EECS 312: Digital Integrated Circuits Midterm Exam

2 December 2010

Robert Dick

Show your work. Derivations are required for credit; end results are insufficient. Closed book. No electronic mental aids, e.g., calculators.

Honor Pledge: I have neither given nor received aid in this exam.

Signature:

Figure 1: Example circuit.

- 1. (20 pts.) Consider the circuit in Figure 1. Hint: The top transistor is a PMOSFET and the rest are NMOSFETs.
 - (a) (1 pts.) What style of logic is this implemented in?
 - (b) (1 pts.) Is this an example of ratioed logic?
 - (c) (5 pts.) What function is implemented?
 - (d) (8 pts.) If $C_x = 5C_Y$, then what is the lowest voltage node f may reach during the evaluate stage if a transitions from 0 V to 2.5 V but b and c remain at 0 V. Show your work. State and support your assumptions.

Figure 2: NMOSFET $I_D - V_{GS}$ curve.

- (e) (5 pts.) If clk, a, b, and c are all 0 V, V_{C_Y} is 0.25 V, and Figure 2 gives the I_D-V_{GS} curve for each NMOSFET, find an upper bound on the leakage current for the logic gate. Hint: It is fine to extrapolate.
- 2. (10 pts.) Consider a load with resistance R and capacitance C that is driven by a timevarying voltage source.
 - (a) (5 pts.) Derive an expression for the total energy consumed in the resistor if the voltage source changes instantly from 0 V to 2.5 V at time zero.
 - (b) (5 pts.) If the input voltage changes from 0 V to 2.5 V gradually instead of instantly, what is the effect on the total energy consumed in the resistor? Explain your answer. A correct but unsupported answer is not sufficient.
- 3. (10 pts.) Consider the circuit in Figure 3. V_s changes from 0 V to 2.5 V at time zero.
 - (a) (5 pts.) Derive an expression for the time constant when driving node d.
 - (b) (5 pts.) Derive an expression for the time at which V_d will reach 2 V. Hint: If you think you need a calculator, check the references at the end of the exam for a good alternative.
- 4. (10 pts.) Consider the layout in Figure 4.
 - (a) (2 pts.) What type of logic function does this layout implement?
 - (b) (8 pts.) Point out the three largest problems with this layout. For each explain the impact on gate behavior. When possible, indicate the ways in which important parameters are influenced, e.g., k'.
- 5. (5 pts.) Using three or fewer sentences, explain one difference in the requirements for 6T cell SRAM sense amplifiers and 1T cell DRAM sense amplifiers.

Figure 3: RC network.

Figure 4: Messed up layout.

- 6. (5 pts.) Using three or fewer sentences, explain what silicides are and why they are useful.
- 7. (5 pts.) Draw both a high-level symbol and transistor-level schematic for a falling-edge triggered flip-flop with two inputs, a and b. The output of the flip-flop should toggle if a is 2.5 V or b is equal to the current output of the flip-flop but should otherwise remain unchanged. If gate sizing is important, specify it. You may use hierarchy, i.e., once you show the structure of an inverter once and give a symbol for it, you may use the symbol from then on.
- 8. (5 pts.) Using three or fewer sentences, give an example of a situation in which it is important to consider interconnect parasitic inductance and explain a problem caused by this parasitic inductance.

1 Reference material

	C_{OX}	C_O	C_j	m_{j}	ϕ_b	C_{jsw}	m_{jsw}	ϕ_{bsw}
	$(\mathrm{fF}/\mathrm{\mu m^2})$	$(\mathrm{fF}/\mathrm{\mu m})$	$(\mathrm{fF}/\mathrm{\mu m^2})$		(V)	$(\mathrm{fF}/\mathrm{\mu m})$		(V)
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

MODELS FOR CMOS DEVICES

CMOS (0.25 µm) - Unified Model.

	<i>V</i> ₇₀ (V)	γ (V ^{0.5})	V _{DSAT} (V)	k' (A/V ²)	λ (V ⁻¹)
NMOS	0.43	0.4	0.63	115 × 10 ⁻⁶	0.06
PMOS	-0.4	-0.4	-1	-30 × 10 ⁻⁶	-0.1

CMOS (0.25 μ m) – Switch Model (R_{eq})

$V_{DD}(\mathbf{V})$	1	1.5	2	2.5
NMOS (kΩ)	· 35	19	15	13
PMOS (kΩ)	115	55	38	31

CMOS (0.25 µm) - BSIM Model

See Website: http://bwrc.eecs.berkeley.edu/IcBook

Name	Value
kT/q	$25.875\mathrm{mJ/C}$
NMOSFET I_S	$21.0\mathrm{pA}$
PMOSFET I_S	$41.8\mathrm{pA}$
n (for I_D calculation)	1.5

VALUES OF MATERIAL AND PHYSICAL CONSTANTS

Name	Symbol	Value	Units	
Room temperature	r	300 (= 27°C)	к	
Boltzman constant	k	1.38×10^{-23}	J/K	
Electron charge	4	1.6×10^{-19}	С	
Thermal voltage	$\phi_r = kT/q$	26	mV (at 300 K)	
Intrinsic Carrier Concentration (Silicon)	n _i	1.5×10^{10}	cm ⁻³ (at 300 K)	
Permittivity of Si	e.,	1.05×10^{-12}	F/cm	
Permittivity of SiO ₂	E _{0.5}	3.5×10^{-13}	F/cm	
Resistivity of A1	ρ _{λ1}	2.7×10^{-8}	Ω-m	
Resistivity of Cu	PCu	1.7 × 10 ⁻⁸	Ω-m	
Magnetic permeability of vacuum (similar for SiO ₂)	μ ₀	12.6×10^{-7}	Wb/Am	
Speed of light (in vacuum)	<i>c</i> ₀	30	cm/nsec	
Speed of light (in SiO ₂)	C _{ex}	15	cm/nsec	

The natural logarithm of x

FORMULAS AND EQUATIONS

Diode

$$I_{D} = I_{S}(e^{V_{D}/\Phi_{T}} - 1) = Q_{D}/\tau_{T}$$

$$C_{j} = \frac{C_{j0}}{(1 - V_{D}/\phi_{0})^{m}}$$

$$K_{eq} = \frac{-\phi_{0}^{m}}{(V_{high} - V_{low})(1 - m)} \times [(\phi_{0} - V_{high})^{1 - m} - (\phi_{0} - V_{low})^{1 - m}]$$

MOS Transistor

$$V_{T} = V_{T0} + \gamma (\sqrt{-2\phi_{F} + V_{SB}} - \sqrt{-2\phi_{F}})$$

$$I_{D} = \frac{k'_{n} W}{2L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS}) \text{ (sat)}$$

$$I_{D} = v_{sat} C_{os} W \left(V_{GS} - V_{T} - \frac{V_{DSAT}}{2} \right) (1 + \lambda V_{DS}) \text{ (velocity sat)}$$

$$I_{D} = k'_{n} \frac{W}{L} \left((V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right) \text{ (triode)}$$

$$I_{D} = I_{S} e^{\frac{V_{GS}}{nkT/q}} \left(1 - e^{-\frac{V_{DS}}{kT/q}} \right) \text{ (subthreshold)}$$

Deep Submicron MOS Unified Model

$$\begin{split} I_D &= 0 \text{ for } V_{GT} \leq 0 \\ I_D &= k' \frac{W}{L} \left(V_{GT} V_{min} - \frac{V_{min}^2}{2} \right) (1 + \lambda V_{DS}) \text{ for } V_{GT} \geq 0 \\ \text{with } V_{min} &= \min(V_{GT}, V_{DS}, V_{DSAT}) \\ \text{and } V_{GT} &= V_{GS} - V_T \end{split}$$

MOS Switch Model

Ł

$$\begin{split} R_{eq} &= \frac{1}{2} \bigg(\frac{V_{DD}}{I_{DSAT}(1 + \lambda V_{DD})} + \frac{V_{DD}/2}{I_{DSAT}(1 + \lambda V_{DD}/2)} \bigg) \\ &\approx \frac{3}{4} \frac{V_{DD}}{I_{DSAT}} \bigg(1 - \frac{5}{6} \lambda V_{DD} \bigg) \end{split}$$

Inverter

$$\begin{split} V_{OH} &= f(V_{OL}) \\ V_{OL} &= f(V_{OH}) \\ V_{M} &= f(V_{M}) \\ t_{p} &= 0.69 R_{eq} C_{L} = \frac{C_{L}(V_{swing}/2)}{I_{avg}} \\ P_{dyn} &= C_{L} V_{DD} V_{swing} f \\ P_{stat} &= V_{DD} I_{DD} \end{split}$$

Static CMOS Inverter

$$\begin{aligned} &V_{OH} = V_{DD} \\ &V_{OL} = GND \\ &V_{M} \approx \frac{rV_{DD}}{1+r} \quad \text{with} \quad r = \frac{k_p V_{DSATp}}{k_n V_{DSATn}} \\ &V_{IH} = V_M - \frac{V_M}{g} \qquad V_{IL} = V_M + \frac{V_{DD} - V_M}{g} \\ &\text{with} \quad g \approx \frac{1+r}{(V_M - V_{Tn} - V_{DSATn}/2)(\lambda_n - \lambda_p)} \\ &t_p = \frac{t_{pHL} + t_{pLH}}{2} = 0.69 C_L \Big(\frac{R_{eqn} + R_{eqp}}{2} \Big) \\ &P_{av} = C_L V_{DD}^2 f \end{aligned}$$

Interconnect

Lumped RC: $t_p = 0.69 RC$ Distributed RC: $t_p = 0.38 RC$ RC-chain:

$$\tau_{N} = \sum_{i=1}^{N} R_{i} \sum_{j=i}^{N} C_{j} = \sum_{i=1}^{N} C_{i} \sum_{j=1}^{i} R_{j}$$

Transmission line reflection:

$$\rho = \frac{V_{refl}}{V_{inc}} = \frac{I_{refl}}{I_{inc}} = \frac{R-Z_0}{R+Z_o}$$

CMOS COMBINATIONAL LOGIC

Transistor Sizing using Logical Effort

$$F = \frac{C_L}{C_{g_1}} = \prod_{i=1}^{N} \frac{f_i}{b_i} \qquad G = \prod_{i=1}^{N} g_i \qquad D = t_{p_0} \sum_{j=1}^{N} \left(p_j + \frac{f_j g_j}{\gamma} \right)$$
$$B = \prod_{i=1}^{N} b_i \qquad H = FGB \qquad D_{min} = t_{p_0} \left(\sum_{j=1}^{N} p_j + \frac{N(\frac{N}{\sqrt{H}})}{\gamma} \right)$$