
Embedded System Design and Synthesis

Robert Dick

http://robertdick.org/esds-two-week
http://ziyang.eecs.northwestern.edu/∼dickrp/esds-two-week
Department of Electrical Engineering and Computer Science

Northwestern University

Office at Tsinghua University: 9–310 East Main Building

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Types of reliability

Algorithm correctness: Does the specification have the desired
properties?

Robustness in the presence of transient faults: Can the system
continue to operate correctly despite temporary errors?

Robustness in the presence of permanent faults: Can the system
continue to operate correctly in the presence of permanent errors?

3 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Conventional software testing

Implement and test

Number of tests bounded but number of inputs huge

Imperfect coverage

4 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Model checking

Use finite state system representation

Use exhaustive state space exploration to guarantee desired
properties hold for all possible paths

Guarantees properties

Difficulty with variables that can take on many values

Symbolic techniques can improve this

Difficulty with large number of processes

5 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Critical barriers to use

For simple systems, manual proofs possible

For very complex systems, state space exploration intractable

May require new, more formal, specification language

6 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Overcoming barriers to use

Automatic abstraction techniques permitting use on more
complex systems

Difficult problem

Target moderate-complexity systems where reliability is
important

Medical devices
Transportation devices
Electronic commerce applications

Give users a high-level language that is actually easier to use
than their current language, and provide a path to a language
used in existing model checkers

7 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Cross-talk

Shielding

Bus encoding

8 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Particle impact

Temporal redundancy

Structural redundancy

Voltage control

9 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Random background offset charge

Improvements to fabrication

Temporal redundancy

Structural redundancy

10 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Temperature-induced timing faults

Preemptive throttling

Global planning

11 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Checkpointing: a tool for robustness in the presence of
transient faults

Periodically store system state

On fault detection, roll back to known-good state

Should system-wide or incremental, as-needed restores be used?

When should checkpoints be taken?

12 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Electromigration

Reduce temperature

Reduce current

Spatial redundancy

13 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Manufacturing defects

Spatial redundancy

14 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Example lifetime failure aware synthesis flow

Changyun Zhu, Zhenyu Gu, Robert P. Dick, and Li Shang. Reliable
multiprocessor system-on-chip synthesis. In Proc. Int. Conf.
Hardware/Software Codesign and System Synthesis, September 2007.
To appear

Use temperature reduction and spatial redundancy to increase
system MTTF

System MTTF: the expected amount of time an MPSoC will
operate, possibly in the presence of component faults, before its
performance drops below some designer-specified constraint or it
is no longer able to meet it functionality requirements

15 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Motivating example for reliability optimization

Solution I

K6−2E+

AMD

Solution II

PC

Power
PC

Power

Power
PC

Power
PC

PowerPC
(RE)

16 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Reliability optimization flow

Reliability enhancement

Processor core and

task performance, power,

area, and temperature-

dependent reliability models

Area and

reliability

optimized

MPSoC

Problem instance

Stochastic optimization of functionality, timing, and area Reliability/area curve exploration

Y

N

DCT

FLT

ACUM

ARCH

TRAN

Reliability

analysis

Thermal

analysis

Functionality,

performance, area,

and reliability evaluation

Max area

reached?

Core reinforcement

Core

swapping

Core

addition

Area-optimized

MPSoC

Y

NN

Y

Thermal analysis

Core allocation

change

Task assignment change

Adaptive list scheduling

Floorplanning

Functionality, performance,

and area evaluation

Initial construction of solutions

Convergence?Convergence?

17 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Lifetime reliability optimization challenges

Accurate reliability models

Efficient system-level reliability models

Efficient fault detection and recovery solutions

Optimization

23 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Algorithm correctness
Appropriate responses to transient faults
Appropriate responses to permanent faults

Importance of understanding fault class

Many reliability techniques attempt to deal with arbitrary fault
processes

However, the properties of the fault process most significant for a
particular appliation may be important

Considering them can allow more efficient and reliable designs

24 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Taxonomy of real-time systems

DynamicStatic

26 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Static

Task arrival times can be predicted.

Static (compile-time) analysis possible.

Allows good resource usage (low processor idle time proportions).

Sometimes designers shoehorn dynamic problems into static
formulations allowing a good solution to the wrong problem.

27 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Dynamic

Task arrival times unpredictable.

Static (compile-time) analysis possible only for simple cases.

Even then, the portion of required processor utilization efficiency
goes to 0.693.

In many real systems, this is very difficult to apply in reality
(more on this later).

Use the right tools but don’t over-simplify, e.g.,

We assume, without loss of generality, that all tasks are
independent.

If you do this people will make jokes about you.

28 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Soft real-time

More slack in implementation

Timing may be suboptimal without being incorrect

Problem formulation can be much more complicated than hard
real-time

Two common (and one uncommon) methods of dealing with
non-trivial soft real-time system requirements

Set somewhat loose hard timing constraints
Informal design and testing
Formulate as optimization problem

29 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Hard real-time

Difficult problem. Some timing constraints inflexible.

Simplifies problem formulation.

30 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Periodic

Each task (or group of tasks) executes repeatedly with a
particular period.

Allows some nice static analysis techniques to be used.

Matches characteristics of many real problems...

... and has little or no relationship with many others that
designers try to pretend are periodic.

31 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Periodic → Single-rate

One period in the system.

Simple.

Inflexible.

This is how a lot of wireless sensor networks are implemented.

32 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Periodic → Multirate

Multiple periods.

Can use notion of circular time to simplify static (compile-time)
schedule analysis E. L. Lawler and D. E. Wood.
Branch-and-bound methods: A survey. Operations Research,
pages 699–719, July 1966.

Co-prime periods leads to analysis problems.

33 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Periodic → Other

It is possible to have tasks with deadlines less than, equal to, or
greater than their periods.

Results in multi-phase, circular-time schedules with multiple
concurrent task instances.

If you ever need to deal with one of these, see me (take my code).
This class of scheduler is nasty to code.

34 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Aperiodic

Also called sporadic, asynchronous, or reactive

Implies dynamic

Bounded arrival time interval permits resource reservation

Unbounded arrival time interval impossible to deal with for any
resource-constrained system

35 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Definitions

Task

Processor

Graph representations

Deadline violation

Cost functions

36 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Task

Some operation that needs to be carried out

Atomic completion: A task is all done or it isn’t

Non-atomic execution: A task may be interrupted and resumed

37 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Processor

Processors execute tasks

Distributed systems

Contain multiple processors
Inter-processor communication has impact on system performance
Communication is challenging to analyze

One processor type: Homogeneous system

Multiple processor types: Heterogeneous system

38 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Task/processor relationship

Matrix

FIR

Tooth

Road

WC exec time (s)

310E−3

...

...

...

...

7.7E−6

330E−9

4.1E−6

IBM PowerPC 405GP 266 MHz

IDT79RC32364 100 MHz

Imsys Cjip 40 MHz

Relationship between tasks, processors, and costs
E.g., power consumption or worst-case execution time

39 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Cost functions

Mapping of real-time system design problem solution instance to
cost value

I.e., allows price, or hard deadline violation, of a particular
multi-processor implementation to be determined

40 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Back to real-time problem taxonomy:
Jagged edges

Some things dramatically complicate real-time scheduling

These are horrific, especially when combined

Data dependencies
Unpredictability
Distributed systems

These are irksome

Heterogeneous processors
Preemption

41 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Central areas of real-time study

Allocation, assignment and scheduling

Operating systems and scheduling

Distributed systems and scheduling

Scheduling is at the core or real-time systems study

42 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Allocation, assignment, and scheduling

How does one best

Analyze problem instance specifications

E.g., worst-case task execution time

Select (and build) hardware components

Select and produce software

Decide which processor will be used for each task

Determine the time(s) at which all tasks will execute

43 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Allocation, assignment, and scheduling

In order to efficiently and (when possible) optimally minimize

Price, power consumption, soft deadline violations

Under hard timing constraints

Providing guarantees whenever possible

For all the different classes of real-time problem classes

This is what I did for a Ph.D.

44 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Operating systems and scheduling

How does one best design operating systems to

Support sufficient detail in workload specification to allow good
control, e.g., over scheduling, without increasing design error rate

Design operating system schedulers to support real-time
constraints?

Support predictable costs for task and OS service execution

45 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Distributed systems and scheduling

How does one best dynamically control

The assignment of tasks to processing nodes...

... and their schedules

for systems in which computation nodes may be separated by vast
distances such that

Task deadline violations are bounded (when possible)...

... and minimized when no bounds are possible

This is part of what Professor Dinda did for a Ph.D.

46 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

The value of formality: Optimization and costs

The design of a real-time system is fundamentally a cost
optimization problem

Minimize costs under constraints while meeting functionality
requirements

Slight abuse of notation here, functionality requirements are
actually just constraints

Why view problem in this manner?

Without having a concrete definition of the problem

How is one to know if an answer is correct?
More subtly, how is one to know if an answer is optimal?

47 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Taxonomy
Definitions
Central areas of real-time study

Optimization

Thinking of a design problem in terms of optimization gives design
team members objective criterion by which to evaluate the impact of
a design change on quality.
Know whether your design changes are taking you in a good direction

48 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Graph extensions

b) pre− and post−
computation

K

J J1/3

J3/3

J2/3 K1/3

K2/3

K3/3

J1/3

J2/3

J3/3

K1/3

K2/3

K3/3

a) conventional

0 kb

3 kb

3 kb

c) streaming

9 kb 0 kb

0 kb

9 kb

0 kb

0 kb

3 kb

0 kb

0 kb0 kb

Allows pipelining and pre/post-computation
In contrast with book, not difficult to use if conversion automated

50 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Problem definition

E

D

CBA

minimize completion time

E

D

CBA

PE 0 PE 1minimize completion time

E

D

CBA

PE 0 PE 1minimize completion time

E

D

CBA

PE 0 PE 1minimize completion time

D

A

B

C

E

E

D

CBA

PE 0 PE 1minimize completion time

D

A

B

C

E

E

D

CBA

PE 0 PE 1minimize completion time

D

A

B

C

E

Given a set of tasks,

a cost function,

and a set of resources,

decide the exact time each task will execute on each resource

51 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Types of scheduling problems

Discrete time – Continuous time

Hard deadline – Soft deadline

Unconstrained resources – Constrained resources

Uni-processor – Multi-processor

Homogeneous processors – Heterogeneous processors

Free communication – Expensive communication

Independent tasks – Precedence constraints

Homogeneous tasks – Heterogeneous tasks

One-shot – Periodic

Single rate – Multirate

Non-preemptive – Preemptive

Off-line – On-line

52 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Discrete vs. continuous timing

System-level: Continuous

Operations are not small integer multiples of the clock cycle

High-level: Discrete

Operations are small integer multiples of the clock cycle

Implications:

System-level scheduling is more complicated. . .

. . . however, high-level also very difficult.

Can we solve this by quantizing time? Why or why not?

53 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Hard deadline – Soft deadline

Tasks may have hard or soft deadlines

Hard deadline

Task must finish by given time or schedule invalid

Soft deadline

If task finishes after given time, schedule cost increased

54 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Real-time – Best effort

Why make decisions about system implementation statically?

Allows easy timing analysis, hard real-time guarantees

If a system doesn’t have hard real-time deadlines, resources can
be more efficiently used by making late, dynamic decisions

Can combine real-time and best-effort portions within the same
specification

Reserve time slots
Take advantage of slack when tasks complete sooner than their
worst-case finish times

55 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Unconstrained – Constrained resources

Unconstrained resources

Additional resources may be used at will

Constrained resources

Limited number of devices may be used to execute tasks

56 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Uni-processor – Multi-processor

Uni-processor

All tasks execute on the same resource

This can still be somewhat challenging
However, sometimes in P

Multi-processor

There are multiple resources to which tasks may be scheduled

Usually NP-complete

57 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Homogeneous – Heterogeneous processors

Homogeneous processors

All processors are the same type

Heterogeneous processors

There are different types of processors
Usually NP-complete

58 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Free – Expensive communication

Free communication

Data transmission between resources has no time cost

Expensive communication

Data transmission takes time
Increases problem complexity
Generation of schedules for communication resources necessary
Usually NP-complete

59 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Independent tasks –
Precedence constraints

NEG

IOP

FIL

FT

DCT

NEG

IOP

FIL

FT

DCT

Independent tasks: No previous execution sequence imposed

Precedence constraints: Weak order on task execution order

60 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Homogeneous – Heterogeneous tasks

FT

FT

FT

FT

FT

IOP

NEG

DCT

FIL

FT

Homogeneous tasks: All tasks are identical

Heterogeneous tasks: Tasks differ

61 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

One-shot – Periodic

timetimetime

One-shot: Assume that the task set executes once

Periodic: Ensure that the task set can repeatedly execute at
some period

62 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Single rate – Multirate

time

period = 20 ms

3 copies

2 copies

period = 30 ms

system hyperperiod = 60 ms

time

period = 20 ms

Single rate: All tasks have the same period
Multirate: Different tasks have different periods

Complicates scheduling
Can copy out to the least common multiple of the periods
(hyperperiod)

63 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Periodic graphs

period = 20 ms
deadline = 20 ms

time

period = 20 ms
deadline = 20 ms

3 copies

period = 30 ms
deadline = 40 ms

system hyperperiod = 60 ms

2 copies

time

period = 20 ms
deadline = 20 ms

3 copies

period = 30 ms
deadline = 40 ms

system hyperperiod = 60 ms

2 copies

time

period = 20 ms
deadline = 20 ms

3 copies

period = 30 ms
deadline = 40 ms

system hyperperiod = 60 ms

2 copies

time

64 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Aperiodic/sporadic graphs

No precise periods imposed on task execution

Useful for representing reactive systems

Difficult to guarantee hard deadlines in such systems

Possible if minimum inter-arrival time known

65 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Periodic vs. aperiodic

Periodic applications

Power electronics

Transportation applications
Engine controllers
Brake controllers

Many multimedia applications
Video frame rate
Audio sample rate

Many digital signal processing (DSP) applications

However, devices which react to unpredictable external stimuli have
aperiodic behavior
Many applications contain periodic and aperiodic components

66 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Aperiodic to periodic

Can design periodic specifications that meet requirements posed by
aperiodic/sporadic specifications

Some resources will be wasted

Example:

At most one aperiodic task can arrive every 50 ms

It must complete execution within 100 ms of its arrival time

67 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Aperiodic to periodic

Can easily build a periodic representation with a deadline and
period of 50 ms

Problem, requires a 50 ms execution time when 100ms should be
sufficient

Can use overlapping graphs to allow an increase in execution
time

Parallelism required

The main problem with representing aperiodic problems with periodic
representations is that the tradeoff between deadline and period must
be made at design/synthesis time

68 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Non-preemptive – Preemptive

A ready

B ready

B deadline

A deadline

A

A ready

B ready

B deadline

A deadline

non−preempt.

A

B

A ready

B ready

B deadline

A deadline

non−preempt.

A

B

A ready

B ready

B deadline

A deadline

non−preempt.
ideal

preempt.

A

B

A1

A ready

B ready

B deadline

A deadline

non−preempt.
ideal

preempt.

A

B

A1

B

A ready

B ready

B deadline

A deadline

non−preempt.
ideal

preempt.

A

B

A1

B

A2

A ready

B ready

B deadline

A deadline

non−preempt.

O.K.

ideal
preempt.

A

B

A1

B

A2

A ready

B ready

B deadline

A deadline

non−preempt.

O.K.

non−ideal
preempt.

ideal
preempt.

A

B

A1

B

A2

A1
A ready

B ready

B deadline

A deadline

non−preempt.

O.K.

non−ideal
preempt.

ideal
preempt.

A

B

A1

B

A2

A1

P

A ready

B ready

B deadline

A deadline

non−preempt.

O.K.

non−ideal
preempt.

ideal
preempt.

A

B

A1

B

A2

A1

P

B

A ready

B ready

B deadline

A deadline

non−preempt.

O.K.

non−ideal
preempt.

ideal
preempt.

A

B

A1

B

A2

A1

P

B

P

A ready

B ready

B deadline

A deadline

non−preempt.

O.K.

non−ideal
preempt.

ideal
preempt.

A

B

A1

B

A2

A1

P

B

P

A2

A ready

B ready

B deadline

A deadline

non−preempt.

O.K.

non−ideal
preempt.

ideal
preempt.

A

B

A1

B

A2

A1

P

B

P

A2

A ready

B ready

B deadline

A deadline

non−preempt.

Non-preemptive: Tasks must run to completion

Ideal preemptive: Tasks can be interrupted without cost

Non-ideal preemptive: Tasks can be interrupted with cost

69 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Off-line – On-line

Off-line

Schedule generated before system execution

Stored, e.g., in dispatch table. for later use

Allows strong design/synthesis/compile-time guarantees to be
made

Not well-suited to strongly reactive systems

On-line

Scheduling decisions made during the execution of the system

More difficult to analyze than off-line
Making hard deadline guarantees requires high idle time
No known guarantee for some problem types

Well-suited to reactive systems

70 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Hardware-software co-synthesis scheduling

Automatic allocation, assignment, and scheduling of system-level
specification to hardware and software
Scheduling problem is hard

Hard and soft deadlines

Constrained resources, but resources unknown (cost functions)

Multi-processor

Strongly heterogeneous processors and tasks

No linear relationship between the execution times of a tasks on
processors

71 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Hardware-software co-synthesis scheduling

Expensive communication

Complicated set of communication resources

Precedence constraints

Periodic

Multirate

Strong interaction between NP-complete allocation-assignment
and NP-complete scheduling problems

Will revisit problem later in course if time permits

72 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Behavioral synthesis scheduling

Difficult real-world scheduling problem

Not multirate
Discrete notion of time
Generally less heterogeneity among resources and tasks

What scheduling algorithms should be used for these problems?

73 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Scheduling methods

Clock

Weighted round-robbin

List scheduling

Priority

EDF, LST
Slack
Multiple costs

74 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Scheduling methods

MILP

Force-directed

Frame-based

PSGA

RMS

75 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Clock-driven scheduling

Clock-driven: Pre-schedule, repeat schedule
Music box:

Periodic

Multi-rate

Heterogeneous

Off-line

Clock-driven

76 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Weighted round robbin

B
A

C

D

Time
Weighted round-robbin: Time-sliced with variable time slots

77 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

List scheduling

Pseudo-code:

Keep a list of ready jobs
Order by priority metric
Schedule
Repeat

Simple to implement

Can be made very fast

Difficult to beat quality

78 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Priority-driven

Impose linear order based on priority metric

Possible metrics

Earliest start time (EST)
Latest start time

Danger! LST also stands for least slack time.

Shortest execution time first (SETF)
Longest execution time first (LETF)
Slack (LFT - EFT)

79 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

List scheduling

Assigns priorities to nodes

Sequentially schedules them in order of priority

Usually very fast

Can be high-quality

Prioritization metric is important

80 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Prioritization

As soon as possible (ASAP)

As late as possible (ALAP)

Slack-based

Dynamic slack-based

Multiple considerations

81 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

As soon as possible (ASAP)

4 5

3

2

3

2

6

4 5

3

2

3

2

0

6

4 5

3

2

3

2
3

0

6

4 5

3

2

3

2
3

0

5 6

4 5

3

2

3

2
3

0

5 6

11

4 5

3

2

3

2
3

0

5 6

11

11
4 5

3

2

3

2
3

0
3

5 6

11

11
4 5

3

2

3

2
3

0
3

5

7

6

11

11
4 5

3

2

3

2
3

0
3

5

7

6

11

11

max(7, 11)

4 5

3

2

3

2
3

0
3

5

7

6

11

11

11
4 5

3

2

3

2
3

0
3

5

7

6

11

16

11

11

From root, topological sort on the precedence graph

Propagate execution times, taking the max at reconverging paths

Schedule in order of increasing earliest start time (EST)

82 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

As late as possible (ALAP)

4 5

3

2
2

6

3

deadline = 37

deadline = 20

4 5

3

2
2

6

3

deadline = 37

deadline = 20

4 5

3

2
2

6

3

18

deadline = 37

deadline = 20

4 5

3

2
2

6

3

18

34

deadline = 37

deadline = 20

4 5

3

2
2

6

3

18

3429

deadline = 37

deadline = 20

4 5

3

2
2

6

3

18

3429
25

deadline = 37

deadline = 20

4 5

3

2
2

6

3

18

3429
25

min(12, 23)

deadline = 37

deadline = 20

4 5

3

2
2

6

3

18

3429
25

12

deadline = 37

deadline = 20

4 5

3

2
2

6

3

18

3429
25

12
10

deadline = 37

deadline = 20

4 5

3

2
2

6

3

18

3429
25

12
10

min(7, 22)

deadline = 37

deadline = 20

4 5

3

2
2

6

3

18

3429
25

12
10

7

From deadlines, topological sort on the precedence graph

Propagate execution times, taking the min at reconverging paths

Consider precedence-constraint satisfied tasks
Schedule in order of increasing latest start time (LST)

83 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Slack-based

Compute EFT, LFT

For all tasks, find the difference, LFT − EFT

This is the slack

Schedule precedence-constraint satisfied tasks in order of
increasing slack

Can recompute slack each step, expensive but higher-quality
result

Dynamic critical path scheduling

84 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Multiple considerations

Nothing prevents multiple prioritization methods from being used

Try one method, if it fails to produce an acceptable schedule,
reschedule with another method

85 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Effective release times

Ignore the book on this

Considers simplified, uniprocessor, case

Use EFT, LFT computation

Example?

86 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

EDF, LST optimality

EDF optimal if zero-cost preemption, uniprocessor assumed

Why?
What happens when preemption has cost?

Same is true for slack-based list scheduling in absence of
preemption cost

87 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Breaking EDF, LST optimality

Non-zero preemption cost

Multiprocessor

Why?

88 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Multi-rate tricks

Contract deadline

Usually safe

Contract period

Sometimes safe

Consequences?

89 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Linear programming

Minimize a linear equation subject to linear constraints

In P

Mixed integer linear programming: One or more variables discrete

NP-complete

Many good solvers exist

Don’t rebuild the wheel

90 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

MILP scheduling

P the set of tasks

tmax maximum time

start(p, t) 1 if task p starts at time t, 0 otherwise

D the set of execution delays

E the set of precedence constraints

tstart(p) =

tmax∑

t=0

t · start(p, t) the start time of p

91 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

MILP scheduling

Each task has a unique start time

∀p∈P ,

tmax∑

t=0

start(p, t) = 1

Each task must satisfy its precedence constraints and timing delays

∀{pi , pj} ∈ E ,

tmax∑

t=0

tstart(pi ) ≥ tstart(pj) + dj

Other constraints may exist

Resource constraints

Communication delay constraints

92 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

MILP scheduling

Too slow for large instances of NP-complete scheduling problems

Numerous optimization algorithms may be used for scheduling

List scheduling is one popular solution

Integrated solution to allocation/assignment/scheduling problem
possible

Performance problems exist for this technique

93 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Force directed scheduling

P. G. Paulin and J. P. Knight. Force-directed scheduling for the
behavioral synthesis of ASICs. IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, 8(6):661–679, June
1989

Calculate EST and LST of each node

Determine the force on each vertex at each time-step

Force: Increase in probabilistic concurrency

Self force
Predecessor force
Successor force

94 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Self force

Fi all slots in time frame for i

F ′

i all slots in new time frame for i

Dt probability density (sum) for slot t

δDt change in density (sum) for slot t resulting from scheduling

self force

A =
∑

t∈Fa

Dt · δDt

95 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Predecessor and successor forces

pred all predecessors of node under consideration

succ all successors of node under consideration

predecessor force

B =
∑

b∈pred

∑

t∈Fb

Dt · δDt

successor force

C =
∑

c∈succ

∑

t∈Fc

Dt · δDt

96 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Intuition

total force: A + B + C

Schedule operation and time slot with minimal total force

Then recompute forces and schedule the next operation

Attempt to balance concurrency during scheduling

97 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Force directed scheduling

EST

LST

task duration

probabilistic
concurrency
probabilistic
concurrency

98 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Force directed scheduling

Limitations?

What classes of problems may this be used on?

99 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Implementation: Frame-based scheduling

Break schedule into (usually fixed) frames

Large enough to hold a long job

Avoid preemption

Evenly divide hyperperiod

Scheduler makes changes at frame start

Network flow formulation for frame-based scheduling

Could this be used for on-line scheduling?

100 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Problem space genetic algorithm

Let’s finish off-line scheduling algorithm examples on a bizarre
example

Use conventional scheduling algorithm

Transform problem instance

Solve

Validate

Evolve transformations

101 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Rate mononotic scheduling (RMS)

Single processor

Independent tasks

Differing arrival periods

Schedule in order of increasing periods

No fixed-priority schedule will do better than RMS

Guaranteed valid for loading ≤ ln 2 = 0.69

For loading > ln 2 and < 1, correctness unknown

Usually works up to a loading of 0.88

102 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Rate monotonic scheduling

Main idea

1973, Liu and Layland derived optimal scheduling algorithm(s)
for this problem

Schedule the job with the smallest period (period = deadline)
first

Analyzed worst-case behavior on any task set of size n

Found utilization bound: U(n) = n · (21/n − 1)

0.828 at n = 2

As n → ∞, U(n) → log 2 = 0.693

Result: For any problem instance, if a valid schedule is possible,
the processor need never spend more than 31% of its time idle

103 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Optimality and utilization for limited case

Simply periodic: All task periods are integer multiples of all lesser
task periods

In this case, RMS/DMS optimal with utilization 1

However, this case rare in practice

Remains feasible, with decreased utilization bound, for in-phase
tasks with arbitrary periods

104 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Rate monotonic scheduling

Constrained problem definition

Over-allocation often results

However, in practice utilization of 85%–90% common

Lose guarantee

If phases known, can prove by generating instance

105 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Critical instants

Main idea:

A job’s critical instant a time at which all possible concurrent
higher-priority jobs are also simultaneously released

Useful because it implies latest finish time

106 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Proof sketch for RMS utilization bound

Consider case in which no period exceeds twice the shortest
period

Find a pathological case: in phase

Utilization of 1 for some duration
Any decrease in period/deadline of longest-period task will cause
deadline violations
Any increase in execution time will cause deadline violations

107 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Proof sketch for RMS utilization bound

See if there is a way to increase utilization while meeting all
deadlines

Increase execution time of high-priority task

e′i = pi+1 − pi + ǫ = ei + ǫ

Must compensate by decreasing another execution time

This always results in decreased utilization

e′k = ek − ǫ

U ′ − U =
e′

i

pi
+

e′

k

pk
− ei

pi
− ek

pk
= ǫ

pi
− ǫ

pk

Note that pi < pk → U ′ > U

108 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Proof sketch for RMS utilization bound

Same true if execution time of high-priority task reduced

e ′′i = pi+1 − pi − ǫ

In this case, must increase other e or leave idle for 2 · ǫ

e ′′k = ek + 2ǫ

U ′′ − U = 2ǫ
pk

− ǫ
pi

Again, pk < 2 → U ′′ > U

Sum over execution time/period ratios

109 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Proof sketch for RMS utilization bound

Get utilization as a function of adjacent task ratios

Substitute execution times into
∑n

k=1
ek

pk

Find minimum

Extend to cases in which pn > 2 · pk

110 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Notes on RMS

DMS better than or equal RMS when deadline 6= period

Why not use slack-based?

What happens if resources are under-allocated and a deadline is
missed?

111 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Scheduling summary

Scheduling is a huge area

This lecture only introduced the problem and potential solutions

Some scheduling problems are easy

Most useful scheduling problems are hard

Committing to decisions makes problems hard: Lookahead
required
Interdependence between tasks and processors makes problems
hard
On-line scheduling next Tuesday

112 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Mixing on-line and off-line

Book mixes off-line and on-line with little warning

Be careful, actually different problem domains

However, can be used together

Superloop (cyclic executive) with non-critical tasks

Slack stealing

Processor-based partitioning

113 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Vehicle routing

Low-price, slow, ARM-based system

Long-term shortest path computation

Greedy path calculation algorithm available, non-preemptable

Don’t make the user wait

Short-term next turn calculation

200 ms timer available

114 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Mixing on-line and off-line

Slack stealing

Processor-based partitioning

115 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Bizarre scheduling idea

Scheduling and validity checking algorithms considered so far
operate in time domain

This is a somewhat strange idea

Think about it and tell/email me if you have any thoughts on it

Could one very quickly generate a high-quality real-time off-line
multi-rate periodic schedule by operating in the frequency
domain?

If not, why not?

What if the deadlines were soft?

116 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Example problem: Static scheduling

What is an FPGA?

Why should real-time systems designers care about them?

Multiprocessor static scheduling

No preemption

No overhead for subsequent execution of tasks of same type

High cost to change task type

Scheduling algorithm?

117 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Definitions
Scheduling methods
Example scheduling applications

Problem: Uniprocessor independent task scheduling

Problem

Independent tasks
Each has a period = hard deadline
Zero-cost preemption

How to solve?

118 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Compression references (for next class)

Haris Lekatsas, Jörg Henkel, and Wayne Wolf. Code compression
for low power embedded system design. In Proc. Design
Automation Conf., pages 294–299, June 2000

Lei Yang, Robert P. Dick, Haris Lekatsas, and Srimat
Chakradhar. On-Line Memory Compression for Embedded
Systems. ACM Trans. Embedded Computing Systems. To appear

120 Robert Dick Embedded System Design and Synthesis

Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Project proposals

Due 12:00 Sunday

A one-page project description

Ideally, you will have some preliminary results or ideas based on
reading papers or doing analysis already

121 Robert Dick Embedded System Design and Synthesis



Reliable embedded system design and synthesis
Realtime systems

Scheduling
Homework

Next class

Lecture on data compression in embedded system design

A real, graded quiz

122 Robert Dick Embedded System Design and Synthesis


