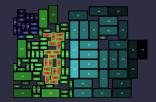
Embedded System Design and Synthesis


Robert Dick

http://ziyang.eecs.northwestern.edu/~dickrp/esds-two-week Department of Electrical Engineering and Computer Science Northwestern University

Office at Tsinghua University: 9-310 East Main Building

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

Outline

Solutions to quiz Class performance on quiz and recommendations

- 1. Quiz One discussion
- 2. Overview of real-time and embedded operating systems
- 3. Embedded application/OS time, power, and energy estimation
- 4. Homework

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

Section outline

Solutions to quiz

Class performance on quiz and recommendations

1. Quiz One discussion Solutions to quiz Class performance on quiz and recommendations

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

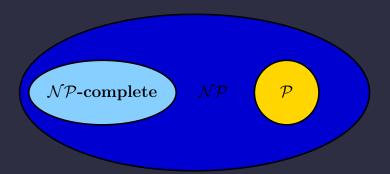
Quiz (page 1)

Solutions to quiz Class performance on quiz and recommendations

- Is the monetary size of the general-purpose computing market larger, smaller, or the same as the embedded systems market (one word)?
- 2 What is the time complexity class of linear programming (one word)?
- What is the time complexity class of integer linear programming (one word)?
- What do simulated annealing algorithms do differently at high and low temperatures that permits them to escape local minima?

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

Quiz (page 1)


Solutions to quiz Class performance on quiz and recommendations

- Is the monetary size of the general-purpose computing market larger, smaller, or the same as the embedded systems market (one word)?
- 2 What is the time complexity class of linear programming (one word)?
- What is the time complexity class of integer linear programming (one word)?
- What do simulated annealing algorithms do differently at high and low temperatures that permits them to escape local minima?

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Solutions to quiz

Class performance on quiz and recommendations

Basic complexity classes

- \mathcal{P} solvable in polynomial time by a computer (Turing Machine)
- \mathcal{NP} solvable in polynomial time by a nondeterministic computer
- $\mathcal{NP}\text{-}\mathsf{complete}$ converted to other $\mathcal{NP}\text{-}\mathsf{complete}$ problems in polynomial time

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

Quiz (page 1)

Solutions to quiz Class performance on quiz and recommendations

- Is the monetary size of the general-purpose computing market larger, smaller, or the same as the embedded systems market (one word)?
- 2 What is the time complexity class of linear programming (one word)?
- What is the time complexity class of integer linear programming (one word)?
- What do simulated annealing algorithms do differently at high and low temperatures that permits them to escape local minima?

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

Boltzmann trials

Solutions to quiz

Class performance on quiz and recommendations

Solution are selected for survival by conducting Boltzmann trials between parents and children. Given a global temperature T, a solution with cost K beats a solution with cost J with probability:

$$\frac{1}{1+e^{(J-K)/7}}$$

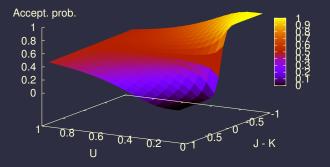
Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

Boltzmann trials

Solutions to quiz

Class performance on quiz and recommendations

Introduce convenience variable U


$$egin{aligned} U(T) &= 1 - rac{1}{T+1} \ U(0) &= 0 \ T & o 1 \Rightarrow U(T) & o \infty \end{aligned}$$

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Hornework

Boltzmann trials

Solutions to quiz

Class performance on quiz and recommendations

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Solutions to quiz Class performance on quiz and recommendations

Quiz (page 2)

- You are in the process of designing an embedded system that must prepare a train ticket for a user in a fixed period of time. Ticket request events may occur at any time, but two requests will never be separated by fewer than five seconds. A user should never need to wait more than two seconds from the time they request a ticket to the time the ticket is prepared. The execution time of the ticket preparation task is one second. If you were to map this event-driven system to periodic system, what is the maximum period that can be used while still guaranteeing that the time constraints are met?
- 2 Reliability
 - Name one major lifetime fault process in modern integrated circuits.
 - 2 What things have the most influence over the rate of faults caused by this process?

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Solutions to quiz Class performance on quiz and recommendations

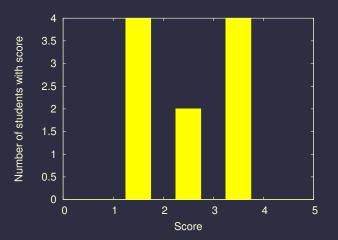
Quiz (page 2)

- You are in the process of designing an embedded system that must prepare a train ticket for a user in a fixed period of time. Ticket request events may occur at any time, but two requests will never be separated by fewer than five seconds. A user should never need to wait more than two seconds from the time they request a ticket to the time the ticket is prepared. The execution time of the ticket preparation task is one second. If you were to map this event-driven system to periodic system, what is the maximum period that can be used while still guaranteeing that the time constraints are met?
- 2 Reliability
 - Name one major lifetime fault process in modern integrated circuits.
 - 2 What things have the most influence over the rate of faults caused by this process?

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework

Section outline

Solutions to quiz Class performance on quiz and recommendations


1. Quiz One discussion

Solutions to quiz Class performance on quiz and recommendations

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Solutions to quiz

Class performance on quiz and recommendations

Quiz One grade distribution

Overview of real-time and embedded operating systems Embedded application/OS time, power, and energy estimation Homework Solutions to quiz Class performance on quiz and recommendations

Improving performance

- Some students might get discouraged with the quiz performance
- This is only a small part of the course grade
- Study harder for next quiz
- Keep up on reading and do literature summaries
- Work hard on project
- Do not get discouraged
 - · You are as well prepared as many prior students

Outline

- 1. Quiz One discussion
- 2. Overview of real-time and embedded operating systems
- 3. Embedded application/OS time, power, and energy estimation
- 4. Homework

Essential features of RTOSs

- Provides real-time scheduling algorithms or primatives
- Bounded execution time for OS services
 - Usually implies preemptive kernel
 - E.g., Linux can spend milliseconds handling interrupts, especially disk access

Threads

- Threads vs. processes: Shared vs. unshared resources
- OS impact: Windows vs. Linux
- Hardware impact: MMU

Threads vs. processes

- Threads: Low context switch overhead
- Threads: Sometimes the only real option, depending on hardware
- Processes: Safer, when hardware provides support
- Processes: Can have better performance when IPC limited

Software implementation of schedulers

- TinyOS
- Light-weight threading executive
- μC/OS-II
- Linux
- Static list scheduler

TinyOS

- Most behavior event-driven
- High rate \rightarrow Livelock
- Research schedulers exist

BD threads

- Brian Dean: Microcontroller hacker
- Simple priority-based thread scheduling executive
- Tiny footprint (fine for AVR)
- Low overhead
- No MMU requirements

$\mu\mathrm{C}/\mathrm{OS-II}$

- Similar to BD threads
- More flexible
- Bigger footprint

Old Linux scheduler

- Single run queue
- $\mathcal{O}(n)$ scheduling operation
- Allows dynamic goodness function

$\mathcal{O}(1)$ scheduler in Linux 2.6

- Written by Ingo Molnar
- Splits run queue into two queues prioritized by goodness
- Requires static goodness function
 - No reliance on running process
- Compatible with preemptible kernel

Real-time Linux

- Run Linux as process under real-time executive
- Complicated programming model
- RTAI (Real-Time Application Interface) attempts to simplify
 - + Colleagues still have problems at $> 18\,{\rm kHz}$ control period

Real-time operating systems

- Embedded vs. real-time
- Dynamic memory allocation
- Schedulers: General-purpose vs. real-time
- Timers and clocks: Relationship with HW

Quiz One discussion	Introduction, motivation, and past work
Overview of real-time and embedded operating systems	Examples of energy optimization
Embedded application/OS time, power, and energy estimation	Simulation infrastructure
Homework	Results

Outline

- 1. Quiz One discussion
- 2. Overview of real-time and embedded operating systems
- 3. Embedded application/OS time, power, and energy estimation
- 4. Homework

Section outline

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

 Embedded application/OS time, power, and energy estimation Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Introduction

- Real-Time Operating Systems are often used in embedded systems
- They simplify use of hardware, ease management of multiple tasks, and adhere to real-time constraints
- Power is important in many embedded systems with RTOSs
- RTOSs can consume significant amount of power
- They are re-used in many embedded systems
- They impact power consumed by application software
- RTOS power effects influence system-level design

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Real-time operating systems (RTOS)

- Interaction between HW and SW
 - Rapid response to interrupts
 - HW interface abstraction
- Interaction between different tasks
 - Communication
 - Synchronization
- Multitasking
 - Ideally fully preemptive
 - Priority-based scheduling
 - Fast context switching
 - Support for real-time clock

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

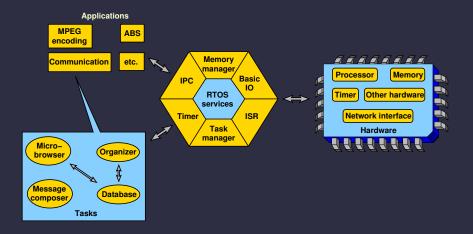
General-purpose OS stress

- Good average-case behavior
- Providing many services
- Support for a large number of hardware devices

RTOSs stress

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

- Predictable service execution times
- Predictable scheduling
- Good worst-case behavior
- Low memory usage
- Speed
- Simplicity


Predictability

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

- General-purpose computer architecture focuses on average-case
 - Caches
 - Prefetching
 - Speculative execution
- Real-time embedded systems need predictability
 - Disabling or locking caches is common
 - Careful evaluation of worst-case is essential
 - Specialized or static memory management common

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

RTOS overview

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

RTOS power consumption

- Used in several low-power embedded systems
- Need for RTOS power analysis
 - Significant power consumption
 - Impacts application software power
 - Re-used across several applications

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

RTOS and real-time references

- K. Ramamritham and J. Stankovic. Scheduling algorithms and operating systems support for real-time systems. *Proc. IEEE*, 82(1):55–67, January 1994
- Giorgio C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publishers, Boston, 2000

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Prior work

- Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation techniques for low energy: An overview. In *Proc. Int. Symp. Low-Power Electronics*, pages 38–39, October 1994
- Y. Li and J. Henkel. A framework for estimating and minimizing energy dissipation of embedded HW/SW systems. In *Proc. Design Automation Conf.*, pages 188–193, June 1998
- J. J. Labrosse. MicroC/OS-II. R & D Books, KS, 1998

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

RTOS power references

Journal version Design Automation Conference 2000 work in the area of RTOS power consumption analysis

 Robert P. Dick, G. Lakshminarayana, A. Raghunathan, and Niraj K. Jha. Analysis of Power Dissipation in Real-Time Operating Systems. *IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems*, 22(5):615–627, May 2003

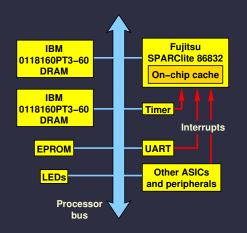
Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

RTOS power references

- K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout,
 C. Smit, T. Zhang, and B. Jacob. The performance and energy consumption of three embedded real-time operating systems. In *Proc. Int. Conf. Compilers, Architecture & Synthesis for Embedded Systems*, pages 203–210, November 2001
- T.-K. Tan, A. Raghunathan, and Niraj K. Jha. EMSIM: An energy simulation framework for an embedded operating system. In *Proc. Int. Symp. Circuits & Systems*, pages 464–467, May 2002

Contributions

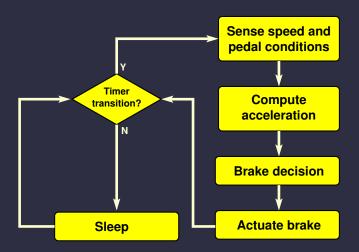
- First detailed power analysis of RTOS
 - Proof of concept later used by others
- Applications
 - Low-power RTOS
 - Energy-efficient software architecture
 - Incorporate RTOS effects in system design


Section outline

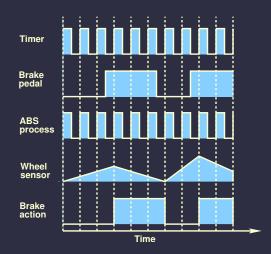
Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

 Embedded application/OS time, power, and energy estimation Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

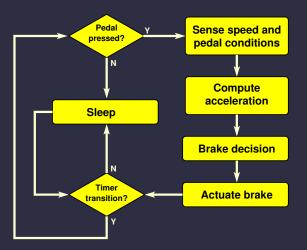
Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results


Simulated embedded system

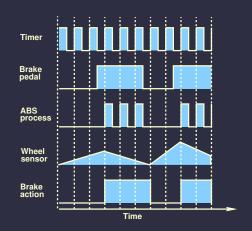
- Easy to add new devices
- Cycle-accurate model
- Fujitsu board support library used in model
- $\mu C/OS-II$ RTOS used


Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Periodically triggered ABS


Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Periodically triggered ABS timing


Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Selectively triggered ABS

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

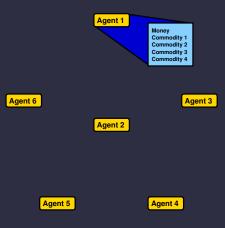
Selectively triggered ABS timing

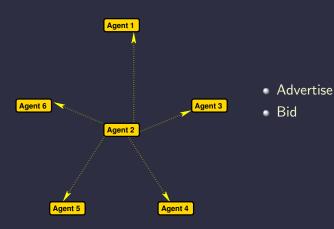
63% reduction in energy and power consumption

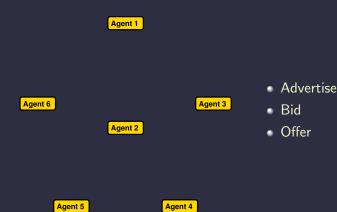
Robert Dick Embedded Syst

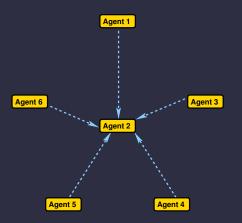
Agent example

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results


Agent 2


Agent example


Agent example


Agent example

Agent example

Agent example

- Advertise
- Bid
- Offer
- Transfer results

Agent example

- Advertise
- Bid
- Offer
- Transfer results

Agent example

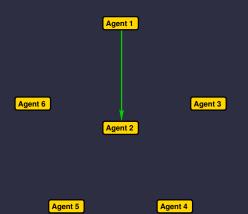
Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

	Agent 1	
Agent 6		Agent 3
	Agent 2	
Agent 5		Agent 4

Advertise

Transfer results

BidOffer


Agent example

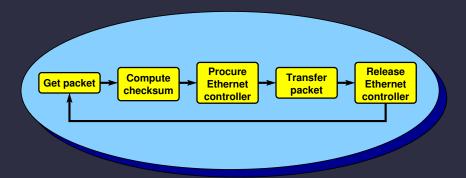
- Advertise
- Bid
- Offer
- Transfer results

Agent example

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Robert Dick Embedded System Design and Synthesis

Advertise

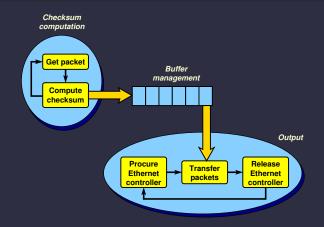

Transfer results

Bid

Offer

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Single task network interface


Checksum computation and output

Procuring Ethernet controller has high energy cost

Robert Dick Embedded System Design and Synthesis

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

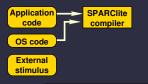
Multi-tasking network interface

RTOS power analysis suggests process re-organization. 21% reduction in energy consumption. Similar power consumption.

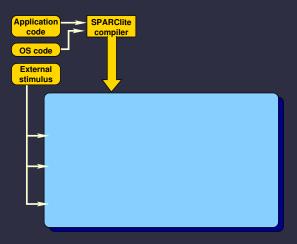
Robert Dick Embedded System Design and Synthesis

Section outline

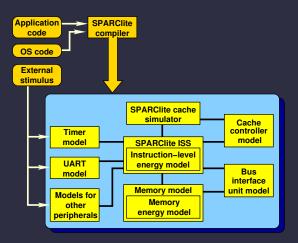
Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

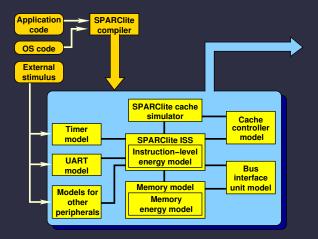

 Embedded application/OS time, power, and energy estimation Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

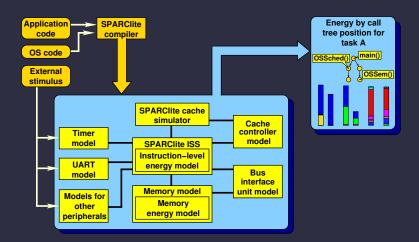
Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

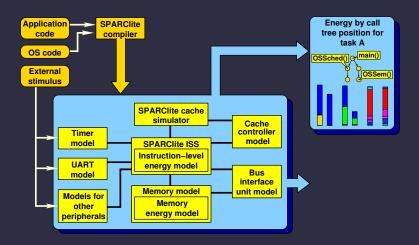


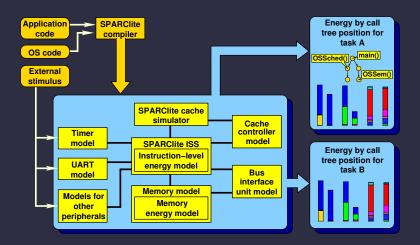
Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results




Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

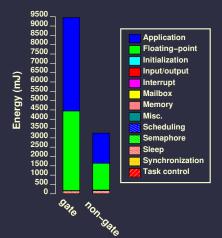

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results


Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results


Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

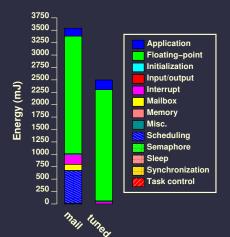
Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results


Quiz One discussion	Introduction, motivation, and past work
Overview of real-time and embedded operating systems	Examples of energy optimization
Embedded application/OS time, power, and energy estimation	Simulation infrastructure
Homework	Results

Section outline

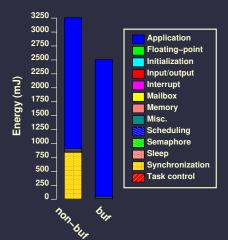
 Embedded application/OS time, power, and energy estimation Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results


ABS optimization effects

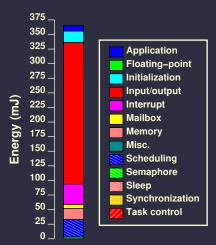
- Redesigned application after using simulator to locate areas where power was wasted
- 63% energy reduction
- 63% power reduction
- RTOS directly accounted for 50% of system energy

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results


Agent optimization effects

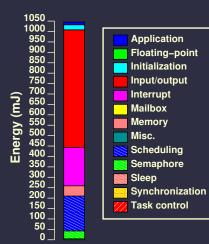
- Mail version used RTOS mailboxes for information transmission
- Tuned version carefully hand-tuned to used shared memory
- Power can be reduced at a cost
 - Increased application software complexity
 - Decreased flexibility

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results


Ethernet optimization effects

- Determined that synchronization routine cost was high
 - Used RTOS buffering to amortize synchronization costs
- 20.5% energy reduction
- 0.2% power reduction
- RTOS directly accounted for 1% of system energy
 - Energy savings due to improved RTOS use, not reduced RTOS energy

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

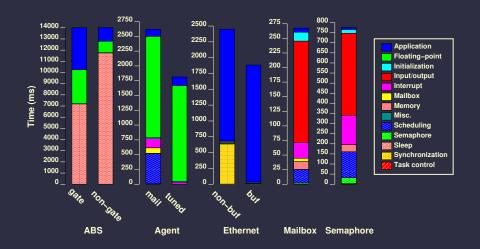

Mailbox example

- Rapid mailbox communication between tasks
- RTOS directly accounted for 99% of system energy

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Semaphore example

- Semaphores used for task synchronization
- RTOS directly accounted for 98.7% of system energy


 Quiz One discussion
 Introduction, motivation, and past work

 Overview of real-time and embedded operating systems
 Examples of energy optimization

 Embedded application/OS time, power, and energy estimation
 Homework

 Homework
 Results

Time results

Quiz One discussion	Introduction, motivation, and past work
Overview of real-time and embedded operating systems	Examples of energy optimization
Embedded application/OS time, power, and energy estimation	Simulation infrastructure
Homework	Results

Energy bounds

Service	Minimum energy (μ J)	$\begin{bmatrix} Maximum \\ energy \ (\mu J) \end{bmatrix}$
AgentTask	3.41	4727.88
fptodp	17.46	49.72
BSPInit	3.52	3.52
fstat	16.34	16.34
CPUInit	287.15	287.15
fstat_r	31.26	31.26
GetPsr	0.38	0.55
init_bss	2.86	3.07
GetTbr	0.40	0.53
init_data	4.23	4.37
InitTimer	2.53	2.53
init_timer	18012.10	20347.00
OSCtxSw	46.63	65.65
init_tvecs	1.31	1.31
OSDisableInt	0.84	1.31
•••	• • •	•••

Embedded System Design and Synthesis

Semaphore example hierarchical call tree

		Function	$\underline{\text{Energy}(\mu J)}$	Energy (%)	Time (ms)	Calls
realstart	init_tvecs		invocation 1.31	0.00	0.00	1
25.40 mJ total	init timer	liteled	4.26	0.00	0.00	1
2.43 %	18.01 m.l total	TIGTER	4.20	0.00	0.00	-
2.45 /0	1.72 %					
	startup	do main	7363.11	0.70	5.57	1
	7.39 mJ total	save_data	5.08	0.00	0.00	1
	0.71 %	init_data	4.23	0.00	0.00	1
	0.12 /0	init_bss	2.86	0.00	0.00	1
		cache_on	8.82	0.00	0.01	1
Task1	win_unf_trap		6.09	1.16	9.43	1999
508.88 mJ total	OSDisableInt		0.98	0.09	0.82	1000
48.69 %	OSEnableInt		1.07	0.10	0.92	1000
	OSSemPend	win_unf_trap	6.00	0.57	4.56	999
	104.59 mJ total	OSDisableInt	0.94	0.18	1.56	1999
	10.01 %	OSEnableInt	0.94	0.18	1.56	1999
		OSEventTaskWait	13.07	1.25	9.89	999
		OSSched	66.44	6.35	51.95	999
	OSSemPost	OSDisableInt	0.96	0.09	0.78	1000
	9.82 mJ total 0.94 %	OSEnableInt	0.98	0.09	0.81	1000
	OSTimeGet	OSDisableInt	0.84	0.08	0.66	1000
	4.62 mJ total	OSEnableInt	0.98	0.09	0.81	1000
	0.44 %					
	CPUInit	BSPInit	3.52	0.00	0.00	1
	0.29 mJ total	exceptionHandler	15.51	0.02	0.17	15
	0.03 %					
	printf	win_unf_trap	6.18	0.59	4.87	1000
	368.07 mJ total	vfprintf	355.04	33.97	257.55	1000
	35.22 %					

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Example power-efficient change to RTOS

- Small changes can greatly improve RTOS power consumption
- $\mu {\rm C/OS\text{-}II}$ tracks processor loading by incrementing a counter when idle
- However, this is not a good low-power design decision
- NOPs have lower power than add or increment instructions
- Sleep mode has much lower power
- Can disable loading counter and use NOPs or sleep mode

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

Example power-efficient change to RTOS

- Alternatively, can use timer-based sampling
 - Normally NOP or sleep when idle
 - Wake up on timer ticks
 - Sample highest non-timer ISR task
 - If it's the idle task, increment a counter
 - Can dramatically reduce power consumption without losing functionality

Introduction, motivation, and past work Examples of energy optimization Simulation infrastructure Results

RTOS Conclusions

- Demonstrated that RTOS significantly impacts power
- RTOS power analysis can improve application software design
- Applications
 - Low-power RTOS design
 - Energy-efficient software architecture
 - Consider RTOS effects during system design

Quiz One discussion	Introduction, motivation, and past work
Overview of real-time and embedded operating systems	Examples of energy optimization
Embedded application/OS time, power, and energy estimation	Simulation infrastructure
Homework	Results

Reference

Kaushik Ghosh, Bodhisattwa Mukherjee, and Karsten Schwan. A survey of real-time operating systems. Technical report, College of Computing, Georgia Institute of Technology, February 1994

Outline

- 1. Quiz One discussion
- 2. Overview of real-time and embedded operating systems
- 3. Embedded application/OS time, power, and energy estimation
- 4. Homework

Sensor networking and compression references

- Chee-Yee Chong and Srikanta Kumar. Sensor networks: Evolution, opportunity, and challenges. *Proc. IEEE*, 91(8), August 2003
- Robert P. Dick, Li Shang, and Niraj K. Jha. Power-aware architectural synthesis. In Wai-Kai Chen, editor, *The VLSI Handbook*. CRC Press, 2006

Assignment: Write a short paragraph describing the most important points in both of these articles.