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Carbon nanotubes
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Two major sources of changing problems

New implementation technologies.

New applications.
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Evolution of computation

1800s: Mechanical

Late 1800s–early 1900s: Electro-mechanical

Early 1900s–mid 1900s: Vacuum tube electronic

Mid 1900s–late 1900s: Bipolar (TTL)

Late 1900s–early 2000s: MOS
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Impact of scaling on volume
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Impact of scaling on delay
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Impact of scaling on energy consumption
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Impact of scaling on price
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Scaling trends
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Device trends
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Advantages of CMOS relative to prior technologies

Performance

Gain, low noise

Area

Massive integration

Power

Reliability

Fabrication difficulty & cost
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Current status for CMOS

32 nm

Power, thermal problems severe

Fabrication cost per design high

Potential reliability problems in future

Soft errors

Electromigration, dielectric breakdown, etc.

Process variation

Soon: Discrete dopant problems
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Computing trends applications

Increased market volume and size for portable and embedded
systems compared to general-purpose computers.

Instructor’s opinion: Embedded will grow in importance in the
future.

High-performance general-purpose computing will still matter.

Much of the general-purpose computation will move to data
centers.
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Advantages of alternative nanotechnologies

May allow continued process scaling after CMOS scaling impractical.

Candidates

Carbon nanotube

Nanowire Single electron tunneling transistors
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Comparison of nanoscale technologies

Credit to ITRS’05 report on Emerging Research Devices.
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Carbon
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CNT history
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CNT classes

Graphene Single-walled CNT Multi-walled CNT
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Chirality
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Metallic and semiconducting CNTs

Armchair (metallic)

Zigzag (semi-conducting)
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CNT properties

Metallic or semiconducting.

Diameter: 0.4–100 nm.

Length: up to millimeters.

Ballistic transport.

Excellent thermal conductivity.

Very high current density.

High chemical stability.

Robust to environment.

Tensile strength: 45TPa.

Steel is 2 TPa.

Temperature stability

2,800℃ in vacuum.
700℃ in air.
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CNTs compared with Cu

Property CNT Cu
Max I dens. (A/cm2) > 1× 109 (Wei et al., APL’01) 1× 107

Thermal cond. (W/mK) 5,800 (Hone et al., Phy Rev B’99) 385
Mean free path (nm) > 1, 000 (McEuen et al. T Nano’02) 40
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NRAM

Uses Van der Waals forces.

Non-volatile.

SRAM-like speed.

DRAM-like density.

Ready for market in 2007 (and 2008, and 2009, and 2010, and
2011).

IEEE Spectrum loser of the year. Why?
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Power challenges

High-performance applications: energy cost, temperature, reliability
Portable embedded systems: battery lifetime
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What does history teach us about power consumption?

Device innovations have been the most effective method

Vacuum tube to semiconductor device in the 1960s

Bipolar device to CMOS transistor in the 1990s
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Based on diagram by C. Johnson, IBM Server and Technology Group
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Single electron tunneling transistor structure

Device structure

Island, terminals (source, drain, gate)

Electron tunneling through tunneling junctions

CG   :gate capacitance                                     CD  :drain tunnel junction capacitance
CG2 :optional 2nd gate capacitance                            RS   :source tunnel junction resistance
CS   :source tunnel junction capacitance                   RD  :drain tunnel junction resistance

gate (G)island

optional 2nd gate (G2)

tunnel
junction

source
(S)

drain
(D)

CG

CG2

CS,RS CD,RD
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Single electron tunneling transistor behavior

Physical principles

Coulomb charging effect governs electron tunneling

Coulomb blockade VGS = me/CG , m = ±1/2,±3/2, · · · OFF,
m = 0,±1,±2, · · · ON
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SET properties and challenges

Ultra low power

Projected energy per switching event (1× 10−18 J)

Room temperature and fabrication challenge

Electrostatic charging energy must be greater than thermal
energy

e
2/C∑ > kBT

Requires e2/C∑ > 10kBT or even e
2/C∑ > 40kBT
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SET properties and challenges

Performance challenge

Electrons must be confined in the island

RS ,RD > h/e2, h/e2 = 25.8 kΩ

High resistance, low driving strength

Reliability concerns

Tunneling between charge traps cause run-time errors

Unknown before fabrication

Device technology: Improved by silicon islands

Reliable design: Post-fabrication adaptation

Run-time error correction
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Summary

CMOS will be mainstream for years to come, but not forever.

The meaning of integrated circuits will change in the future.

Circuit and logic design fundamentals will still apply.

Some rules, e.g., difficulty of implementing non linearly separable
functions, may change.

You will each need to adapt as the rules governing device
behavior change, but this will be much faster now that you have
a foundation.
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