computing the shortest path to the 1 terminal in t§@minance is that variablg; dominates variable:; if and
BDD. We will present the theorem supporting the reductiononly if Jz; fo, < Ja;f;. or Ju;f, < 3w fe;.

Suppose that the length (or cost) of a 0-edge of a BDD isIn [21], variabler; is said to dominate variable; if and
0 and the length of a 1-edge is a positive constant. A short@sty if £; < k; and one of the following conditions is satisfied
path between two nodes is a path of total minimum length.vk € {1,---,n}:

Theorem 4.1:A minimum cost assignment satisfying a 1 (fi)e, < (i) s
Boolean formulaZ’(zy,---,x,) is given by a shortest path = Tik; .
from the root to the terminal 1 of an ROBDD representifig ~ 2) (/i)e; = (fi)e;r = (f2), €., fi does not depend on

x;, and there exists a such that(fp)x/_xj < (fu)a,-

C. The Method Based on a Product of BDD'’s If subconstraints coincide with SOP clauses, the first con-

In [21] and [22], a branch-and-bound algorithm for th&ition gives the definition ofv-dominance. If subconstraints
binate covering problem expressed as a product of gené;gincide with SOP clauses, the first and second conditions
Boolean formulas and represented by a conjunction of multiggether give the definition of-dominance.

BDD's is presented. Since in cases of practical interest, itA lower bound to the cost of satisfying’ is given by
happens often that a single BDD representing all clausestfi¢ sum of the minimum costs of satisfying each BDD in
too large to be built, it has been proposed to represent théet of BDD's with disjoint supports (an independent set of
constraints as a product of subconstraints, each of whiBfPD’s). These minimum costs can be found by computing
can be represented by a BDD. The question is how to fifide shortest paths of those BDD's. If the shortest paths satisfy
a minimum solution, having a product of BDD's, insteadl!l of the other subconstraints, the solution determined by the
of a single BDD. It is clear that if each subconstraint is #dependent set is optimal, and the current recursion node can
sum-of-products (SOP) clause, the BDD-based formulationkg pruned.

analogous to the one based on a matrix. This motivates théA most common variable in the BDD's is chosen as a
extension to a conjunction of BDD’s of the reduction an@plitting variable (i.e., a variable whose corresponding column
bounding techniques devised to solve a table. in the dependence matrix intersects most rows). This favors the

The algorithm assumes that the constraint function is in tisémplification of as many BDD'’s as possible, the partitioning
form f = II*_, f; where eachf; is represented by a BDD of the BDD's in sets with disjoint support, and the generation
;. Each f; or F; is called a subconstraint. The conjunctiomf larger independent sets. Experiments show that this splitting
of the F; is called F'. Under this assumption, BCP amountyariable criterion is less effective that the one (in Section II-
to finding an assignment fof;, x>, -, z, that minimizes D) used for a matrix-based formulation, and as a consequence,
the cost function and that satisfies dlfs simultaneously. the number of recursion nodes is greater.

If n = 1, we have a single BDD, and the minimum cost We notice that in both approaches presented in this section,
assignment that satisfies can be found by computing thethe usage of BDD’s potentially allows us to handle problems
shortest path connecting the rootpfo the “1” leaf. Ifn > 1, with many clauses (if they have a compact BDD representa-
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tion), but does not address the problem of covering matricests by a characteristic functigys: B™ — B as
with many columns. In such problems, it is unlikely that the

BDD can be built at all because each column is a variable in xs(@) =1, ) _'f and onl)_/ 'f_ the set represented by the
the support of the BDD. positional setz is in the setS of sets

It may be worthy of mention at this point that in [27]  any relation R between a pair of Boolean variables can also

and [28], a more general algorithm to solve integer linegj, represented by a characteristic functionB? — B as
programming based on edge-valued binary decision diagrams

has been presented. R(z,y) =1, ifand only if z is in relationR to y.

‘R can be a one-to-many relation over the two setsBin
V. IMPLICIT SOLUTION OF BINATE COVERING These definitions can be extended to any relaRobetweern
The classical branch-and-bound algorithm [18], [19] foﬁ%%lt?::%é%iblf’ gn;scan be represented by a characteristic
minimum cost binate covering has been described in previous )
sections, and implemented by means of efficient computer pro- R(z1,22,--+,2») =1,  if and only if then-tuple
grams ESPRESScand STAMINA). These state-of-the-art binate (21,22,...,2,) IS in relationR.
table solvers represent binate tables efficiently using sparse , i
matrix packages. But the fact that each nonempty table entrgn th_|s way, useful relational operators on se_ts can
still has to be explicitly represented puts a bound on the si?é derived. OperatoOp acts on two sets of variables
of the tables that can be handled by these binate solvers. Eor_¥1¥2 " ¥n andy = yiy, -~ -y, and returns a relation
example, one would not expect these binate solvers to handie?P ¥) (&8s @ characteristic function) of pairs of positional
examples requiring over £Qcolumns (up to % columns), §ets. Alternatively, thgy can also be viewed as corystramts
reported in state minimization of FSM’s [26]. To keep withpOSEd on the pOSSI_bIe pairs out of two sets of objects,
our stated objective, the binate table has to be represen@dy: For example, given two sets of setsandY’, the set
implicitly. We do not represent (even implicitly) the elementBa'S(z, ) wherez containsy are given by the product ot
of the table, but we make use only of a set of row labels aRdY and the containment constraidt,(z) - Y'(y) - (z 2 y)-
a set of column labels, each represented implicitly as a BDD.detailed list of these operators is presented in [26].
They are chosen so that the existence and value of any table o ]
entry can be readily inferred by examining its correspondirigy Setting of Implicit Solution

row and column labels. In the sequel, we shall assume thafA binate covering problem instance can be characterized by

every row has a unit cost. a 6-tuple(r, ¢, R, C,0,1), defined as follows:
« the group of variables for labeling the rows:
A. Implicit Set Manipulation « the group of variables for labeling the columnms:
In [26], it is shown how to represent and manipulate sets® the set of row labelsf(r);
and sets of sets with BDD's. * the set of column labelsC(c);
Given a ground seti of cardinality less or equal ta, « the O-entries relation at the intersection of rowand
any subsetS can be represented in a Boolean spate by column ¢: 0(r, ¢);
a unique Boolean functioys: B* — B, which is called its  * the 1l-entries relation at the intersection of rewand
characteristic functior{5], such that column¢: 1(r,c).
In other words, the user of our implicit binate solver would
xs(x)=1, ifandonly ifz isin 5. first choose an encoding for the rows and columns. Given a

binate table, the user will then supply a set of row labels as a
Alternatively, a subset can also be representqubsitional-set BDD R(r) and a set of column labels as a BEc), and also
or positional-cubenotation form? usingn Boolean variables, the two inference rules in the form of BDD relatiorigy, c)
T = r1T3- T, The presence of an elemest in the set and1(r,c), capturing the 0-entries and 1-entries.
is denoted by the fact that variabig, takes the value 1 in  The classical branch-and-bound solution of minimum cost
the positional set, whereas, takes the value 0 if elemesj,  binate covering is based on the recursive procedure as shown
is not a member of the set. One Boolean variable is need@drig. 1. In our implicit formulation, we keep the standard
for each element because the element can either be presemranch-and-bound scheme, but we replace the traditional de-
absent in the set. As an example, for= 6, the set with a scription of the table as a (sparse) matrix with an implicit
single element, is represented by 000 100, and thessghss  representation, using BDD's for the characteristic functions of
is represented by 011010. The elemesitssy, s¢ which are the rows and columns of the table. Moreover, we have implicit
not present correspond to O’s in the positional set. versions of the manipulations of the binate table required to
A set of subsets ofi can be represented by a Booleaimplement the branch-and-bound scheme, namely, we per-
function, whose minterms correspond to the single subsetsfdim implicitly table reduction, branching column selection,
other words, a set of sets is represented as & sépositional computation of the lower bound, and table partitioning.
At each call of the binate cover routimeincoy the binate
“Called alsol-hot encoding table undergoes a reduction stBeduceand, if termination
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conditions are not met, a branching column is selected amdlist be contained in at least one prime compatible. A binate
mincovis called recursively twice, once assuming the selectethuse for a compatible says that if the compatible is chosen in
columng; in the solution set (on the tablg.., C..), and once a solution, then at least another compatible from a related set
out of the solution set (on the tahlg—, C=). Some suboptimal must be in that solution, e.g., clau§g+p; +ps + - - + o),
solutions are bounded away by computing a lower balimth meaning that ifp is in a solution, either one afy, po, ..., px
the current partial solution and comparing it against an upp@ust be in that solution. A covering clause yields a unate
boundU (best solution obtained so far). A good lower boundow, labeled by a: part that denotes an empty set and by a
is based on the computation of a maximal independent setd part that denotes a singleton set, requiring that a given state
be covered. Whenever D d, there is a 1 at the intersection
C. Implicit Table Generation of the row labeled byl and the column representing prime

. . . . compatiblep, meaning that the compatibjecontains statel.
Here, we deﬁne dn‘fer(_ant ways of speufymg the b”.‘atﬁ closure clause yields a binate row, labeled hymart that is
covering table in decreasing order of generality of the bin e label of the unique prime compatible whose corresponding
covering problem. A table is defined implicitly by generatin

BDD-based representations of the rows and columns and olumn has a zero at the intersection with this row (condition
P Y ¢), and by ad part that is the label of a compatible such

glr\llcljngorlilitrl\osnsBspﬁ:ZI;% thr?aitr?(?t?ogsegglttar?é %vvaeni;h\e/v[](i)c Rat there is a 1 at the intersection of this row and any column
- By Imp g y whose labep is a prime compatible that contains compatible

roe\{[vss r?an?egglr::ztir:)snsrv?/itﬁ?/i?dinangee?égzso?reegggﬁd, \%e\‘Ne refer to [24] for a complete treatment of implicit state
9 b ying deg 9 Y- Ylinimization of incompletely specified FSM’s.

distinguish between 1) the case of a general binate covering; . covering problem is unate, the(r,c) relation is
’ ?

table and 2) a specialized representation, sufficient to solv% : . N
tables f t state minimizati £ ISESM's [23 i bIe pty. A typical example is exact two-level minimization
ables for exact state minimization o s [23] (applica \?vhereR(r) = R(m), for m labeling mintermsC(c) = C(p),

to problems with similar covering tables, e.g., technolog%r p labeling prime implicants, and(r,c) = (p > m).

mapping. for area minimization [39]).' There s a tradeo he label of an implicant can be constructed by representing

between generality of the representation and efficiency of the . . . . :
. u . ) edch Boolean variable in multivalued notation, for instance,

computations: “hard wiring” the rules that define a table ma coding 0 as 10, 1 as 01, andas 11. A complete treatment

speed up table manipulations, at the price of more I|m|teO this special case can be found in [42] and [7]. The more

applicability. complex case of implicit exact minimization of generalized
1) General binate covering table prime implicants is described in [44].
« the group of variables for labeling the rows: In the next section, we will describe how a binate covering
+ the group of variables for labeling the colummrs:  table can be manipulated implicitly so as to solve the minimum
« the set of row labelsR(r); cost binate covering problem.
+ the set of column labelsZ(c);
» the 0-entries relation at the intersection of rovand VI. IMPLICIT TABLE REDUCTION TECHNIQUES

column ¢: 0(r, c);

) ) ] ) Reduction rules aim at the following.
» the 1-entries relation at the intersection of rovand

column ¢ 1(r, ¢). 1) Selection of a column. A column must be selected if
2) Specialized binate covering table for exact state mini- it is the only column that satisfies a given row. A dual
mization and similar problems: statement holds for columns that must not be part of the
« the group of variables for labeling the rows (each  solution in order to satisfy a given row.
label is a pair):(c, d); 2) Elimination of a column. A column; can be eliminated
« the set of row labelsR(c, d); cover, i.e., if there is another columf that satisfies at
) )

least all the rows satisfied by.

3) Elimination of a row. A rowr; can be eliminated if
there exists another row; that expresses the same or a
stronger constraint.

+ the set of column labelsZ(p);

» the 0-entries relation at the intersection of réwyd)
and columnp: 0((¢,d),p) = (p = ¢);

+ the 1-entries relation at the intersection of réwyd)
and columnp: 1((c,d),p) = (p 2 d). The order of the reductions affects the final result. Reduc-

As an example, for the problem of exact state minimizatioﬁIons are usually attempted in a given order, until nothing

C(p) is the set of labels that denote the prime compatiplet changes any more (i.e., the covering matrix has been reduced
. . - ) . to a cyclic core).

an FSM, i.e.pisin setC if it is the label of a prime compatible : L

X X Ira the reduction, there are two cases when no solution is
p. Prime compatibles are sets of states and they are representeenerate d
using positional set notation. For instance, if an FSM has five '
statess1, s2, s3, s4, s5 andp = {s1, s4} is a compatible, sef’ 1) The added cardinality of the set of essential columns,
is represented with five Boolean variables, and labeled as and of the partial solution computed so fan| is larger
10010.R(c, d) is the relation expressing covering clauses and  than or equal to the upper boubd In this case, a better
closure clauses. A covering clause for a state says that the state solution is known than the one that can be found from
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TABLE | B. Column Dominance
BINATE COVERING TABLE WITH CONSTRAINT . . . .
(vaB +2a)(wap +apc + @B)(¥BC + ¥oD) Some columns need not be considered in a binate table, if
(zop)(Tap + op )(TBC + 2o p) GENERATED they are dominated by others. Classically, there are two notions
FROM AN ISFSM SIATE MINIMIZATION  EXAMPLE of column dominancex-dominance ang-dominance.
AB | BC | CD | A | B Definition 6.2: A column¢’ a-dominatesanother column:
(c.d) | 1100 | OTI0 | 0011 | 1000 | 0100 if ¢ has all the 1's of;, andc has all the 0’s of.
A 00001000 | 1 1 " ) . :
¥ 50000100 11 T 1 Proposition 6.2: The a-dominance relation can be com-
C 0000 0010 1 1 puted as
D 0000 0001 1 , ,
BC = CD_ 01100011 0 | 1 adom(d, c) = Ar{R(r) - [1(r,¢) - =1(r, )]
AB=CD 11000011 | 0 1

+ [0(r, ) - =0(r, c)]}.

TABLE 1

.. . /A .
TABLE AFTER DELETING THE ESSENTIAL COLUMN LABELED O011FROM TABLE | Definition 6.3: A columne¢ /3 dominatesanother columm

if: 1) ¢ has all the 1's of;, and 2) for every row” in which ¢/

AB [ BC | A | B : . . .
1100 | o110 | 1000 | 0100 contains a 0, there exists gnother rowm which ¢ has a 0 such
2 ooootooo T 1 1 that, disregarding entries in columef +' has all the 1's ofr.
B 00000100 || 1 1 1 Proposition 6.3: The g-dominance relation can be com-
puted by
TABLE I
TABLE AFTER DELETING DOMINATED COLUMNS FROM TABLE I B-dom(d,c) = Ar'{R(r") - [1(+',c) - ~1(+', )
AB ;+0(r, &) Ar[R(r) - 0(r,¢)- A[C(")
1100
A 00001000 [ 1 (" # )1, ) =1 Y-
B_ 00000100 | 1

— The conditions forx-dominance are a strict subset of those
or 3-dominance, but--dominance is easier to compute im-
éﬁcitly. Either of them can be used as the column dominance
rr]glation col.dom

Proposition 6.4: The set of dominated columns in a table
,C) can be computed as

now on, and so the current computation branch can
bounded away.

2) After having eliminated essential, unacceptable, al
unnecessary columns and covered rows, it may happ,
that the rest of the rows cannot be covered by th
remaining columns. In this case, the current partial  D(c) = C(c) - IC[C() - (¢ # ¢) - col.dom(c, ¢)].
solution cannot be extended to any full solution.

Proposition 6.5: The following computations delete a set of

In the rest of the section, we will describe how reductiogolumns D(c) from a table(R, C) and all rows intersecting
operations are performed implicitly on the general binaigese columns in a 0

covering table. Proofs of each proposition can be found in [26],
together with other equations for reducing the general binate C(e) = Cle) - ~D(c)
covering table and for the specialized binate covering table. A R(r) = R(r). Ac[D(c)-0(r,c)].
simple example of implicit reduction is shown in Tables I-lIl.
C. Row Dominance

Definition 6.4: A row 7' dominatesanother rowr if » has
o . . . all the 1's and 0's ofi’.
Definition 6.1: A column ¢ is anessential columnf there Proposition 6.6: The row dominance relation can be com-

A. Essential Columns

is a row having a 1 in column and 2 everywhere else. puted by
Proposition 6.1: The set of essential columns can be com-
puted by row_don(r',r) = Ac{C(c) - [1(+", ¢) - 71(r, )
+0(r', ¢) - =0(r, )}
esscol(c) = C(c) - Ir{R(r) - 1(r,c)- AJ[C() Proposition 6.7: The set of rows not dominated by other
(d #¢) - (0(r, &) + 1(r, )]} rows can be computed as

R(r) = R(r)- A'[R(r") - (' #r) - row_don(+’,7)].
Essential columns must added to the solution. Each essential
column must then be deleted from the table together with all VII. OTHER IMPLICIT TABLE MANIPULATIONS

rows where it has 1's. To have a fully implicit binate covering algorithm as de-
scribed in Section V, we must also compute implicitly a
branching column and a lower bound. These computations as

well as table partitioning involve solving a common subprob-
C(c) = C(c) - messcol(c) lem of finding columns in a table which have the maximum
R(r) = R(r)- Aclesscol(c) - 1(r, c)]. number of 1's.

solutior(c) = solutior(c) + esscol(c)



688 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

F(r,c)

Lmaz(F,r) {
v = bdd top_var(F)
if(ver)
return (1, bdd_count_onset(F))
else { /* v is a ¢ variable */
(T, count_T) = Lmaz(bdd_then(F),r)
(E, count_E) = Lmaz(bdd_else(F),r)
count = maz(count-T, count_E)
if (count T = count_E)
G = ITE(v,T, E)
else if (count = count.T)
G = ITE(,T,0)
else if (count = count_E)
G =ITE(v,0,E)
return (G, count)

Fig. 3. Pseudocode for themaa operator.

A. Selection of Columns with Maximum Number of 1's

Given a binary relationf(r,c) as a BDD, the abstracted
problem is to find a subset efs, each of which relates to the
maximum number of’s in F(r,c). An inefficient method is
to cofactor F' with respect tac taking each possible valug,
count the number of onset minterms of edcfr, ¢)|.=.,, and

pick thec;’s with the maximum count. Instead, our algorithmyyith four rows and four columns. The columns that maximize

Lmaz, traverses each node ¢f exactly once as shown by the number of 1's are the second and the fourth. If the rows and

the pseudocode in Fig. 3. columns are encoded by two Boolean variables each, using the
Lmax takes a relationf'(r,c) and the variable set as encodings given at the top of each column and to the left of

arguments, and returns the sgtof ¢'s which are related to each row, the 1 entries of the table are represented implicitly
the maximum number of's in F', together with the maximum py the relationF(c, ) whose minterms are

count. Variables irx are required to be ordered before variables
in . Starting from the root of BDO¥", the algorithm traverses
down the graph by recursively callinnax on its thenand
elsesubgraphs. This recursion stops when the top variable
of F'is within the variable set. In this case, the BDD rooted The BDD representingl” is shown in Fig. 4. The result
at v corresponds to a cofactdr(r, ¢)|.=., for somec,;. The of invoking Lmaz on F(r,c) is a BDD representing the
minterms in its onset are counted and returnedast which relation G(c¢) whose minterms ar¢01,11}, corresponding to
is the number of-’s that are related te;. the encodings of the second and fourth columns.

During the upward traversal df, we construct a new BDD
G in a bottom-up fashion, representing the setcts with
maximum count. The two recursive calls dfmax return
the setsT’(c) and E(c) with maximum countscountZ and The selection of a branching column is a key ingredient
countE for the then and theelse subgraphs. The larger of of an efficient branch-and-bound covering algorithm. A good
the two counts is returned. If the two counts are the sanfdioice reduces the number of recursive calls, by helping to
the columns in7” and E are merged bylTE(v, T, E) and discover more quickly a good solution. We adopt a simplified
returned. Ifcount? is |arger, on|y:T is retained as the updatedSEleCtion criterion: select a column with a maximum number
columns of maximum count, and symmetrically for the othéf 1's. By defining £”(r,c) = R(r) - C(c) - 1(r,c) which
case. To guarantee that each node of BB, ¢) is traversed evaluates true if and only if table entfy, c) is a 1, our column
once, the results adfmax andbdd.countonsetare memorized Selection problem reduces to one of finding tvelated to the
in computed tables. Note thdtmaz returns a set of’s of Maximum number of’s in the relation/”(r, ¢), and so it can
maximum count. If we need only one some heuristic can be found implicitly by callingLmaz(£”,r). A more refined

Fig. 4. BDD of F(r,c) to illustrate the routinebmazx.

{0000, 1000, 1100, 0101, 1001,0110, 1110,0111,1111}.

B. Implicit Selection of a Branching Column

be used to break the ties. strategy is to restrict our selection of a branching column
Example 7.1: To understand howLmaxz works, consider 0 columns intersecting rows of a maximal independent set
the explicit binate table because a unique column must eventually be selected from
00 01 10 11 each independent row. A maximal independent set can be
00 1 2 1 1 computed as follows.
o0 2 1 1 2
1(1) ; 1 ; 1 51 andc are swapped it so that minterms are listed in the order of the

BDD variables.
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TABLE IV
RanDoMm FSM's
table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA
reduction a reduction a|f| «a Bl a|B|a 8 o 8 o 8
ex2.271 95323 x 96382 0x0 1 - - 2| - - 1 55 | fails | fails
ex2.285 1x 121500 0x0 1 - - 2 - - 0 0 | fails | fails

€x2.304 | 1053189 x 264079 | 1052007 x 264079
€x2.423 | 637916 x 160494 636777 x 160494
ex2.680 | 757755 x 192803 756940 x 192803

463 | fails | fails | fails
- - - | *341 | fails | fails | fails
- - * 833 | fails | fails | fails

*
*

N NN ==
f
'
'

D W NN
Ll
Ll
'

C. Implicit Selection of a Maximal Independent Set of RowsA. State Minimization of ISFSM’s

Usually, a lower bound is obtained by computing a maxi- Here, we provide data for a subset of them, sufficient
mum independent set of the unate rows. A maximum indepdn- characterize the capabilities of our prototype program.
dent set of rows is a (maximum) set of rows, no two of whic®omparisons of our programsm are made withSTAMINA.
intersect the same column at a 1. Maximum independent seTte binate covering step &fTAMINA was run with no row
an N P-hard problem, and an approximate one (only maximatpnsensus, because row consensus has not been implemented
can be computed by a greedy algorithm. The strategy is to #e-our implicit binate solver. Our implicit binate program
lect short unate rowdrom the table, so we construct a relatiordoes not feature Gimpel's reduction rule, that was instead
F'(c,r) = R(r) - unaterow(r) - C(c) - 1(r, c). Variables in invoked in the version ofsSTAMINA used for comparison.

r are ordereeforethose inc. The rows with the minimum This might sometimes favosTAMINA, but for simplicity, we
number of 1's inF” can be computed by.min(F”,c), will not elaborate further on this effect. Missing from our
by replacing inLmaz the expressiomax(count7’,countE) package is also table partitioning. All run times are reported
with min(countT’, countE). Once a shortest rowhortestr), in CPU seconds on a DECstation 5000/260 with 440 Mbytes
is selected, all rows having l-elements in common withf memory.

shortestr) are discarded frond"(c,r) by The following explanations refer to the tables of results.
ML i N, A T N * Under “table size,” we provide the dimensions of the
Fie,r) = Fie,r): Ac{r /Eshortes(w) £, )] original binate table and of its cyclic core, i.e., the
CF( )} dimensions of the table obtained when the first cycle of

o reductions converges.
Another shortest row can then be extracted from the remaining, «4# mincov” is the number of recursive calls of the binate

table #, and so on, untif”” becomes empty. The maximum  over routine.
independent set consists of all rowlsortestr) so selected. « “o” and “8” mean, respectivelye and 3 dominance.

» Data are reported with a«" in front when only the first
solution was computed.

. o _» Data are reported with at* in front when only the first
We implemented a specialized solver where the table is taple reduction was performed.

specified as in case 2) of Section V-C (“specialized binate cov-. «# cover” is the cardinality of a minimum cost solution

ering table for exact state minimization and similar problems”), (when only the first solution has been computed, it is the
and we applied it to the problem of exact state minimization cardinality of the first solution).

of incompletely specified FSM's (ISFSM's). _ = “CPU time” refers only to the binate covering algorithm.
We also implemented a more general solver that is a variant |t does not include the time to find the prime compatibles.
of case 1) of Section V-C (“general binate covering table”). It

works with relationso(r, ¢) and 1(r, c) to determine 0 entries  Table IV presents a few randomly generated FSM's. They
and 1 entries, but it makes the assumption that each row of ffgherate giant binate tables. The experiments show that ISM is
binate covering table has at most one 0 in order to simplify ti¢@Pable of reducing those tables, and of producing a minimum
table reduction operatiofswe applied it to the problem of solution or at least a solution. This is beyond the reach of an
exact state minimization of pseudodeterministic FSM's [25xplicit technique, and substantiates the claim that implicit
The same binate solver was also applied to the prob|emtgphniques advance decisively the size of instances that can
selection of generalized prime implicants [44]. be solved exactly.

In this section, we report results of two applications of the Examples in Table IV demonstrate dramatically the ca-
previous implicit binate covering algorithms. We will condability of implicit techniques to build and solve huge bi-
centrate on the experimental performance of binate coveriftfite covering problems on suites of contrived examples.

referring to the original papers for a full-fledged descriptioR0 Similar cases arise in real synthesis applications? The
of the specific applications. examples reported in Table V answer the question in the

affirmative. They are from the suite of FSM’'s described

6See [26] for a more detailed description of variant formulations of thdl [35]' I_t 1S nOF pOSSIle to build and solve these bmate
binate covering table in the implicit setting. tables with explicit techniques. Instead, we can manipulate

VIII. EXPERIMENTAL RESULTS OFIMPLICIT BINATE COVERING
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TABLE V
LEARNING I/O SEQUENCES BENCHMARK
table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first ISM STAMINA ISM STAMINA ISM STAMINA
reduction a reduction a 8| « Jé) «a 81 «a 8 @ B8 e B8
threer.20 6977 x 3936 6974 x 3936 *4 *6 | *5 *3 *5 ¥5 | %6 | *6 *13 *¥26 | *1996 | *677
threer.25 35690 x 17372 34707 x 17016 *3 *6 - - *5 *6 - - *69 *192 fails | fails
threer.30 68007 x 33064 64311 x 32614 *4 *9 - - *8 *8 - - *526 *770 fails | fails
threer.35 177124 x 82776 165967 x 82038 *8 *9 - - | *12 | *10 - - | *2296 | *2908 fails | fails
threer.40 | 1209783 x 529420 | 1148715 x 526753 | *8 - - - | *12 - - - | *6787 fails fails | fails
fourr.16 6060 x 3266 5235 x 3162 *2 *3 1 *3 *3 *3 *3 1 x4 | *4 *6 *23 | *1641 | *513
fourr.16 6060 x 3266 5235 x 3162 *2 | 623 | *3 | 377 *3 31 % 3 *6 9194 | *1641 | 1459
fourr.20 26905 x 12762 26904 x 12762 *2 *4 - - *4 *4 - - *31 *68 fails | fails
fourr.30 | 1396435 x 542608 | 1385809 x 542132 | *2 *5 - - *4 *5 - - | *1230 | *1279 fails | fails
fourr.40 | 6.783e9 x 2.388e9 | 6.783e9 x 2.388¢9 | f1 - - - t- - - - 1723 fails fails | fails
TABLE VI
EXAMPLES FROM SYNTHESIS OF INTERACTING FSM’s
table size (rows x columns) # mincov # cover CPU time (sec)
FSM before after first ISM | STAMINA ISM STAMINA ISM STAMINA
reduction « reduction a|p a| B al| p al| g o 8 o 8
ifsml | 17663 x 8925 | 16764 x 8829 | *4 | 2 | *10 | 3 | *14 | 14 | *15 | 14 | *388 | 864 | *17582 | 805
ifsml | 17663 x 8925 | 16764x8829 | *4 | 2| 24| 3| *14 | 14| 14| 14 | *388 | 864 ;| 40817 | 805
ifsm2 | 1505 x 774 1368 x 672 4131 41|44 91 9 9| 9| 136|230 49 3
them with our implicit binate solver and find a solution. TABLE VII

In the examplefourr.40, only the first table reduction was SELECTION OF A MINIMAL  ENCODABLE GPI GovER

performed_ table size (row x col) mincov | table | CPU time (sec.)

Tabl ’ : fead FSM before red. Iafter red. calls | sol. table red.
able VI reports FSM’s expressing the permissible behav-bb 80X 3473 o

. . . . . , . . SSE x 34727 - - - timeout

iors in thg synthesis of interacting FSM S. .Prlme compatibles ¢ 30208 x 102781 ® i i i

are required only for the state minimization 6fsml and  chanst 169216 x 525 0x0 1)1 1218

1fsm2. Forifsml, 1SM can find a first solution faster than cpab 2205888;6;11;39982 6%3 x073 ‘1* 2’; Z;Zi
. . . cse X X

STAMINA USing a-d.ommance. But as the table sizes are not g, 43 % 1777 0x0 | i 4150

very big, the run times thaswm takes are usually longer than ex2 86 x 38410 0x0 1 3 830

those forSTAN”NA ex4 1072 x 26759 0x0 1 10 803

ftate 5360 x 1605 1x11 2| 8 12770

keyb 2666 x 361240 0x0 1 8 1706

. . . . kirkman | 100252 x 1081088 |  -(2) - - timeout

B. Selection of Generalized Prime Implicants maincont | 67586x 245784 | 0x0 g s

markl 1936 x 50258 5x5 3 7 1313

Table VII reports the results of running our prograsa to modulol2 24 x 9039 24x36 17 2 50

o : oo pkheader | 140288x29099 | 0x0 1| 19 5850

select a m|'n|mal e,ncodable cover pf generalized prime |m.pI| ks 31932 x 16561 | 14x 14 ! 27 3301

cants (GPI's). GPI's are an extension of the concept of prime; 15336 x 586240 (®) X . .

implicants to the case of multivalued input and multivaluedsta 5120 x 586240 -0) - - -

output Boolean functions. An encodable selection of GPI's™er | 896X 7196235 | X2 s o

translates into a two-valued implementation of the same sizegyaye 2207744 x 16845 | -@ . - timeout

Details can be found in [15] and [44]. For these experimentsma 2028 x 287558 -® - - -

IsA has been run with optiorm, which computes a subset of 21! 43 x 583 0x0 1 2 177

the GPI's, to generate smaller tables. The tables provide the
following information.

(=) timeout 18000 in collapse columns
) out-of-memory in collapse columns

* Under the column “table size,” we provide the dimensionghe part ofisa that computes an encodable cover of GPI's
of the original table and of its cyclic core, i.e., theand gets the codes by a second call to an implicit table solver
dimensions of the table obtained when the first cycle @ not reported here.
reductions converges. ISA fails to complete some examples due to time-out or no

* The column “mincov calls” is the number of recursivanore memory in the collapse column step of the first table
calls of the implicit table solver. reduction. For instancasa fails to complete the first table

» The column “table sol.” is the cardinality of the cover ofeduction ofslavefor time-out at 18 000 s, during the step of
GPI's returned by the table solver. collapse columns.

e The column “CPU time table red.” gives the time for FSM'’s cse, dk512, keyb, ex2, maincont, pkheader, markl
the binate table solver. The time to compute the primeere run on a DEC 7000 Model 610 AXP with 1 Ghyte of
compatibles is not included. memory. There is no program against which to compare.
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We underline that the covering problems faced to selegb] H. Higuchiand Y. Matsunaga, “Implicit prime compatible generation for
covers of GPI's, even though they are unate, are often harder minimizing incompletely specified finite state machines, Piroc. Asia

than those encountered to select covers of prime implicants;jq,
the ESPRESSCbenchmark [42], [7], a reason being the larger
variable support of the BDD representations of columns and
rows. To be able to solve the examples of the previous tabl
the package described in [24] had to be further optimized, and
inadequacies still remain to be addressed.

[23]
IX. CONCLUSION

Binate covering is a very useful paradigm for a host of opt/¢4!
mization problems in automatic design. We have presented thg
main features of explicit and implicit algorithms to find an ex-
act solution. The former solve routinely small and medium il

stances. The latter may solve large instances, but we cannot@f y -1, Lai, M. Pedram, and S. B. K. Viudhula, “FGILP: An integer

alyzea priori when they will succeed because it is difficult to
determine tight bounds on the size of ROBDD representations.

Research

is still in progress to improve the lowe

bound and column selection procedures to generate fewer
subproblems. On the front of implicit techniques, work still29]
must be done to make the implicit procedures more robu?0
When applicable, quantifier-free implicit table reduction

are

two-level exact minimization [7].

surely a useful tool as shown for unate covering of
[31]
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