Embedded Systems: An Application-Centered Approach

Robert Dick

http://robertdick.org/esaca/ Office: 2417-E EECS Department of Electrical Engineering and Computer Science University of Michigan

Synthesis motivation

- Embedded systems are found everywhere: cars, houses, games, phones, hospitals, etc.
- Designers need tools to deal with increasing complexity, increase product quality, and guarantee correct operation.
- Software or hardware errors are not acceptable. Anti-lock brake systems aren't allowed to crash.
- Embedded systems should not require bug fixes or upgrades.
- Price competition can be intense.
- Power consumption should be low.

Optimizatio

Embedded Svs

Robert Dick

Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to NP-completeness Complete optimization/search Stochastic optimization techniques
unomial time complexities	

Polynomial time complexities

- Recall that sorting may be done in $\mathcal{O}(n \lg n)$ time
- DFS $\in \mathcal{O}(|V| + |E|)$, BFS $\in \mathcal{O}(|V|)$
- Topological sort $\in \mathcal{O}\left(|V| + |E|\right)$

Optimization for synthesis Homework Complete optimization/search

Exponential time complexities

There also exist exponential-time algorithms: $\mathcal{O}(2^{\lg n}), \mathcal{O}(2^n), \mathcal{O}(3^n)$

Implications of exponential time complexity

For $t(n) = 2^n$ seconds

- t(1) = 2 seconds t(10) = 17 minutes t(20) = 12 days t(50) = 35,702,052 years
- t(100) = 40, 196, 936, 841, 331, 500, 000, 000 years

Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization/search Stochastic optimization techniques	Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization/search Stochastic optimization techniques
$\mathcal{NP} ext{-complete problems}$		Conjecture on hardness of pr	oblems
 Digital design and synthesis is Graph coloring Allocation/assignment Scheduling Graph partitioning Satisfiability (and 3SAT) Covering and many more 	full of NP-complete problems	 There is a class of problems, J has found polynomial time sol It is possible to convert betwee time Thus, if it is possible to solve polynomial time, all can be so P ⊆ NP Unproven conjecture: P ≠ N 	\mathcal{VP} -complete, for which nobody utions en these problems in polynomial any problem in \mathcal{NP} -complete in lved in polynomial time \mathcal{P}
10 Robert Dick	Embedded Systems: An Application-Centered Approach	11 Robert Dick	Embedded Systems: An Application-Centered Approach

- \bullet What is $\mathcal{NP}?$ Nondeterministic polynomial time.
- A computer that can simultaneously follow multiple paths in a solution space exploration tree is nondeterministic. Such a computer can solve \mathcal{NP} problems in polynomial time.
- Nobody has been able to prove either

$$\mathcal{P} \neq \mathcal{NP}$$

or

$$\mathcal{P} = \mathcal{N}\mathcal{P}$$

If we define \mathcal{NP} -complete to be a set of problems in \mathcal{NP} for which any problem's instance may be converted to an instance of another problem in \mathcal{NP} -complete in polynomial time, then

 $\mathcal{P} \subsetneq \mathcal{NP} \Rightarrow \mathcal{NP}\text{-complete} \cap \mathcal{P} = \varnothing$

13

Optimization for synthesis Allocation, assignment, and scheduling Brief introduction to NP-completeness Complete optimization/search Stochastic optimization isearch	Optimization for synthesis Homework Stochastic optimization techniques
Basic complexity classes	How to deal with hard problems
<complex-block></complex-block>	 What should you do when you encounter an apparently hard problem? Is it in NP-complete? If not, solve it If so, then what? Despair. Solve it! Resort to a suboptimal heuristic. Bad, but sometimes the only choice. Develop an approximation algorithm. Better. Determine whether all encountered problem instances are constrained. Wonderful when it works.
Optimization for synthesis Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization / search Stochastic optimization techniques	$\begin{array}{c} \mbox{Allocation, assignment, and scheduling}\\ \mbox{Brief introduction to $$\mathcal{NP$-completeness}$}\\ \mbox{Homework} \\ \mbox{Stochastic optimization fscarch}\\ \mbox{Stochastic optimization techniques} \end{array}$
One example	Properties of complete optimization techniques
O. Coudert. Exact coloring of real-life graphs is easy. <i>Design Automation</i> , pages 121–126, June 1997.	 If a solution exists, will be found Very slow for some problems Good formal understanding of complexity
16 Robert Dick Embedded Systems: An Application-Centered Approach	17 Robert Dick Embedded Systems: An Application-Centered Approach
Optimization for synthesis Homework Evample complete optimization for synthesis Homework Evample complete optimization for the format of the f	Optimization for synthesis Homework Homework Allocation, assignment, and scheduling Brief introduction \mathcal{NP} -completeness Complete optimization/search Stochastic optimization techniques
Example complete algorithms	

Example complete algorithms

~	Enumeration
•	Enumeration

- Branch and bound
- Dynamic programming
- Integer-linear programming
- Backtracking iterative improvement

Robert Dick

Embedded Systems: An Applicat

- Considers all possible solutions
- Extremely slow for large *n*
- Potentially has low constant factor, may be O.K. for small n

$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	 Keep track of minimal encountered cost When a path has a higher cost, terminate
22 Robert Dick Embedded Systems: An Application-Centered Approach	23 Robert Dick Embedded Systems: An Application-Centered Approach

Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to <i>NTP</i> -completeness Complete optimization/search Stochastic optimization techniques	Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to NP-completeness Complete optimization/search Stochastic optimization techniques
Branch and bound		Branch and bound	
	path=0	 Better average-case complexit Still worst-case exponential 	ty

Robert Dick Fr

Maximize

 $c_1 \cdot x_1 + c_2 \cdot x_2 + \cdots + c_n \cdot x_n$

where

• In \mathcal{P} - Ellipsoid Algorithm / internal point methods

- However, in practice WC exponential Simplex Algorithm better
- Goal: Maximize a linear weighted sum under constraints on variables

subject to the following constraints:

$a_{11}\cdot x_1+a_{12}\cdot x_2+\cdots+$	$a_{1n} \cdot x_n \leq =, \geq$	b_1
$a_{21}\cdot x_1+a_{22}\cdot x_2+\cdots+$	$a_{2n} \cdot x_n \leq , =, \geq$	b ₂
$a_{n1} \cdot x_1 + a_{1n} \cdot x_2 + \cdots +$	$a_{nn} \cdot x_n \leq , =, \geq$	bn
$\forall x_i \in x, x_i \geq 0$	$\forall a_{jk} \in A, a_{jk} \in$	R

 $\forall c_i \in c, c_i \in R$

Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization/search Stochastic optimization techniques	Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization/search Stochastic optimization techniques
Linear programming		Integer-linear programming ((ILP)
 Can be formulated as a linear Vector x of variables Vector c of cost Matrix A of constraints Vector b of constraints Maximize or minimize c^Tx Satisfy Ax ≤ b Satisfy x ≥ 0 	algebra problem	 ILP is NP-complete LP with some variables restrict Formulate problem as ILP pro Excellent understanding of Good solvers exist Variants – both NP-complete Mixed ILP has some continue Zero-one ILP 	ted to integer values blem problem uous variables

Brief introduction to \mathcal{NP} -cor Complete optimization/search Example – ILP formulation for the travaling salesman problem

Optimization for synthesi

Embedded Systems: An Application-Centered Approac

Let T be a tentative solution, or tour $\forall e \in E$ let there be a variable

$$t_e = egin{cases} 1 & ext{if } e \in T \ 0 & ext{if } e \notin T \end{cases}$$

Constraint: Given that S is a set of vertices, con(S) is the set of edges connecting $v \in S$ to $v \notin S$, and $\{v_i\}$ is the vertex set containing only v_i , every vertex, v_i must be connected to two edges of the tour

$$\forall v_i \in V, \sum_{e \in \mathsf{con}(\{v_i\})} = 2$$

Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization/search Stochastic optimization techniques
Backtracking iterative improv	vement

- Allows B steps of backtracking
- Can be incomplete
- Complete if B = the problem decision depth
- Allows use of problem-speficic heuristics for ordering
- Incomplete if B < decision depth
- More on this later

Optimization for synthesis

Optimization techniques

Constructive algorithms

- Build solution piece by piece
- Once complete solution is generated, don't change
- Typically fast
- Easy to use problem-specific information

Optimization

for s

- Easy to implement
- Prone to becomming trapped in poor search space

Allocation, assignment, and Scheduling Optimization for synthesis Homework Stochastic optimization/search	Optimization for synthesis Homework Complete optimization techniques
Constructive algorithms example	Iterative improvement
	 Starts with complete but poor solution therefore contains constructive algorithm superset of constructive Makes changes to solution to improve it Typically fast Easy to use problem-specific information Easy to implement Prone to becomming trapped in local minima
34 Robert Dick Embedded Systems: An Application-Centered Approach	35 Robert Dick Embedded Systems: An Application-Centered Approach

	Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization/search Stochastic ontimization techniques
Local minima		

• Even if all solutions reachable, may not get best solution

• Depends on move selection

- Backtracking iterative improvement is complete if
 - all solutions are reachable
 - ${\ensuremath{\,\circ\,}}$ the backtracking depth \ge search depth
 - ... however, this can be slow
- Even if incomplete, backtracking can improve quality

Robert Dick

Embedded Systems: An Application-Centered Approach

- Can trade optimization time for solution quality
- Greedy iterative improvement if backtracking depth is zero

Optimiza

Optimization fo

- Start from high temperature and gradually lower
- Avoids local minima traps
- Generate trial solutions
- Conduct Boltzmann trials between old and new solution

- Easy to implement
- Can trade optimization time for solutions quality
- Greedy iterative improvement if temperature is zero
- Famous for solving difficult physical problems, e.g., placement

44 Robert Dick	Embedded Systems: An Application-Centered Approach	45 Robert Dick	Embedded Systems: An Application-Centered Approach
	Allocation preimment and askeduling		Allegation protocology and sheduling
Optimization for synthesis	Brief introduction to \mathcal{NP} -completeness	Optimization for synthesis	Brief introduction to \mathcal{NP} -completeness
	Complete optimization/search Stochastic optimization techniques	Homework	Complete optimization/search Stochastic optimization techniques
Roltzmann trials		Roltzmann trials	

Solution are selected for survival by conducting Boltzmann trials between parents and children.

Given a global temperature T, a solution with cost K beats a solution with cost J with probability:

$$\frac{1}{1+e^{(J-K)/T}}$$

Robert Dick

Introduce convenience variable U $U(T) = 1 - \frac{1}{T+1}$ U(0) = 0 $T \rightarrow 1 \Rightarrow U(T) \rightarrow \infty$

Robert Dick

Embedded Systems: An Application-Centered Approach

Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to N/P-completeness Complete optimization/search Stochastic optimization techniques
nulated annealing example	
tenposatureitarioadiun	n
solution	

Embedded Systems: An A

Cooling schedule often not important

Optimization for synthes

Simulated annealing notes

Optimization

- Time complexity extremely difficult to analyze
- Given a slow enough cooling schedule, will get optimum
 - This schedule sometimes makes simulated anealing slower than exhaustive search
 - Determining optimal schedule requires detailed knowledge of problem's Markov chains

Robert Dick Embedded

Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization (search Stochastic optimization techniques	Optimization for synthesis Homework		hesis Brie work Con Sto	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization/search Stochastic optimization techniques			
Mutation		Solution rep	resenta	tion				
			а	d	b	е	С	
 Choose an element of the solution Change it to another value Local modification, similar to that in iterative improvement 			0	0	1	0	1	
			а	d	b	е	С	
			0	0	1	0	1	
			а	d	b	е	С	
			0	0	1	1	1	
			а	d	b	е	С	
			0	0	1	1	1	

Homework Stochastic optimization /sarch Stochastic optimization techniques
Multidimensional optimization
 Real-world problems often have multiple costs Price Power consumption Speed Temperature Reliability etc.
 Necessary to simultaneously minimize all costs

s: An Application-Centered Approac

Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to <i>NP</i> -completeness Complete optimization/search Stochastic optimization techniques
Pareto-ranking	

A solution dominates another if all its costs are lower, i.e.,

 $\mathbf{dom}_{a,b} = \forall_{i=1}^{n} cost_{a,i} < cost_{b,i} \land a \neq b$

A solution's rank is the number of other solutions which do not dominate it, i.e.,

$$\mathsf{rank}_{s'} = \sum_{i=1}^n \mathsf{not} \ \mathsf{dom}_{s_i,s'}$$

d

Pareto-ranking

Embedded Syst

Optimization for synthe

Pareto-rank based multiobjective optimization

ert Dick Embedded S

Optimization for synthesis Homework Stochastic optimization /search Stochastic optimization /search	Optimization for synthesis Allocation, assignment, and scheduling Berlei introduction to NP-completeness Completeness Completeness Stochastic optimization techniques
Genetic algorithm selection	PRSA
 Solutions are selected for survival by cost or rank Resistant to becoming trapped in local minima mutation crossover Possible to do better? 	 Genetic algorithm where Boltzmann trials are used for solution selection Genetic algorithm if temperature is set to zero Simulated annealing if only one solution Easily parallizable Has strengths of genetic algorithms and simulated annealing Difficult to implement but not more difficult than genetic algorithms

Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization/search Stochastic optimization techniques
Multiobjective GAs	

Carlos M. Fonseca and Peter J. Fleming. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization.

In Proc. Int. Conf. Genetic Algorithms, pages 416-423, July 1993

- Explains importance of multiobjective optimization
- Shows simple way to use Pareto-rank in parallel optimization meta-heuristics

Very high-level optimization reference

Robert P. Dick. *Multiobjective synthesis of low-power real-time distributed embedded systems.*

PhD thesis, Dept. of Electrical Engineering, Princeton University, July 2002

- Chapter 4 contains an overview of some of the popular probabilistic optimization techniques used in CAD
- Chapters 5 and 6 describe a PRSA for system synthesis.

D. Graham-Rowe. Radio emerges from the electronic soup. *New Scientist*, August 2002

- Interesting short article on a phyical application on evolutionary algorithms
- Similar results for FPGA-based filter

Evolutionary algorithms

68 Robert Dick	Embedded Systems: An Application-Centered Approach	60 Bobert Dick	Embedded Systems: An Application-Centered Approach
	спосоосо сузских. Ан аррисатон-сенсеко арриосы		спососо зуления. Ал аррисатон-сенство арриоаси
Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to N/P-completeness Complete optimization (search Stochastic optimization techniques	Optimization for synthesis Homework	Allocation, assignment, and scheduling Brief introduction to \mathcal{NP} -completeness Complete optimization/search Stochastic optimization techniques
Genetic algorithms reference	<u>.</u>	PRSA reference	
David E. Goldberg. <i>Genetic Algori</i> <i>Machine Learning.</i> Addison-Wesley, MA, 1989 • The most basic and complete	thms in Search, Optimization, and	Samir W. Mahfoud and David E. G simulated annealing: A genetic algo Parallel Computing, 21:1–28, Janua	oldberg. Parallel recombinative rithm. ry 1995
 Weak on multiobjective poter 	ntial this meta-heuristic		

Optimization for synthesis Homework

What to do by Wednesday evening

Send the following things to me by email

• An itemized list of 1-3 value propositions, i.e., the values you think your embedded system or research idea can provide to your customers.

Embedded Systems: An Application-Centered Approach

- A text file containing a paragraph-long description of the embedded system you are currently planning to prototype.
- A text file listing the 2-3 most important hypotheses you are attempting to validate or invalidate via interviews.
- A text file (or files) containing notes from all your interviews. You should have around 10 by Wednesday. Each should contain the following.
 - Date and time.
 - Name of interviewee.
 - Why the interviewee is a potential customer.
 - A chronologically organized series of questions and answers. These can be terse.