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Evolution of computation

Impact of scaling on delay Impact of scaling on energy consumption
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Impact of scaling on price Scaling trends
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Evolution of computation Evolution of computation

Device trends Advantages of CMOS relative to prior technologies

Performance
Gain, low noise

Area

SiGe S/D

Strained
Silicon Strained
Silicon

Power
Reliability

°
°
°
@ Massive integration
°
°
o Fabrication difficulty & cost
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Evolution of computation Evolution of computation

Current status for CMOS Computing trends applications
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32nm

@ Increased market volume and size for portable and embedded
Power, thermal problems severe

o . . systems compared to general-purpose computers.
Fabrication cost per design high , L . o .
@ Instructor's opinion: Embedded will grow in importance in the

Potential reliability problems in future future.

Soft errors @ High-performance general-purpose computing will still matter.

Electromigration, dielectric breakdown, etc. @ Much of the general-purpose computation will move to data

Process variation centers.

Soon: Discrete dopant problems
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Advantages of alternative nanotechnologies Comparison of nanoscale technologies

Table 59 Emerging Research Logic Devices—Demonstrated Projected Parameters
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Credit to ITRS'05 report on Emerging Research Devices.
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Carbon nanotubes Carbon nanotubes

CNT history

allotropes apulications

diamond
Ebdiscflll's cng;nlal Discovery of Fullerenes Carbon nanotube transistor
carbon-flament lamy
138 et caeon P (Smalley) based logicperforming ICs (IBM)
1880 1985 2001
1978 1991 2002
F/A-18 Hornet Nanotubes discovered at Carbon nanotubes in
The first aircraft with NEC, by Japanese researcher interconnet applications
D

Fullerene
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Carbon nanotubes Carbon nanotubes

CNT classes Chirality

Graphene Single-walled CNT Multi-walled CNT
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Carbon nanotubes Carbon nanotubes

Metallic and semiconducting CNTs CNT properties

Metallic or semiconducting.
Diameter: 0.4-100 nm.

Length: up to millimeters.

Armchair (metallic)

Ballistic transport.

Excellent thermal conductivity.

Very high current density.

High chemical stability.

Robust to environment.

Tensile strength: 45 TPa.
o Steel is 2 TPa.

o Temperature stability

e 2,800°C in vacuum.
e 700°C in air.
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Carbon nanotubes Carbon nanotubes

CNTs compared with Cu

carban nanotube ribbons

supports

oxide layer

silicon wafer

Property CNT Cu Cooeica:

Max | dens. (A/cm?) > 1 x 10% (Wei et al., APL'01) 1 x 107
Thermal cond. (W/mK) 5,800 (Hone et al., Phy Rev B'99) 385
Mean free path (nm) > 1,000 (McEuen et al. T Nano'02) 40

Uses Van der Waals forces.

Non-volatile.

SRAM-like speed.

DRAM-like density.

Ready for market in 2007 (and 2008, and 2009, and 2010, and
2011).

o |EEE Spectrum loser of the year. Why?
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Single-electron tunneling transistors Single-electron tunneling transistors

Power challenges What does history teach us about power consumption?

High-performance applications: energy cost, temperature, reliability Device innovations have been the most effective method
Portable embedded systems: battery lifetime @ Vacuum tube to semiconductor device in the 1960s

- @ Bipolar device to CMOS transistor in the 1990s

TAiel 386 1

5
oo

oo ° IBMESI000®  CMOS gprecior

e—

‘Alpha 21264

100 |

04 PO

par ¢ Bipolar
Super Spar C
Spar c64.

CEVELY

Power (W)
©6000G0

5
Power densiy (Wattsicr?)

3 L L L
1085 1990 1905 2000 2005 2010
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Single-electron tunneling transistors

Single electron tunneling transistor structure

Device structure

Single-electron tunneling transistors

Single electron tunneling transistor behavior

Physical principles

@ Island, terminals (source, drain, gate)

@ Electron tunneling through tunneling junctions

tunnel
junction

Insulator

island

gate (G)

S 's C D’ ‘D
Optional

G2
<hiaod . : optional 2 gate (G,)

gate (G2)

C; :gate capacitance
Cg, ‘optional 2" gate capacitance

C,, :drain tunnel junction capacitance
Rg :source tunnel junction resistance

Cg :source tunnel junction capacitance R, :drain tunnel junction resistance
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Single-electron tunneling transistors

SET properties and challenges

Ultra low power

@ Projected energy per switching event (1 x 10718 J)

Room temperature and fabrication challenge

@ Electrostatic charging energy must be greater than thermal

energy
] GZ/CZ > kg T
o Requires €2/Cs~ > 10k T or even €?/Cs~ > 40kg T
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Single-electron tunneling transistors

Summary

CMOS will be mainstream for years to come, but not forever.
The meaning of integrated circuits will change in the future.

Circuit and logic design fundamentals will still apply.

Some rules, e.g., difficulty of implementing non linearly separable
functions, may change.

You will each need to adapt as the rules governing device
behavior change, but this will be much faster now that you have
a foundation.
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@ Coulomb charging effect governs electron tunneling

@ Coulomb blockade Vs = me/Cg, m = £1/2,4£3/2,--- OFF,
m=0,+1,42,--- ON
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Single-electron tunneling transistors

SET properties and challenges

Performance challenge

@ Electrons must be confined in the island
® Rs,Rp > h/e?, h/e? = 25.8kQ

@ High resistance, low driving strength

Reliability concerns

@ Tunneling between charge traps cause run-time errors

@ Unknown before fabrication

Device technology: Improved by silicon islands

o
@ Reliable design: Post-fabrication adaptation
°

Run-time error correction
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