EECS 312: Digital Integrated Circuits Midterm Exam

13 October 2009

Robert Dick

Show your work. Derivations are required for credit; end results are insufficient. Closed book. No electronic mental aids.

Honor Pledge: I have neither given nor received aid in this exam.

Signature:

1 Qualitative questions

- 1. (10 pts.) Indicate whether each of the following has been increasing (\uparrow) or decreasing (\downarrow) with process scaling for synchronous integrated circuits. If you feel the need to qualify your answer, limit the qualification to three words at most.
 - (a) Clock frequency
 - (b) Power consumption per device per switching event
 - (c) Dynamic power consumption as a proportion of total power consumption
 - (d) t_{ox}
- 2. (10 pts.) Draw the side view of both an NMOSFET and a PMOSFET, showing the locations for source, drain, and gate, and indicating the type(s) of material used in each portion of the structure. Indicate class and concentration of dopants using the standard notation.

- 3. (10 pts.) Using no more than three sentences, each, explain why
 - (a) Threshold voltage decreases for very short NMOSFETs and

(b) Threshold voltage increases for narrow NMOSFETs.

- 4. (10 pts.) Use one sentence, each, to answer the following questions:
 - (a) Give one reason why the switch from Al to Cu interconnect required moving to the dual Damascene process.
 - (b) Give one reason for an increase in the complexity of individual design rules with process scaling.
 - (c) Indicate one important use of CMP during the fabrication process.

2 Quantitative questions

5. (10 pts.) Consider the circuit shown in the following figure.

Given that V_{in} has been 0 V for a very long time, and changes instantly to 2.5 V at t = 0, derive the expression for $V_{CG}(t)$. It is fine to simplify the problem by converting the resistances and capacitances to lump sum values. Please simplify your expression as much as possible.

6. (10 pts.) Consider the transfer function shown in the following figure.

Report NM_L and NM_H for this technology. I understand that you are estimating these values from the plot so answers within 5% of the right value will be considered correct.

7. (20 pts.) Determine the steady-state current through a floating-output inverter built from minimal-width (i.e., it is an unbalanced inverter) and minimal-length FETs in the default process for each of the following values of V_{GS} : 0 V and 0.2 V. You are encouraged to simplify the problem. However, you must state the reason that each simplifying assumption is valid and your final result must be reasonably accurate. Show your work.

3 Reference material

	C_{OX}	C_O	C_j	m_j	ϕ_b	C_{jsw}	m_{jsw}	ϕ_{bsw}
	$(\mathrm{fF}/\mathrm{\mu m^2})$	$(\mathrm{fF}/\mathrm{\mu m})$	$(\mathrm{fF}/\mathrm{\mu m^2})$		(V)	$(\mathrm{fF}/\mathrm{\mu m})$		(V)
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

MODELS FOR CMOS DEVICES CMOS (0.25 µm) – Unified Model.

	V ₇₀ (V)	γ(V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115 × 10 ⁻⁶	0.06
PMOS	-0.4	-0.4	-1	-30×10^{-6}	-0.1

CMOS	(0.25	μm) –	Switch	Model	(R _{ea})
		• •			- 1

$V_{DD}(\mathbf{V})$	1	1.5	2	2.5
NMOS (kΩ)	· 35	19	15	13
PMOS (kΩ)	115	55	38	31

CMOS (0.25 µm) - BSIM Model

See Website: http://bwrc.eecs.berkeley.edu/IcBook

Name	Value
kT/q	$25.875\mathrm{mJ/C}$
NMOSFET I_S	$21.0\mathrm{pA}$
PMOSFET I_S	$41.8\mathrm{pA}$
n (for I_D calculation)	1.5

VALUES OF MATERIAL AND PHYSICAL CONSTANTS

Name	Symbol	Value	Units
Room temperature	γ.	300 (= 27°C)	к
Boltzman constant	k	1.38×10^{-23}	J/K
Electron charge	4	1.6×10^{-19}	С
Thermal voltage	$\phi_r = kT/q$	26	mV (at 300 K)
Intrinsic Carrier Concentration (Silicon)	n _i	1.5×10^{10}	cm ⁻³ (at 300 K)
Permittivity of Si	£.,	1.05×10^{-12}	F/cm
Permittivity of SiO2	E ₀₃	3.5×10^{-13}	F/cm
Resistivity of Al PAL		2.7×10^{-8}	Ω-m
Resistivity of Cu	Peu	1.7×10^{-8}	Ω-m
Magnetic permeability of vacuum (similar for SiO ₂)	μ_0	12.6×10^{-7}	Wb/Am
Speed of light (in vacuum)	<i>c</i> ₀	30	cm/nsec
Speed of light (in SiO ₂)	C _{ex}	15	cm/nsec

FORMULAS AND EQUATIONS

Diode

$$I_{D} = I_{S}(e^{V_{D}/\Phi_{T}} - 1) = Q_{D}/\tau_{T}$$

$$C_{j} = \frac{C_{j0}}{(1 - V_{D}/\phi_{0})^{m}}$$

$$K_{eq} = \frac{-\phi_{0}^{m}}{(V_{high} - V_{low})(1 - m)} \times [(\phi_{0} - V_{high})^{1 - m} - (\phi_{0} - V_{low})^{1 - m}]$$

MOS Transistor

$$V_{T} = V_{T0} + \gamma(\sqrt{|-2\phi_{F} + V_{SB}|} - \sqrt{|-2\phi_{F}|})$$

$$I_{D} = \frac{k'_{n}}{2} \frac{W}{L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS}) \text{ (sat)}$$

$$I_{D} = \upsilon_{sat} C_{os} W \left(V_{GS} - V_{T} - \frac{V_{DSAT}}{2} \right) (1 + \lambda V_{DS}) \text{ (velocity sat)}$$

$$I_{D} = k'_{n} \frac{W}{L} \left((V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right) \text{ (triode)}$$

$$I_{D} = I_{S} e^{\frac{V_{CS}}{nkT/q}} \left(1 - e^{-\frac{V_{DS}}{kT/q}} \right) \text{ (subthreshold)}$$

Deep Submicron MOS Unified Model

$$\begin{split} I_D &= 0 \text{ for } V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^2}{2} \right) (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \\ \text{with } V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}) \\ \text{and } V_{GT} &= V_{GS} - V_T \end{split}$$

MOS Switch Model

ł

$$\begin{split} R_{rq} &= \frac{1}{2} \bigg(\frac{V_{DD}}{I_{DSAT} (1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT} (1 + \lambda V_{DD}/2)} \bigg) \\ &\approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \bigg(1 - \frac{5}{6} \lambda V_{DD} \bigg) \end{split}$$

Inverter

$$\begin{split} V_{OH} &= f(V_{OL}) \\ V_{OL} &= f(V_{OH}) \\ V_M &= f(V_M) \\ t_p &= 0.69 R_{eq} C_L = \frac{C_L(V_{swing}/2)}{I_{avg}} \\ P_{dyn} &= C_L V_{DD} V_{swing} f \\ P_{stat} &= V_{DD} I_{DD} \end{split}$$

Static CMOS Inverter

$$\begin{aligned} &V_{OH} = V_{DD} \\ &V_{OL} = GND \\ &V_{M} \approx \frac{rV_{DD}}{1+r} \quad \text{with} \quad r = \frac{k_p V_{DSATp}}{k_n V_{DSATn}} \\ &V_{IH} = V_M - \frac{V_M}{g} \qquad V_{IL} = V_M + \frac{V_{DD} - V_M}{g} \\ &\text{with} \quad g \approx \frac{1+r}{(V_M - V_{Tn} - V_{DSATn}/2)(\lambda_n - \lambda_p)} \\ &t_p = \frac{t_{pHL} + t_{pLH}}{2} = 0.69 C_L \Big(\frac{R_{eqn} + R_{eqp}}{2}\Big) \\ &P_{av} = C_L V_{DD}^2 f \end{aligned}$$

Interconnect

Lumped RC: $t_p = 0.69 RC$ Distributed RC: $t_p = 0.38 RC$ RC-chain:

$$\tau_{N} = \sum_{i=1}^{N} R_{i} \sum_{j=i}^{N} C_{j} = \sum_{i=1}^{N} C_{i} \sum_{j=1}^{i} R_{j}$$

Transmission line reflection:

$$\rho \;=\; \frac{V_{refl}}{V_{inc}} \;=\; \frac{I_{refl}}{I_{inc}} \;=\; \frac{R-Z_0}{R+Z_o} \label{eq:rho}$$

CMOS COMBINATIONAL LOGIC

Transistor Sizing using Logical Effort

$$F = \frac{C_L}{C_{g_1}} = \prod_{i=1}^{N} \frac{f_i}{b_i} \qquad G = \prod_{i=1}^{N} g_i \qquad D = t_{p0} \sum_{j=1}^{N} \left(p_j + \frac{f_j g_j}{\gamma} \right)$$
$$B = \prod_{i=1}^{N} b_i \qquad H = FGB \qquad D_{min} = t_{p0} \left(\sum_{j=1}^{N} p_j + \frac{N(\sqrt[N]{H})}{\gamma} \right)$$