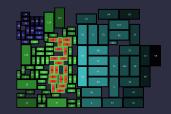
Embedded System Design and Synthesis

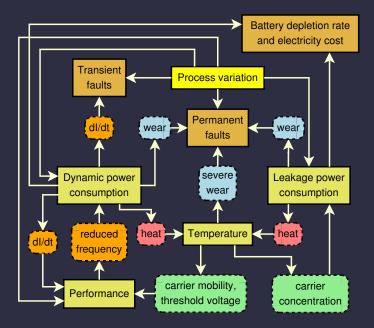

Robert Dick

http://ziyang.eecs.northwestern.edu/~dickrp/esds-two-week Department of Electrical Engineering and Computer Science Northwestern University

Office at Tsinghua University: 9-310 East Main Building

Power and temperature Power consumption modeling Embedded system power consumption optimization

Outline


1. Power consumption

2. Homework

Section outline

1. Power consumption Power and temperature Power consumption modeling Embedded system power consumption optimization

Power and temperature

Definitions

- Temperature: Average kinetic energy of particle
- Heat: Transfer of this energy
- Heat always flows from regions of higher temperature to regions of lower temperature
- Particles move
- What happens to a moving particle in a lattice?

Acoustic phonons

- Lattice structure
- Transverse and longitudinal waves
- Electron-phonon interactions
 - Effect of carrier energy increasing beyond optic phonon energy?

Optic phonons

- Minimum frequency, regardless of wavelength
- Only occur in lattices with more than one atom per unit cell
- Optic phonons out of phase from primitive cell to primitive cell
- Positive and negative ions swing against each other
- Low group velocity
- Interact with electrons
- Importance in nanoscale structure modeling?

Power and temperature Power consumption modeling Embedded system power consumption optimization

Nanostructure heat transfer

- Boundary scattering and superlattices
- Quantum effects when phonon spectra of materials do not match
 - Splitting

Why do wires get hot?

- Scattering of electrons due to destructive interference with waves in the lattice
- What are these waves?
- What happens to the energy of these electrons?
- What happens when wires start very, very cool?
- What is electrical resistance?
- What is thermal resistance?

Why do transistors get hot?

- Scattering of electrons due to destructive interference with waves in the lattice
- Where do these waves come from?
- Where do the electrons come from?
 - Intrinsic carriers
 - Dopants
- What happens as the semiconductor heats up?
 - Carrier concentration increases
 - Carrier mobility decreases
 - Threshold voltage decreases

Power consumption

Power and temperature

Cooling

Section outline

1. Power consumption

Power and temperature

Power consumption modeling

Embedded system power consumption optimization

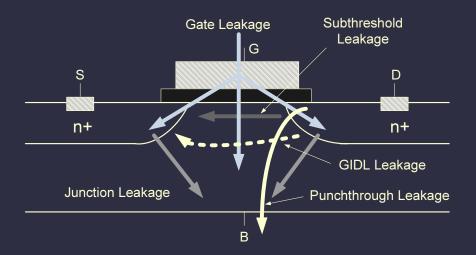
Power consumption trends

- Initial optimization at transistor level
- Further research-driven gains at this level difficult
- Research moved to higher levels, e.g., RTL
- Trade area for performance and performance for power
- Clock frequency gains linear
- Voltage scaling V_{DD}^2 very important

Power consumption in synchronous CMOS

$$\begin{split} P &= P_{SWITCH} + P_{SHORT} + P_{LEAK} \\ P_{SWITCH} &= C \cdot V_{DD}^2 \cdot f \cdot A \\ \dagger P_{SHORT} &= \frac{b}{12} (V_{DD} - 2 \cdot V_T)^3 \cdot f \cdot A \cdot t \\ P_{LEAK} &= V_{DD} \cdot (I_{SUB} + I_{GATE} + I_{JUNCTION} + I_{GIDL}) \\ C : \text{ total switched capacitance} \qquad V_{DD} : \text{ operating voltage} \\ f : \text{ switching frequency} \qquad A : \text{ switching activity} \\ b : \text{ MOS transistor gain} \qquad V_T : \text{ threshold voltage} \\ t : \text{ rise/fall time of inputs} \\ \dagger P_{SHORT} \text{ usually} &\leq 10\% \text{ of } P_{SWITCH} \\ \text{ Smaller as } V_{DD} \rightarrow V_T \end{split}$$

Adiabatic charging


- Voltage step function implies $E = C V_{CAP}^2/2$
- Instead, vary voltage to hold current constant: $E = C V_{CAP}^{2} \cdot RC/t$
- Lower energy if T > 2RC
- Impractical when leakage significant

Wiring power consumption

- $\bullet\,$ In the past, transistor power $\gg\,$ wiring power
- Process scaling \Rightarrow ratio changing
- Conventional CAD tools neglect wiring power
- Indicate promising areas of future research

Power and temperature Power consumption modeling Embedded system power consumption optimization

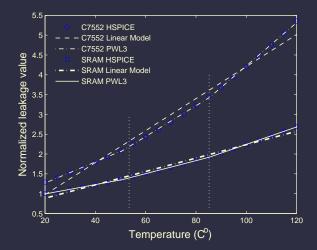
Leakage

Subthreshold leakage current

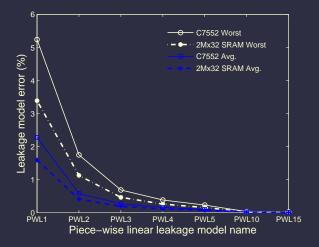
$$H_{subthreshold} = A_s rac{W}{L} v_T{}^2 \left(1 - e^{rac{-v_{DS}}{v_T}}
ight) e^{rac{(v_{GS} - v_{th})}{nv_T}}$$

- where A_s is a technology-dependent constant,
- V_{th} is the threshold voltage,
- L and W are the device effective channel length and width,
- V_{GS} is the gate-to-source voltage,
- *n* is the subthreshold swing coefficient for the transistor,
- V_{DS} is the drain-to-source voltage, and
- v_T is the thermal voltage.

A. Chandrakasan, W.J. Bowhill, and F. Fox. *Design of High-Performance Microprocessor Circuits*. IEEE Press, 2001


Simplified subthreshold leakage current

 $V_{DS} \gg v_T$ and $v_T = \frac{kT}{q}$. q is the charge of an electron. Therefore, equation can be simplified to

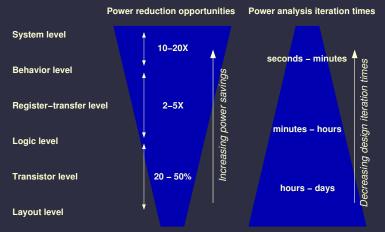

$$I_{subthreshold} = A_s \frac{W}{L} \left(\frac{kT}{q}\right)^2 e^{\frac{q(V_{GS} - V_{th})}{nkT}}$$
(1)

Power and temperature Power consumption modeling Embedded system power consumption optimization

Exponential?

Piece-wise linear error

Gate leakage


$$I_{gate} = WLA_J \left(\frac{T_{oxr}}{T_{ox}}\right)^{nt} \frac{V_g V_{aux}}{T_{ox}^2} e^{-BT_{ox}(a-b|V_{ox}|)(1+c|V_{ox}|)}$$

- where A_J, B, a, b , and c are technology-dependent constants,
- *nt* is a fitting parameter with a default value of one,
- V_{ox} is the voltage across gate dielectric,
- *T*_{ox} is gate dielectric thickness,
- T_{oxr} is the reference oxide thickness,
- V_{aux} is an auxiliary function that approximates the density of tunneling carriers and available states, and
- V_g is the gate voltage.

K. M. Cao, W. C. Lee, W. Liu, X. Jin, P. Su, S. K. H. Fung, J. X. An, B. Yu, and C. Hu. BSIM4 gate leakage model including source-drain partition. In *IEDM Technology Dig.*, pages 815–818, December 2000

Power and temperature Power consumption modeling Embedded system power consumption optimization

Design level power savings

From Anand Raghunathan

Power consumption conclusions

- Voltage scaling is currently the most promising low-level power-reduction method: V² dependence.
- As V_{DD} reduced, V_T must also be reduced.
- Sub-threshold leakage becomes significant.
- What happens if $P_{LEAK} > P_{SWITCH}$?
- Options to reduce leakage (both expensive):
 - Liquid nitrogen diode leakage
 - Silicon-on-insulator (SOI) I_{SUB}

Power and temperature Power consumption modeling Embedded system power consumption optimization

Reference

G. Chen, R. Yang, and X. Chen. Nanoscale heat transfer and thermal-electric energy conversion. *J. Phys. IV France*, 125:499–504, 2005

Section outline

1. Power consumption

Power and temperature Power consumption modeling Embedded system power consumption optimization Power consumption Homework Embedded system power consumption optimization

What can be done to reduce power consumption in embedded systems?

Please take/refer to your notes for this portion of the lecture. It is meant to be interactive.

Power minimization techniques

- Reduce switching activity/clock frequency, glitching
- Reduce voltage (quadratic)
- Reduce capacitance
- Reduce temperature or increase threshold to reduce leakage
- Power/clock gating
- System-level power management, prediction

Outline

- 1. Power consumption
- 2. Homework

Sensor networking and compression references

- Lan Bai, Lei Yang, and Robert P. Dick. Automated Compile-Time and Run-Time Techniques to Increase Usable Memory in MMU-Less Embedded Systems. In Proc. Int. Conf. Compilers, Architecture & Synthesis for Embedded Systems, pages 125–135, October 2006
- Changyun Zhu, Zhenyu Gu, Li Shang, Robert P. Dick, and Robert Knobel. Towards an ultra-low-power architecture using single-electron tunneling transistors. In *Proc. Design Automation Conf.*, pages 312–317, June 2007

Assignment: Write a short paragraph describing the most important points in both of these articles.