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ABSTRACT 

This paper introduces a “Personal Dead-reckoning” (PDR) navigation system for 
walking persons. The system is useful for monitoring the position of emergency 
responders inside buildings, where GPS is unavailable. The PDR system uses a six-axes 
Inertial Measurement Unit attached to the user’s boot. The system’s strength lies in the 
use of a technique known as “Zero Velocity Update” (ZUPT) that virtually eliminates 
the ill-effects of drift in the accelerometers. It works very well with different gaits, as 
well as on stairs, slopes, and generally on 3-dimensional terrain. This paper explains the 
PDR and presents extensive experimental results, which illustrate the utility and 
practicality of the system. 

1 INTRODUCTION 

This paper describes our Personal Dead-reckoning (PDR) system for measuring and 
tracking the momentary location and trajectory of a walking person, even if GPS is not 
available. Such a system is of value for military and security personnel, as well as for 
emergency responders. For example, fire fighters entering a burning building are at risk 
to be injured and unable to report their position. With the PDR system reporting the 
user’s position to a central command post, each emergency responder’s location could 
be tracked in real-time. Another application involves the “clearing” of a large building 
by emergency or security personnel. Their challenge often is to keep track of rooms 
already cleared and areas that have not yet been cleared. Our system’s ability to track 
each person’s location provides a useful solution for this problem. Other applications for 
the PDR system are the interior mapping of buildings, and improved situation awareness 
for soldiers. 

As mentioned, our proposed PDR system does not require GPS. This is an important 
distinction, since GPS is not available indoors. Furthermore, GPS is unreliable under 
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dense foliage, in so-called “urban canyons,” and generally in any environment, in which 
a clear view of a good part of the sky is not available.  

There are some approaches to personal position estimation without GPS. Typically, 
these systems require external references, also called “fiducials,” such as preinstalled 
active beacons, receivers, or optical retroreflectors. Common to all fiducial-based 
position estimation systems is that the fiducials must be installed in the work space at 
precisely surveyed locations before the system can be used. This installation is time 
consuming and expensive, and in the case of emergency response completely unfeasible. 
Fiducial-based systems also require an active radiation source, such as infrared light 
(Butz et al., 2000), ultrasound (Cho and Park, 2006), or magnetic fields (Newman et al, 
2001), which may be undesirable in security-related applications.  

Generally, fiducial-based systems perform well and are able to provide absolute 
position and orientation in real-time. If the application permits the installation of 
fiducials ahead of time, then these systems have the significant advantage that errors 
don’t grow with time, as is the case in our PDR system.  

Another way of implementing absolute position estimation is computer vision (Liu et 
al., 2004)( Kourogi and Kurata, 2003). Images are compared and matched against a pre-
compiled database. Computer vision has the advantage that the environment does not 
need to be modified, but the approach requires potentially very large databases. Work is 
also being done on so-called Simultaneous Location and Mapping (SLAM) methods, 
which don’t require a precompiled database. However, SLAM systems are not as 
reliable, may accrue errors over time and distance, and poor visibility and unfavorable 
light conditions can result in completely false position estimation (Aoki et al., 1999) 
(Galindo et al., (2005).  

The scientific literature offers only very few approaches that do not require external 
references. The simplest one of them is the pedometer, that is, a device that counts steps. 
Pedometers must be calibrated for the stride length of the user and they produce large 
errors when the user moves in any other way than his or her normal walking pattern. 
One commercially available personal navigation system based on this principle is the 
Dead Reckoning Module (DRM). The DRM was originally developed by, but it appears 
that it is now marketed by Honeywell under the names DRMcoreTM and DRM®-5 
(PointResearch/Honeywell, 2006). The DRM uses accelerometers to identify steps, and 
linear displacement is computed assuming that the step size is constant. Orientation is 
measured using a digital compass, which is combined with the traveled distance (step 
counts) to estimate 2-D position. The performance of this system depends on the 
accuracy of determining the stride length, which is computed by an initialization 
procedure using GPS. As is evident, this system is reasonably accurate only if users 
walk always with the same stride length. Under this condition, Pointresearch/Honeywell 
claim accuracies up to 5% of the traveled distance. However, the constant stride-length 
condition cannot be met at all times. For example, emergency responders may run, 
climb over debris, or may alter their stride length as a function of the weight of their 
gear. A very sophisticated pedometer-like approach was introduced by Cho and Park 
(2006). His system uses a two-axes accelerometer and a two-axes magnetometer located 
on the user’s shoe. Step length is estimated from accelerometers readings that are passed 
through a neural network, and advanced Kalman Filter techniques are aimed at reducing 
the effect of magnetic disturbances. While the reported results in an outdoor 
environment are very good, we found that indoors, especially in large steel structures, 
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magnetic disturbances are omnipresent and varying, making it virtually impossible to 
filter them out. We also believe that the estimation of step length with a neural net is 
less accurate when users vary their step length arbitrarily. This may be the case when 
emergency responders carry different equipment loads, climb up stairs, or climb over 
rubble. 

Other solutions actually measure the length of every stride in real-time. One such 
solution using ultrasonic sensors attached to the user’s boots is explained in (Saarinen et 
al, 2004). Ultrasonic sensors require a direct line of “sight” between the boots, which 
may be a problem on rough terrain. In straight-line walking experiments the authors 
report an average and maximum error of 1.3% and 5.4%, respectively. Another 
approach measures the RF phase change between a reference signal located in a waist 
pack and the one coming from a transmitter located on each boot (Brand and Phillips, 
2003). A significant drawback of these technologies is that position estimation is 
restricted to 2-D environments since these systems cannot determine altitude changes 
and assume that any change is horizontal. Another potential problem is that these 
technologies use active emissions, which are undesirable for military applications, and 
they are vulnerable to external interference from the environment or from other units.   

2 THE PDR SYSTEM – OVERVIEW  

Our PDR system does not require any external references. Rather, it uses data from a 
six-Degree-of-Freedom (6-DOF) Inertial Measurement Unit (IMU) sensor attached to 
the user’s boot, as shown in Figure 1.2 From this data the PDR system computes the 
complete trajectory of the boot during each 
step. On first glance it appears that this 
approach is destined to fail, since 
measuring linear displacement using 
accelerometers is not very feasible. That’s 
because data sampled from accelerometers 
must be integrated twice to yield linear 
displacement and this process tends to 
amplify even the smallest error 
measurement (e.g. bias drift, noise). 
However, we use a practical method that 
almost completely eliminates this problem 
– under certain operational conditions. We 
found that such operational conditions exist 
in legged motion; such as when people 
walk, run, or even climb. Conversely, our 
method does not work at all with wheeled, 
sea-, or airborne motion.  

Our PDR system offers these features:  

                                                 
2) Our currently used IMU serves the purpose of proving our concept. Practical applications will require a 
much smaller unit, ideally embedded in the sole of the boot. 

 
Figure 1: BAE SiIMU01 Inertial 
measurement unit (IMU) mounted to the 
foot of a walking subject. Of course, this 
IMU is too large for most practical uses. 
Our intention is to implement the PDR 
system with a much smaller IMU in the 
near future. 
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1. Linear displacement (i.e., odometry): This is the most important and most basic 
function of our system – the measurement of distance traveled, but without measuring 
the direction. This function works like the odometer of a car, which also does not 
measure the direction of travel. Our PDR system performs this function with an error 
of less than 2% of distance traveled; regardless of duration or distance. The PDR 
system is also indifferent to the stride length and pace, as well as to the gait, such as 
walking or running. There is also no need for calibration or fitting our system to the 
walking pattern of a specific user. 

2. Position estimation (i.e., navigation or dead-reckoning): This capability includes 
odometry as well as the measurement of direction. Position estimation allows our 
system to determine the subject’s actual location in terms of x, y, and z coordinates, 
relative to a known starting location. The measurement of direction is based on the 
use of gyroscopes, which are known to have errors, just as accelerometers do. 
However, the correction method that we apply to the accelerometers in not effective 
for gyros. Therefore, our system is currently susceptible to the accumulation of 
heading errors over time. Our currently used gyros have a quoted bias drift error of 
5.0 degrees per hour and, consequently, our PDR system develops heading errors of 
this magnitude. Our system also measures vertical position, but less accurately so. 

A positioning system with these capabilities can be of great use wherever GPS is 
denied, including inside buildings, dense forest, tunnels, caves, sewer systems, urban 
canyons, etc. Emergency responders and security personnel, as well as (eventually) the 
blind and elderly can benefit from this technology. 

We should also note that our PDR system has a zero-radiation signature, i.e., it does 
not emit any signals. This makes our system “invisible” to sensors in hostile 
environments and immune to interference or jamming. 

3 PDR SYSTEM HARDWARE  

Our current prototype uses a high-quality IMU (see Table 1), which is quite expensive 
and too large to fit in the sole of a boot. Our intention, of course, is to implement our 
system with a smaller IMU, later-on in this project.  

Our current bulky IMU is strapped 
to the side of the subject’s foot, as was 
shown in Figure 1. The IMU is 
connected to a tablet-style laptop 
computer through an RS-485 
communication port. Each gyroscope 
was calibrated using the method 
explained in (Ojeda, Chung and 
Borenstein, 2002). The IMU is 
powered using a small external 12-Volt 
battery, making the whole system 
portable. The computer runs the Linux 
operating system patched with a real-
time extension and our algorithm runs 
in real-time. 

Table 1: BAE SiIMU01 characteristics 

Gyroscopes 
Range (deg/sec) ±1,000
Angle Random Walk (deg/rt-hr) 1.0
Bandwidth (Hz) 75
Bias drift (deg/hr) 5.0

Accelerometers 
Range (g) ±50
Random Walk (m/s/rt-hr) 1.0
Bandwidth (Hz) 75
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4 PDR SYSTEM SOFTWARE 

The software for the PDR system has three modules: 

• Position estimation module 

• Step detection module 

• Zero Velocity Update” module (ZUPT) 

These modules will be explained in more detail in the remainder of this section. 

4.1  Position Estimation 

In this section we give a brief summary of the navigation equations used in our 
system. For a more detailed explanation see (Titerton and Westaon, 2004). 

We follow the convention used in aeronautics for the designation of the navigation 
and body frames. In mobile robotics, the so-called Euler equations are commonly used 
for attitude representation. However, Euler equations have singularities at ±90° – a 
limitation that is irrelevant in most ground-based mobile robot applications. However, 
since in our application the IMU is attached directly to the boot of a walking or running 
person, tilt angles of 90° or more are possible and likely. For this reason we chose the 
Quaternion representation, which handles any tilt angles. 

The Quaternion, q, is a vector that defines attitude using four parameters, a, b, c and 
d. q propagates as a function of the body angular rates, ωb, according to: 

 
2

pqq ⋅
=&  (1) 

where p = [0, ωb] and ωb = [ωx, ωy, ωz]. 

Once attitude is computed, the body acceleration, ab, can be computed in terms of the 
navigation reference frame, an, using the quaternion vector 

 *qaqa bn =  (2) 

where q*=(a –b –c –d) is the complex conjugate of q.  

In order to minimize the errors associated with the digital implementation of these 
algorithms, we used optimized discrete-time algorithms as explained by Savage (1998a). 

Velocity, vn, can be computed by integrating the accelerations in the navigation frame 
after eliminating the local gravity component gl 

 ( )dtgadtvv lnnn ∫∫ +== &  (3) 

Finally, position can be computed as the integral of the velocity over time 

 dtvp nn ∫=  (4) 
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4.2 Zero Velocity Updates (ZUPT) 

Figure 2 shows some of the phases of a stride during normal walking. As is evident 
from the motion sequence, Point A on the bottom of the sole is in contact with the 
ground for a short portion of time, ΔT. ΔT lasts roughly from just before Midstance 
(T1= 0.48 sec) to just after Terminal Stance3 (T2 = 0.72  sec) and is  ~0.24 sec in the 
example here. During that time and unless the sole is slipping on the ground, ‘A’ is not 
moving relative to the ground and the velocity vector of ‘A’ is VA = 0. The non-slip 
assumption is warranted because during that phase almost all of the body’s weight rests 
solely on the area of the sole around ‘A’, thereby increasing traction.  

Since the condition VA = 0 is maintained for the significant period of time ΔT and not 
just for an instance, we reason that at least sometime during ΔT the acceleration vector 
of Point A is also zero. We expect the three velocities to show readings of zero during 
this time. If the reading is not zero, then we assume that the difference between zero and 
the momentary reading is the result of accumulated errors during the step interval. It is 
now trivial to reset the velocity error to the known zero condition. This way we can 
effectively remove the accumulated errors from the accelerometer output, at least for a 
few seconds. Luckily, it is the nature of walking or running that the next footstep is just 
a second away, allowing us to repeat this cycle over and over without accumulating 
significant errors. This frequent resetting of velocities to the known and absolutely true 
value of zero assures that any error produced during one step is not carried over to the 
next ones. For example, if the subject’s foot actually slipped during one step, then the 
resulting error in velocities exists for just the duration of this one step. Subsequent steps 
are again error-free. The resulting error in position is just a few centimeters and it 
remains constant for the remainder of the walk, unless new errors occur.  

In the scientific literature, this method of counteracting drift is called “Zero Velocity 
Updates” (ZUPT) and is commonly used in underwater navigation (Huddle, 1998). 
ZUPT is also used in oil drilling, where it provides real-time monitoring of the position 
and orientation of the bottom hole assembly (Ledroz et al.  2005). In these applications, 
ZUPT has been used successfully with update intervals between 2 to 10 minutes 

                                                 
3 Terminology based on (Ayyappa, 1997) 

T

Ground 
speed of 
point ‘A’

V
T=0.12 sec T=0.24 sec T=0.36 sec T=0.48 sec T=0.60 sec T=0.72 sec

T1 T2

Figure 2: Key phases in a stride. During ΔT, all velocities and accelerations of point A in the 
sole of the boot are zero. 
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depending on the quality of the sensors. The accuracy of the ZUPT based solution 
depends on the time interval between ZUPT points. As mentioned, for walking or 
running these conditions occur once on every footfall, that is, about once every second. 
A detailed explanation of ZUPT can be found in (Grejner-Brzezinska, Yi and Toth, 
2001). 

Figure 3 shows the computed 
velocities during a few strides of a 
subject walking at walking speed. 
Note how quickly the uncorrected 
velocities (interrupted green line) 
diverge from ground truth, which 
should be zero in all directions 
during a period of time during each 
step. 

The elegance of this approach lies 
in the fact that in each stride we 
know at least once the true velocity 
and acceleration of Point A. Our 
knowledge of the velocity and 
acceleration being zero and the 
resulting ZUPT correction is always 
absolute, not relative to the previous 
correction. Therefore, at least once 
during every step the accumulated errors can be removed or bounded.  

4.3 Step Detection 

For the ZUPT algorithm to work properly, it is not necessary to identify correctly the 
exact onset and end of ΔT. Rather, it is sufficient to identify a single instance, Ts, within 
ΔT, in which all accelerations and velocities are zero. In practice, this is not trivial, 
because the accelerometers suffer from drift, so they never show zero exactly. 
Experimentally we found that the best indication for Ts can be obtained by observing the 
three components (ωx, ωy, ωz) of the angular velocity vector, ω.  During ΔT, the 
absolute values of these components have a local minimum and their absolute value is 
small (close to zero). Of course, ω is directly measured by the three gyroscopes of the 
IMU, so that data is readily available.  

We implement these two empiric rules in our algorithm as follows:  

1. The gyro signals, ωb, are divided in segments of n = 100 samples, which correspond 
to 0.5 seconds worth of data. The exact size of the segment is not critical, but for 
best results the segment should be short and comparable to the duration of the fastest 
step. This assures that there is at least one period ΔT in each segment.  

In each segment we compute an array of n = 100 scalars, ωs. Each element in ωs is a 
scalar representing the amplitude of the ωb for that sample.  

  2
,

2
,

2
,, iziyixis ωωωω ++=   (5) 

 
Figure 3: Linear velocity of the boot. Dotted 
green line: without ZUPT; solid blue line: with 
ZUPT correction. The ‘x’ direction is forward. 
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2. Next we determine which elements of ωs are smaller than a certain threshold, Ω. We 
copy all elements that meet this test into a new array, ωT 

 
⎪⎩

⎪
⎨
⎧

Ω≥
Ω<

=
is

isis
iT forK

for

,

,,
, ω

ωω
ω  (6) 

where K is some large number. If all elements ωT,I = K, then we conclude that there 
was no period ΔT in this segment of n = 100 samples and we investigate the next 
segment. If there are one or more ωT,i ≠ K in a given segment, then we search for the 
smallest one and denote the time associated with this sample Ts. Ts is the instance, at 
which the locally and absolutely smallest rotation was measured and for ZUPT it 
signifies the instance, at which all accelerations and velocities of Point A should have 
been zero. 

In practice we found that in very rare cases this algorithm may detect false footfalls 
when the foot is actually in mid-air and its total rate of rotation is lower than the 
threshold Ω. In order to eliminate this ambiguity, we are currently implementing an 
enhanced detection technique that confirms a footfall by looking at accelerometer data.  

After applying the Step detection and ZUPT algorithm, there is an additional stage of 
conditioning the sensor data. A detailed discussion of this stage is beyond the scope of 
this paper. The experimental results of the following section, however, reflect the 
application of the additional data conditioning stage.  

5 EXPERIMENTAL RESULTS 

In this section we present extensive experimental results from testing our system in a 
number of scenarios of varying complexity: 

• Straight-line experiments. 

• 2-D closed-loop experiments. 

• Simple 3-D closed-loop experiments. 

• Complex 3-D closed-loop experiments 

• Longer-duration experiment. 

Experimental results for each of these scenarios are presented and explained in the 
remainder of this section.  

5.1 Straight Line Experiments 

We performed two sets of experiments with a subject walking along a straight line. In 
the first set the subject walked at a normal pace of about 1 m/sec. In the second set the 
subject walked at a brisk pace of about 1.8 m/sec. In both cases the subject stopped at a 
distance D = 40 m ahead of the starting position. 
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For the straight line experiment 
we performed n=5 runs and we 
computed the absolute average 
error, Xa: 

∑
=

−=
n

i
ia Dx

n
X

1

1  (7) 

We also computed the 
relative average error, Xr, which 
expresses the average error as a 
percentage of total travel 
distance:  

D
XX a

r 100=  (8) 

Figure 4 shows the final 
errors for the 10 runs. Averages of the results of these runs are summarized in Table 2. 
We recall that in this experiment we evaluate the accuracy of our PDR system in 
measuring linear displacement only. The average errors with the PDR system are 0.8% 
and 0.3% of distance traveled for the fast and slow walk, respectively.   

5.2 2-D Closed-loop Path Experiments 

As explained in Section 2, our PDR system can measure not only distance traveled, 
but also the momentary position in X-Y-Z coordinates – relative to a known starting 
position. In addition, our system records the trajectory and transmits the user’s 
coordinates to a remote base station, in real-time.  

The accuracy of the relative position computation depends on the characteristics of 
the attitude sensors, that is, the gyros. With the high-quality gyros in our current system, 
walks of up to 15 minutes produce good results. For longer walks or when using a 
lower-quality IMU, additional absolute updates or programmed stops for ZUPT 
measurements are needed. While we are currently working on such enhancements, this 
paper focuses on the results obtained only with the currently used high-quality IMU. 
Hence, the results reported in this paper are all from relatively short walks (<15 
minutes). 

In the closed-loop 2-D experiment, the subject walked along a square-shaped path. 
Each leg of the square was 
just over 16 meters in 
length, resulting in a total 
path length of D = 65 m. 
We ran five experiments in 
clockwise (CW) and five 
experiments in counter-
clockwise (CCW) 
direction. In all cases the 
subject walked at the 
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Figure 4: Position errors after walking straight ahead 
for exactly 40 meters.  

Table 2: Absolute and relative averages of final errors in 
10 experiments of walking straight ahead for 40 m. 
“Conventional” means conventional dead-reckoning using 
the IMU, without ZUPT correction.  

Fast Walk Slow Walk 
Method Xa [m] Xr [%] Xa [m] Xr [%] 

Conventional 126.1 315.2 41.25 103.1
PDR system 0.3 0.8 0.1 0.3
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normal walking pace of 1 m/sec.  

The absolute return position error in the x-y plane was computed as 
22
eea yxe +=  (9) 

where 

xe – return position error in X-direction.  

ye – return position error in Y-direction. 

The absolute average error was computed 
as: 

∑
=

=
n

i
iaa e

n
E

1
,

1  (10) 

We also computed the relative average 
error, Er, which expresses the average error 
as a percentage of total travel distance, D 

D
EE a

r 100=  (11) 

Figure 5 shows the final 
position errors for these 10 runs. 
Averages of the results of these 
runs are summarized in Table 3. 
The final positioning error in this 
type of experiments is affected by 
two sources, the error in the linear 
displacement estimation and the 
heading error. Because of the 
relatively short duration of this 
walk, the gyros did not contribute 
much to the final error, and the errors of the linear displacement estimation are small, 
anyway. 

5.3 Simple 3-D Closed-loop Path Experiments 

In the PDR system, the ZUPT corrections are applied to all three components of the 
velocity vector. Therefore, the PDR system computes not only the X-Y position, but 
also the Z-position.  

We ran several experiments to assess the accuracy of the PDR system with regard to 
position estimation in three dimensions. In a set of experiments called “simple 3-D 
closed-loop path” a subject walked along a closed-loop path inside a building included 
walking up and down two different flights of stairs. Figure 7a shows the 3-D view of the 
trajectory for a typical experiment, and Figure 7b shows the 2-D projection onto the X-
Y plane. 

 
Figure 5: Position errors in the vicinity of 
the target point (0, 0) after walking along 
the square-shaped closed-loop 2-D path in 
CW (Ο) and  CCW (Δ) direction. 

Table 3: Absolute and relative averages of return 
position errors for the square-shaped closed-loop 
path of 65 m total length on horizontal terrain. 

CW Direction CCW DirectionMethod 
Ea [m] Er [%] Ea [m] Er [%]

Conventional 808 1,230 554 851
PDR system 0.6 0.9 0.4 0.6
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The approximated total traveled 
distance was about 104 m. We ran 
three experiments in CW and three 
experiments in CCW direction. In all 
cases the subject walked at the 
normal walking pace of 1 m/sec. 

Figure 6 shows the final position 
errors for these six runs. Averages of 
the results of these runs are 
summarized in Table 4. The absolute 
position error, Ea, was computed 
using Eqs. 9 and 10. We took into 
account only the X- and Y-
components of the error, since those 
are the most relevant components in 
most applications. The relative error, 
Er, was computed using Eq. 11. The 
absolute error in Z-direction was 
computed separately as 

 ∑
=

=
n

i
iea z

n
Z

1
,

1  (11) 

And the relative error in Z-direction was computed as 

D
ZZ a

r 100=  (12) 

 

 

 

 

 
Figure 6: Return position errors in the 
vicinity of the target point (0, 0) after walking 
along the simple 3-D closed-loop path in 
either: (Ο-light color) CW or (Δ-dark color) 
CCW direction. 

a 
Figure 7: Trajectory of a subject walking along 
the simple 3-D closed-loop path. (a) 3-D plot; 
(b) 2-D projection of the same trajectory onto 
the X-Y plane. 

b 

Table 4: Summary of return position errors for the simple 3-D closed-
loop path of 104 m total length. 

CW Direction CCW Direction 
Absolute [m] Relative [%] Absolute [m] Relative [%]Method 

Ea Za Er Zr Ea Za Er Zr 
Conventional 2,367 601 2,268 578 2,726 560 2,614 538
PDR system 1.5 1.7 1.4 1.6 0.9 1.2 0.9 1.2
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5.4 Complex 3-D Closed-loop Experiments 

Figure 8a shows a complex 3-D environment: a 4-story spiral staircase, and parts of 
three sets of square-shaped open corridors surrounding the atrium of the Computer 
Science and Engineering building at the University of Michigan. In the experiment 
described here, the subject started walking down the depicted spiral stair case from he 
top of the stair case on the fourth floor. The subject walked down the stairs all the way 
to the bottom of the stairs. Then, the subject walked up again. However, on the way up, 
on each floor the subject left the spiral stair case and walked around the square corridor, 
once on every floor, before continuing on to the next higher floor on the spiral stair case. 
After completing this ~345-meter walk in 5.3 minutes, the subject stopped at the exact 
same location where he had started. Figure 8b shows a 3-D plot of the subject’s 
trajectory. Figure 8c shows a zoomed-in top view of the start/stop area. The green and 
red dot indicate the starts and stop of position of the subject, respectively, as computed 
by our PDR system. Since in reality the subject started and stopped at the exact same 
location, the distance between the green and red dot in Figure 8c represents the error of 

b 

a  
c 

Figure 8: Experimental result of one complex 3-D closed-loop path run. (a) Four-story 
atrium and spiral staircase in the University of Michigan Computer Science Building. 
(b) Trajectory of walking subject as recorded by our PDR system.  (c) The return 
position error in the x-y plane (difference between the start and stop position, i.e., the 
green and red dot, respectively) is about 1.2 m. 
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our system in the x-y plane. In the 
case here, the error in our three 
runs averaged about 1.7 m, or 
0.5% of the total travel distance of 
335 meters. This is especially 
remarkable in light of the 
excessive vertical travel, and in 
light of the fact that the subject’s 
gait differed significantly in the 
three modes of walking during this 
experiment: horizontal walking, as 
well as climbing up and down the 
spiral stair case. The error in 
vertical direction was larger, 
averaging 4.2 m or 1.2%. Results 
of these runs are summarized in 
Table 5 and in Figure 9.  

 

 

 

5.5 3-D Closed-loop Experiment on Rugged Terrain 

In this experiment we tested our system during the traverse of a rubble pile, about 5 
meters high and comprising of chunks of broken concrete and soft soil (see Figure 10a 
and b). Under these conditions, detecting the footfall is more difficult because of foot 
slippage and because the key assumption in our ZUPT-based method – zero velocities 
during ΔT, does not always hold on this terrain. The final positioning error for this 
experiment was X = 2.0 m and Y = -0.6 m for a total traveled distance of 74.14 m. This 
amounts to an error of about 2.8% of the traveled distance. We believe we can improve 
upon this result in the future by using a more effective footfall detection algorithm. We 
performed only one single run on this terrain, due to logistic limitations. 

 

 
Figure 9:  Position errors in the vicinity of the 
target point (0, 0) after walking along the complex 
3-D closed-loop path. 

Table 5: Summary of return position errors for the complex 3-
D closed-loop path experiment.  

Absolute [m] Relative [%] 
Event Duration

[min:sec]
Distance

[m] 
X-Y 

plane
Z- 

direction
X-Y 

plane
Z- 

direction 
Walk 1 7:42 358 1.8 4.6 0.50% 1.3% 
Walk 2 7:36 340 2.1 4.0 0.62% 1.2% 
Walk 3 7.27 337 1.1 4.1 0.33% 1.2% 
Average 7:35 345 1.7 4.2 0.49% 1.2% 
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5.6 Longer-duration Experiment 

We performed two longer-duration experiments, in which the subject walked for 14 
minutes and 12 minutes along mostly horizontal city streets. The travel distances were 
1,010 meters and 896 meters, respectively. Figure 11 shows the resulting trajectories 
and errors, and Table 6 summarized the results.  

6 CONCLUSIONS 

This paper presented a sophisticated personal dead-reckoning system (PDR system) 
for emergency responders and security personnel. The PDR system does not require any 
external references, such as GPS or other pre-positioned fiducials. 

The system is very accurate in measuring linear displacements (i.e., distance traveled, 
a measure similar to that provided by the odometer of a car) with errors being 

 

c 

Figure 10:  (a) Ruble pile comprising broken-
up chunks of concrete and asphalt, as well as 
dirt; (b) subject climbing up the rubble pile; (c) 
subject’s trajectory as estimated by the PDR 
system. 

 
a  

b 
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consistently less 
than 2% of distance 
traveled. The PDR 
system is also 
indifferent to 
pauses or changes 
in walking gaits. 
The accuracy of the 
PDR system 
degrades gracefully 
with extreme modes of 
legged locomotion, such 
as running, jumping, and 
climbing.   

In another mode of 
application, the PDR 
system can also measure 
relative position in terms 
of X-Y-Z coordinates. 
Experimental results 
achieved to date show an 
accuracy of about 2% of 
distance traveled in 
walks up to 15 minutes 
duration. In longer walks 
the drift of the gyros 
produces errors that grow 
without bound as a 
function of time.  

We are currently 
investigating methods for 
eliminate this problem, 
but we have not yet 
implemented those 
methods. In future work, 
we will integrate 
methods for bounding 
the growth of errors over 
time. We will also reduce 
the size of the PDR 
system so that it will fit 
in the sole of a boot, and 
perform a variety of 
improvements to the 
mathematical algorithms 
to account for earth rotation and Coriolis acceleration. 

 

Table 6: Summary of return position errors for longer duration 
experiment.  

Absolute [m] Relative [%] 
Event Duration

[min] 
Distance

[m] 
X-Y 

plane
Z- 

direction 
X-Y  

plane 
Z- 

direction
Walk 1 14 1,010 23.3 19.2 2.3 1.9
Walk 2 12 896 16.4 9.8 1.8 1.1
Average 13 953 19.9 29 2.1 1.9

 
a 

 
b 

Figure 11: Longer-duration experiments with walks of (a) 
14 minutes and (b) 12 minutes. 
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