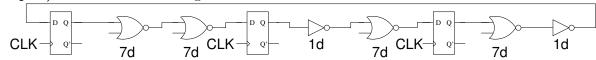
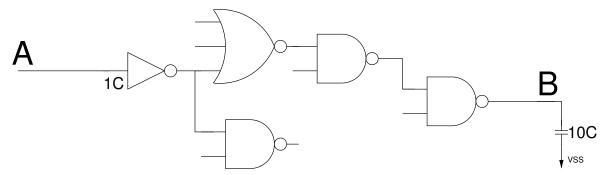
EECS 312: Digital Integrated Circuits Final Exam

23 April 2009


Robert Dick

Show your work. Derivations are required for credit; end results are insufficient. Closed book. You may use a calculator.

Honor Pledge: I have neither given nor received aid in this exam.


Signature:

- 1. (10 pts.) $k_n = \frac{W\mu_n\epsilon_{ox}}{Lt_{ox}}$ When the move from SiO₂ to high- κ gate dielectric occurred, what qualitative changes were made to the variables upon which k_n depends? You may assume that k_n remains fixed. Use only a few sentence fragments for your answer.
- 2. (10 pts.) Consider the following circuit:

The numbers near the logic gates indicate delays. Disconnected logic gate inputs may be assumed to be stable. Draw the gate- and latch-level diagram of a two-phase latch-based reimplementation of this circuit and indicate the minimal safe clock period. Do not change anything but the positions of the latches. You may neglect latch delays.

- 3. (10 pts.) Indicate two ways of programming floating-gate transistors and two ways of erasing floating-gate transistors. It is fine for the methods to require slightly different floating gate transistor designs. Use at most four short phrases.
- (10 pts.) Draw the transistor-level diagram for a sense amplifier that reprograms the read value. Your circuit should have the following inputs: *read-program*, *equalize*, *bit*, and *bit*. You may not assume access to complemented input literals.
- 5. (10 pts.) Draw a gate-level diagram for a three-bit carry-lookahead adder. Correctness counts the most, but efficiency also counts. You may use hierarchy. In other words, once you show how to construct something more complex than a standard logic gate, you can assign a symbol to it and reuse that symbol.
- 6. (10 pts.) Use the concept of logical effort to size the gates in the following circuit to minimize the delay for path $A \rightarrow B$.

You need not round your sizes.

- 7. (10 pts.) Draw a transistor-level diagram of a 3:8 decoder in which the transistors are sized to achieve the same output resistance to ground and V_{DD} as an inverter with gate capacitance 3C.
- 8. (10 pts.) Draw the gate-level diagram of a rising edge triggered scan-flop, i.e., a flip-flop that can be used to support normal operation and scan-chain testing. You may use transistors in addition to logic gates. If sizing is essential for correct operation, label the appropriate gates and/or transistors as "narrow" and "wide".
- 9. (10 pts.) Determine the worst-case delay from precharge disable to output transition for a single-bit cell in a four-word MOS NAND ROM. $\lambda = 125 \text{ nm}$. All gates are 2λ long and 4λ wide. Sources and drains are 3λ long and 4λ wide. Assume (1) a default 0.25 µm process, (2) all inputs experiences a perfect step voltage change, and (3) an output capacitance of 10 fF.

	C _{OX}	C_O	C_j	m_j	ϕ_b	C_{jsw}	m_{jsw}	ϕ_{bsw}
	$(\mathrm{fF}/\mathrm{\mu m}^2)$	$(fF/\mu m)$	$(\mathrm{fF}/\mathrm{\mu m}^2)$		(V)	$(\mathrm{fF}/\mathrm{\mu m})$		(V)
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

MODELS FOR CMOS DEVICES

CMOS (0.25 µm) – Unified Mode	el.
-------------------------------	-----

	V ₇₀ (V)	γ (V ^{0.5})	V_{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115 × 10 ⁻⁶	0.06
PMOS	-0.4	-0.4	-1	-30 × 10 ⁻⁶	-0.1

CMOS (0.25 μ m) – Switch Model (R_{eq})

$V_{DD}(\mathbf{V})$	1	1.5	2	2.5
NMOS (kΩ)	· 35	19	15	13
PMOS (kΩ)	115	55	38	31

CMOS (0.25 µm) - BSIM Model

See Website: http://bwrc.eecs.berkeley.edu/IcBook

VALUES OF MATERIAL AND PHYSICAL CONSTANTS

Name	Symbol	Value	Units
Room temperature	7 .	300 (= 27°C)	к
Boltzman constant	k	1.38×10^{-23}	J/K
Electron charge	4	1.6×10^{-19}	С
Thermal voltage	$\phi_r = kT/q$	26	mV (at 300 K)
Intrinsic Carrier Concentration (Silicon)	n _i	1.5×10^{10}	cm ⁻³ (at 300 K)
Permittivity of Si	C ,,	1.05×10^{-12}	F/cm
Permittivity of SiO2	E _{0x}	3.5×10^{-13}	F/cm
Resistivity of Al	ρ _{ΑΙ}	2.7×10^{-8}	Ω-m
Resistivity of Cu	Peu	1.7×10^{-8}	Ω- m
Magnetic permeability of vacuum (similar for SiO ₂)	μο	12.6×10^{-7}	Wb/Am
Speed of light (in vacuum)	<i>c</i> ₀	30	cm/nsec
Speed of light (in SiO_2)	G _{ex}	15	cm/nsec

FORMULAS AND EQUATIONS

• •

Diode

$$I_{D} = I_{S}(e^{V_{D}/\Phi_{T}} - 1) = Q_{D}/\tau_{T}$$

$$C_{j} = \frac{C_{j0}}{(1 - V_{D}/\Phi_{0})^{m}}$$

$$K_{eq} = \frac{-\Phi_{0}^{m}}{(V_{high} - V_{low})(1 - m)} \times [(\Phi_{0} - V_{high})^{1 - m} - (\Phi_{0} - V_{low})^{1 - m}]$$

MOS Transistor

$$V_T = V_{T0} + \gamma(\sqrt{|-2\phi_F + V_{SB}|} - \sqrt{|-2\phi_F|})$$

$$I_D = \frac{k'_n W}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS}) \text{ (sat)}$$

$$I_D = v_{sat} C_{os} W \left(V_{GS} - V_T - \frac{V_{DSAT}}{2} \right) (1 + \lambda V_{DS}) \text{ (velocity sat)}$$

$$I_D = k'_n \frac{W}{L} \left((V_{GS} - V_T) V_{DS} - \frac{V_{DS}^2}{2} \right) \text{ (triode)}$$

$$\frac{v_{GS}}{2} \left((V_{GS} - V_T) V_{DS} - \frac{v_{DS}^2}{2} \right) \text{ (triode)}$$

$$I_D = I_S e^{\overline{nkT/q}} \left(1 - e^{-\overline{kT/q}} \right)$$
(subthreshold)

Deep Submicron MOS Unified Model

$$\begin{split} I_D &= 0 \text{ for } V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^2}{2} \right) (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \\ \text{with } V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}) \\ \text{and } V_{GT} &= V_{GS} - V_T \end{split}$$

MOS Switch Model

$$\begin{split} R_{eq} &= \frac{1}{2} \Big(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \Big) \\ &\approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \Big(1 - \frac{5}{6} \lambda V_{DD} \Big) \end{split}$$

Inverter

$$\begin{split} V_{OH} &= f(V_{OL}) \\ V_{OL} &= f(V_{OH}) \\ V_{M} &= f(V_{M}) \\ t_{p} &= 0.69 R_{eq} C_{L} = \frac{C_{L}(V_{swing}/2)}{I_{avg}} \\ P_{dyn} &= C_{L} V_{DD} V_{swing} f \\ P_{stat} &= V_{DD} I_{DD} \end{split}$$

Static CMOS Inverter

$$\begin{split} V_{OH} &= V_{DD} \\ V_{OL} &= GND \\ V_{M} &\approx \frac{rV_{DD}}{1+r} \quad \text{with} \quad r = \frac{k_{p}V_{DSATp}}{k_{n}V_{DSATn}} \\ V_{IH} &= V_{M} - \frac{V_{M}}{g} \qquad V_{IL} = V_{M} + \frac{V_{DD} - V_{M}}{g} \\ \text{with } g &= \frac{1+r}{(V_{M} - V_{Tn} - V_{DSATn}/2)(\lambda_{n} - \lambda_{p})} \\ t_{p} &= \frac{t_{pHL} + t_{pLH}}{2} = 0.69 C_{L} \Big(\frac{R_{eqn} + R_{eqp}}{2} \Big) \\ P_{av} &= C_{L}V_{DD}^{2}f \end{split}$$

Interconnect Lumped RC: $t_p = 0.69 RC$ Distributed RC: $t_p = 0.38 RC$ RC-chain:

$$\tau_N = \sum_{i=1}^N R_i \sum_{j=i}^N C_j = \sum_{i=1}^N C_i \sum_{j=1}^i R_j$$

Transmission line reflection:

$$\rho = \frac{V_{refl}}{V_{inc}} = \frac{I_{refl}}{I_{inc}} = \frac{R - Z_0}{R + Z_o}$$

CMOS COMBINATIONAL LOGIC

Transistor Sizing using Logical Effort

$$F = \frac{C_L}{C_{g1}} = \prod_1^N \frac{f_1}{b_1} \qquad G = \prod_1^N g_1 \qquad D = t_{p0} \sum_{j=1}^N \left(p_j + \frac{f_j g_j}{\gamma} \right)$$
$$B = \prod_1^N b_1 \qquad H = FGB \qquad D_{min} = t_{p0} \left(\sum_{j=1}^N p_j + \frac{N(\frac{N}{\sqrt{H}})}{\gamma} \right)$$