EECS 312: Digital Integrated Circuits Midterm Exam

17 December 2009

Robert Dick

Closed book. Closed notes. Calculators permitted for the purpose of computation, but not storage of notes. I put reference material at the end of the exam.

Honor Pledge: I have neither given nor received aid in this exam.

Signature:										
Print name:										
Show your work.	Derivations	are required	for	credit;	end	results	are	insufficient.	When a	answer

Show your work. Derivations are required for credit; end results are insufficient. When answers have length limits, these are upper bounds. Shorter correct answers will receive full credit. In fact, shorter answers that are correct and have no errors will receive more credit than longer answers containing flaws.

1 Knowledge

1. **(5 pts.)** What problem can the inductance in the PCB and package power delivery network cause? When does this problem occur? Use at most four sentences.

2. (10 pts.) Why was there a recent transition from using polysilicon gates to using metal gates? Use at most three sentences.

3. (10 pts.) Show the side view of the basic memory element used in an EPROM. Using at most two sentences, explain the process of programming it. Using at most two sentences, explain the process of erasing it.

4. (10 pts.) What does this layout show? What is its greatest performance irregularity or flaw? In other words, if you were to implement the same function, how would your solution differ? Use at most four sentences.


5.	` - /	List one pro sentences.	blem caused b	y hot carriers	and one pro	ofitable use	of them.	Use at
6.	(5 pts.) most one		whether carbo	on nanotubes	are metallic	or semi-con	iducting?	Use at
	most one	sentence.						

2 Analysis and Design

7. (10 pts.) You designed a CMOS inverter to have a $V_M = V_{DD}/2$. However, its fabrication was not perfect. Impurities mixed in with the acceptor ions introduced strain in the NMOSFET, increasing its carrier mobility by 50%. What is the impact on V_M ?

8. (10 pts.) Generalize the concept of carry-select addition to multiplication. Show the diagram of a carry-select combinational multiplier for two 3-bit numbers. Indicate the impact on performance, assuming that the MUX overhead is negligible. You may use boxes labeled HA, FA, and MUX without showing their transistor-level designs.

9. (15 pts.) Draw a diagram of an SRAM with 16 addresses, each of which stores one bit. Take your design down to transistor level, but use hierarchy. Focus on correctness, not efficiency for this question. Your inputs are the four address lines. Implementing the read functionality is sufficient.

3 Reference material

	C_{OX}	C_O	C_j	m_j	ϕ_b	C_{jsw}	m_{jsw}	ϕ_{bsw}
	$({ m fF}/{ m \mu m^2})$	$({ m fF}/{ m \mu m})$	$({ m fF}/{ m \mu m^2})$		(V)	$({ m fF}/{ m \mu m})$		(V)
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

MODELS FOR CMOS DEVICES

CMOS (0.25 µm) - Unified Model.

	V_{T0} (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115 × 10 ⁻⁶	0.06
PMOS	-0.4	-0.4	-1	-30 × 10 ⁻⁶	-0.1

CMOS (0.25 μ m) – Switch Model (R_{eq})

$V_{DD}(V)$	1	1.5	2	2.5
NMOS (kΩ)	. 35	19	15	13
PMOS (kΩ)	115	55	38	31

CMOS (0.25 µm) – BSIM Model

See Website: http://bwrc.eecs.berkeley.edu/IcBook

Name	Value
-kT/q	$25.875{\rm mJ/C}$
NMOSFET I_S	$21.0\mathrm{pA}$
PMOSFET I_S	$41.8\mathrm{pA}$
n (for I_D calculation)	1.5

$$\begin{split} V_{M} &= \frac{\left(V_{Tn} + \frac{V_{DSATn}}{2}\right) + r\left(V_{DD} + V_{Tp} + \frac{V_{DSATp}}{2}\right)}{1 + r} \\ r &= \frac{k_{p}V_{DSATp}}{k_{n}V_{DSATn}} = \frac{\nu_{satp}W_{p}}{\nu_{satn}W_{n}} \end{split}$$

VALUES OF MATERIAL AND PHYSICAL CONSTANTS

Name	Symbol	Value	Units
Room temperature	γ.	300 (= 27°C)	K
Boltzman constant	k	1.38×10^{-23}	J/K
Electron charge	q	1.6×10^{-19}	С
Thormal voltage	$\phi_T = kT/q$	26	mV (at 300 K)
Intrinsic Carrier Concentration (Silicon)	n_l	1.5×10^{10}	cm ⁻³ (at 300 K)
Permittivity of Si	c ,,	1.05×10^{-12}	F/cm
Permittivity of \$iO2	€ _{O,h}	3.5×10^{-13}	F/cm
Resistivity of A1	PAI	2.7×10^{-8}	Ω-m
Resistivity of Cu	Pau	1.7×10^{-8}	Ω - m
Magnetic permeability of vacuum (similar for SiO ₂)	μ_0	12.6 × 10 ⁻⁷	Wb/Am
Speed of light (in vacuum)	c_0	30	cm/nsec
Speed of light (in SiO ₂)	$G_{\theta N}$	15	cm/nsec

Definitions useful in gate sizing

g_i	Gate logical effort. Ratio of input capacitor to equal on-resistance inverter.
$G = \prod_{i=1}^{n} g_i$	Path logical effort.
$G = \prod_{i=1}^{n} g_i$ $H = \frac{C_{out}}{C_{in}}$	Path electrical effort.
$b = \frac{C_{total}}{C_{useful}}$	Stage branching effort.
$B = \prod_{i=1}^{n} b_i$	path branching effort.
F = GBH	path effort.
$\hat{f} = g_i h_i = \sqrt[n]{F}$	Optimal stage effort.
$\hat{h_i} = rac{\hat{f}}{g_i} = rac{C_{i,out}}{C_{i,in}}$	Optimal stage electrical effort.
$D_i = G_i h_i + p_i:$	Stage delay.

For sizing inverters, $\forall_{i=1}^n b = g = 1$.

FORMULAS AND EQUATIONS

Diode

$$\begin{split} I_D &= I_S(e^{V_D/\phi_T} - 1) = Q_D/\tau_T \\ C_j &= \frac{C_{j0}}{(1 - V_D/\phi_0)^m} \\ K_{eq} &= \frac{-\phi_0^m}{(V_{high} - V_{low})(1 - m)} \times \\ & [(\phi_0 - V_{high})^{1 - m} - (\phi_0 - V_{low})^{1 - m}] \end{split}$$

MOS Transistor

$$\begin{split} V_T &= V_{T0} + \gamma (\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|}) \\ I_D &= \frac{k'_n W}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \text{ (sat)} \\ I_D &= \upsilon_{sat} C_{ox} W \bigg(V_{GS} - V_T - \frac{V_{DSAT}}{2} \bigg) (1 + \lambda V_{DS}) \\ \text{ (velocity sat)} \\ I_D &= k'_n \frac{W}{L} \bigg((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \bigg) \text{ (triode)} \\ I_D &= I_S e^{\frac{V_{GS}}{nkT/q}} \bigg(1 - e^{-\frac{V_{DS}}{kT/q}} \bigg) \text{ (subthreshold)} \end{split}$$

Deep Submicron MOS Unified Model

$$\begin{split} I_D &= 0 &\text{ for } V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \bigg(V_{GT} V_{min} - \frac{V_{min}^2}{2} \bigg) (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \\ &\text{with } V_{min} = \min(V_{GT}, V_{DS}, V_{DSAT}) \\ &\text{and } V_{GT} = V_{GS} - V_T \end{split}$$

MOS Switch Model

$$\begin{split} R_{eq} &= \frac{1}{2} \bigg(\frac{V_{DD}}{I_{DSAT} (1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT} (1 + \lambda V_{DD}/2)} \bigg) \\ &\approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \bigg(1 - \frac{5}{6} \lambda V_{DD} \bigg) \end{split}$$

Inverter

$$\begin{split} &V_{OH} = f(V_{OL}) \\ &V_{OL} = f(V_{OH}) \\ &V_{M} = f(V_{M}) \\ &t_{p} = 0.69 R_{eq} C_{L} = \frac{C_{L}(V_{swing}/2)}{I_{avg}} \\ &P_{dyn} = C_{L} V_{DD} V_{swing} f \\ &P_{stat} = V_{DD} I_{DD} \end{split}$$

Static CMOS Inverter

$$\begin{aligned} V_{OH} &= V_{DD} \\ V_{OL} &= GND \\ V_{M} &\approx \frac{rV_{DD}}{1+r} \quad \text{with} \quad r = \frac{k_{p}V_{DSATp}}{k_{n}V_{DSATn}} \\ V_{IH} &= V_{M} - \frac{V_{M}}{g} \qquad V_{IL} = V_{M} + \frac{V_{DD} - V_{M}}{g} \\ \text{with } g &\approx \frac{1+r}{(V_{M} - V_{Tn} - V_{DSATn}/2)(\lambda_{n} - \lambda_{p})} \\ t_{p} &= \frac{t_{pHL} + t_{pLH}}{2} = 0.69 C_{L} \left(\frac{R_{eqn} + R_{eqp}}{2}\right) \\ P_{av} &= C_{L}V_{DD}^{2}f \end{aligned}$$

Interconnect

Lumped RC: $t_p = 0.69 RC$ Distributed RC: $t_p = 0.38 RC$ RC-chain: $\tau_N = \sum_{i=1}^N R_i \sum_{i=1}^N C_i = \sum_{i=1}^N C_i \sum_{j=1}^i R_j$ Transmission line reflection: ', $\rho = \frac{V_{refl}}{V_{inc}} = \frac{I_{refl}}{I_{inc}} = \frac{R - Z_0}{R + Z_0}$

CMOS COMBINATIONAL LOGIC

Transistor Sizing using Logical Effort

$$F = \frac{C_L}{C_{g1}} = \prod_{i=1}^{N} \frac{f_i}{b_i} \qquad G = \prod_{i=1}^{N} g_i \qquad D = t_{p0} \sum_{j=1}^{N} \left(p_j + \frac{f_j g_j}{\gamma} \right)$$

$$B = \prod_{i=1}^{N} b_i \qquad H = FGB \qquad D_{min} = t_{p0} \left(\sum_{j=1}^{N} p_j + \frac{N(\sqrt[N]{H})}{\gamma} \right)$$