http://robertdick.org/esaca/ Office: 2417-E EECS

Department of Electrical Engineering and Computer Science University of Michigan

Reliable embedded system design and synthesis

Algorithm correctness Appropriate responses to transient faults Appropriate responses to permanent faults

Conventional software testing

- Implement and test
- Number of tests bounded but number of inputs huge
- Imperfect coverage

Robert Dick

 ${\bf Embedded\ Systems:\ An\ Application-Centered\ Approach}$

Reliable embedded system design and synthesis

Appropriate responses to transient faults
Appropriate responses to permanent faults

Critical barriers to use

- For simple systems, manual proofs possible
- For very complex systems, state space exploration intractable
- May require new, more formal, specification language

Reliable embedded system design and synthesis

Algorithm correctness Appropriate responses to transient faults Appropriate responses to permanent faults

Types of reliability

- Algorithm correctness: Does the specification have the desired properties?
- Robustness in the presence of transient faults: Can the system continue to operate correctly despite temporary errors?
- Robustness in the presence of permanent faults: Can the system continue to operate correctly in the presence of permanent errors?

Robert Die

Embedded Systems: An Application-Centered Approach

Reliable embedded system design and synthesis

Algorithm correctness

Appropriate responses to transient faults

Appropriate responses to permanent faul

Model checking

- Use finite state system representation
- Use exhaustive state space exploration to guarantee desired properties hold for all possible paths
- Guarantees properties
- Difficulty with variables that can take on many values
 - Symbolic techniques can improve this
- Difficulty with large number of processes

Robert Die

Embedded Systems: An Application-Centered Approach

Reliable embedded system design and synthesis

Appropriate responses to transient faults
Appropriate responses to permanent fault

Overcoming barriers to use

- Automatic abstraction techniques permitting use on more complex systems
 - Difficult problem
- Target moderate-complexity systems where reliability is important
 - Medical devices
 - Transportation devices
 - Electronic commerce applications
- Give users a high-level language that is actually easier to use than their current language, and provide a path to a language used in existing model checkers

Cross-talk Particle impact Temporal redundancy Shielding Structural redundancy Bus encoding Voltage control Reliable embedded system design and synthesis Reliable embedded system design and synthesis Random background offset charge Temperature-induced timing faults • Improvements to fabrication • Preemptive throttling Temporal redundancy Global planning Structural redundancy Reliable embedded system design and synthesis Algorithm correctness
Appropriate responses to transient faults Reliable embedded system design and synthesis Checkpointing: a tool for robustness in the presence of Electromigration transient faults • Reduce temperature • Periodically store system state Reduce current • On fault detection, roll back to known-good state Spatial redundancy • Should system-wide or incremental, as-needed restores be used?

Reliable embedded system design and synthesis

• When should checkpoints be taken?

Reliable embedded system design and synthesis

multiprocessor system-on-chip synthesis.

Synthesis, pages 239-244, October 2007

Example lifetime failure aware synthesis flow

Changyun Zhu, Z. P. Gu, Robert P. Dick, and Li Shang. Reliable

• Use temperature reduction and spatial redundancy to increase

 System MTTF: the expected amount of time an MPSoC will operate, possibly in the presence of component faults, before its performance drops below some designer-specified constraint or it

is no longer able to meet it functionality requirements

In Proc. Int. Conf. Hardware/Software Codesign and System

Manufacturing defects

Spatial redundancy

Robert Di

Embedded Systems: An Application-Centered Approach

system MTTF

Embadded Systems: An Application Contared Approach

Reliable embedded system design and synthesis

Appropriate responses to transient faults

Appropriate responses to permanent faults

Motivating example for reliability optimization

Solution II

Reliable embedded system design and synthesis

Appropriate responses to transient faults

Reliability optimization flow

Robert D

mbedded Systems: An Application-Centered Approach

17

Embedded Systems: An Application-Centered Approac

Reliable embedded system design and synthesis

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Lifetime reliability optimization challenges

- Accurate reliability models
- Efficient system-level reliability models
- Efficient fault detection and recovery solutions
- Optimization

Reliable embedded system design and synthes

Appropriate responses to transient faults
Appropriate responses to permanent faults

Importance of understanding fault class

- Many reliability techniques attempt to deal with arbitrary fault processes
- However, the properties of the fault process most significant for a particular appliation may be important
 - Considering them can allow more efficient and reliable designs

Rob

What to do before Monday

- Adjust your project definition based on customer interviews so far and prepare a page-long description of why it is valuable and how it will be prototyped and evaluated.
- ② Complete at least another five interviews of people who might value what you are trying to provide and take detailed notes.

٥٢

Robert Dick

Embedded Systems: An Application-Centered Approach