Energy Scavenging for Digital ICs

Mengmeng Jie

What is Energy Scavenging

Process of converting local ambient energy into usable electrical energy

- Use transducer:
 - thermoelectric generator (TEG): temperature differential
 - piezoelectric element: vibration
 - photovoltaic cell: sunlight
 - galvanic energy: moisture
- Concept has been around for over a decade
- Motivation:
 - Provides power to supplement or replace batteries in systems
 - Useful when battery use may be inconvenient, expensive or dangerous
 - Eliminate need for wires to carry power or transmit data
 - Means of powering wireless sensor networks
 - Economic gain
 - often costs less than implementing supply wires or replacing batteries
 - Use energy otherwise wasted from industrial processes, solar panels, or internal combustion engines

Energy Scavenging System and Considerations

- Energy Harvester yield power levels in the order of milliwatts
 - In long run, broadly comparable in energy provision and the cost per energy unit provided to longlife primary batteries
 - Can recharge after depletion, systems powered by primary batteries cannot
- Microcontrollers and transducers: consume minimal electrical energy from low-energy environments
 - Low-cost and low-power sensors and microcontrollers available for a couple of years
 - Ultra-low-power transceivers recently commercially available
 - Limiting factor is energy harvester

Considerations and Challenges

• Challenges:

- Absence of ambient energy
 - Solution: Secondary Reservoir
 - Considerations:
 - Length of time for absence
 - Size and type of a secondary reservoir (capacitor, supercap or battery)
 - Duty cycle frequency that data reading and transmission has to be made
 - Availability of ambient energy to be primary energy source and charge secondary reservoir
- Energy harvester has 30 components or more
 - Compromised performance in end system
 - Low conversion efficiency
 - Increases amount of time to power up system
 - Increases time interval between sensor reading and transmitting data
 - High currents
 - Must first overcome current level needed for operation
 - Limits how low the output can be

New generation of Ics can harvest energy from very low levels

Increase Market acceptance

New Generation of Energy Scavenging ICs

- Supply all system voltages from piezoelectric vibrating-beam energy harvesters
 - Linear Technology
- Step-up converter/power manager from transducer voltage input
 - LTC3108
 - Transformer-based circuit
 - External step-up transformer + coupling capacitor
 - -> resonant step-up oscillator for MOSFET switch
 - -> External charge pump capacitor rectifies ac voltage
 - -> charges external capacitor that runs chip and external outputs
 - Results: Chip can change standard capacitor, supercapacitor, or rechargeable battery
 - Outputs:
 - VSTORE: charge large storage cap or battery up to VAUX
 - VOUT: main output voltage
 - VOUT2: controlled by host with MOSFET switch, power external circuits
 - Sensors, amplifiers only draw power when needed
 - Low-dropout regulator runs system controller
 - Energy Considerations: 1.6 microA
 - Power supply from Piezo Energy Harvester input
 - -//LTC3588
 - AC input handled by Internal full wave bridge rectifier
 - Output: rectified and stored on capacitor at Vin
 - Energy reservoir for buck converter
 - Voltage algorithm to control output
 - Charges output capacitor through inducer, whose current could be ramped up with an internal PMOS or down with an internal NMOS
 - Energy considerations: piezo generated current around 10 microA, low loss bridge rectifier with drop of 400mV
 - Size: 9mm2
 - Price: \$3
 - There are also chips that target thermo-electric, photovoltaic, galvanic, and coil/magnet harvest rings

Applications

- Mostly to power sensors and wireless mesh networks that pass data from host of sensor to central processor
- Aircraft Health Monitoring for cracks in metal
 - Ambient thermal energy or piezoelectricity
- Environmental control in buildings: occupancy sensors, thermostats, light switches
 - Harvest from ambient light or temperature differences
 - Eliminate need for power or control wiring
 - Reduce electricity costs, adjusting temperature or turning off lights
- Monitoring stability of highway structures
 - Piezoelectric harvesters collect energy from the vibrations caused by vehicles driving on the structure

What is next

- Battery with cathode chemistry that forms a composite cathode with a capacity nearly triple that used in lithium-ion batteries (University of Colorado)
- Lithium battery cell monitoring IC from ams AG reduces hardware and software requirements in battery cell management systems
- Declining cost of photovoltaics
- Decrease power consumption of harvesters
- Lower power consumption of WSN
- Increase power output

elements within the WSN	Factors affecting power consumption
Power Supply (or battery)	Discharge rate Battery dimensions Supply voltages Type of electrode material used DC/DC Efficiency
Sensors	Physical to electrical signal conversion Complexity of supporting components Signal sampling Signal conditioning
ADC	Sampling rate Aliasing Dither
Microprocessor	Core operating frequencies Operating voltages Power proportional to process & computational load Ambient temperature Application code Peripheral utilization
Radio	Modulation scheme Data rate Transmission range Operational duty cycle

Bibliography

• <u>http://</u>

<u>electronicdesign.com/energy/energy-harvesting-ics-supply-all-syst</u> <u>em-voltages-directly-transducers</u>

• <u>http://</u>

electronicdesign.com/site-files/electronicdesign.com/files/archi ve/electronicdesign.com/content/14978/59559_figure.gif

- <u>http://www.linear.com/products/energy_harvesting</u>
- <u>http://</u> <u>ecee.colorado.edu/microwave/docs/publications/2010/Thurein-PE</u>
 <u>L.pdf</u>
- <u>http://rtcmagazine.com/articles/view/102133</u>