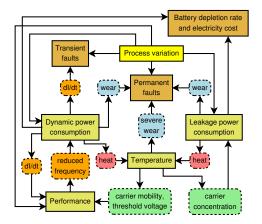
Embedded System Design and Synthesis

Robert Dick


http://ziyang.eecs.northwestern.edu/~dickrp/esds-two-week Department of Electrical Engineering and Computer Science Northwestern University

Office at Tsinghua University: 9-310 East Main Building

	Power consumption Homework	Power and temperature Power consumption modeling Embedded system power consumption optimization
efinitions		

Acoustic phonons

- · Temperature: Average kinetic energy of particle
- · Heat: Transfer of this energy
- $\cdot\,$ Heat always flows from regions of higher temperature to regions of lower temperature
- · Particles move
- $\cdot\,$ What happens to a moving particle in a lattice?

Lattice structure

- Transverse and longitudinal waves
- · Electron-phonon interactions
 - · Effect of carrier energy increasing beyond optic phonon energy?

Robert Dick Embedded System Design and Syn

Power consumption Homework Power consumption modeling Embedded system power consumption optimization

bert Dick Embedded System Design and S

- · Minimum frequency, regardless of wavelength
- · Only occur in lattices with more than one atom per unit cell
- · Optic phonons out of phase from primitive cell to primitive cell
- · Positive and negative ions swing against each other
- · Low group velocity
- Interact with electrons
- · Importance in nanoscale structure modeling?

- Power consumption mod Homework Power consumption mod Embedded system power
 - · Boundary scattering and superlattices
 - Quantum effects when phonon spectra of materials do not match
 Splitting

7 Robert Dick	Embedded System Design and Synthesis	
Power consumption Homework	Power and temperature Power consumption modeling Embedded system power consumption optimization	
Why do wires get hot?		

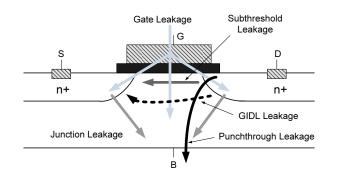
- $\cdot\,$ Scattering of electrons due to destructive interference with waves in the lattice
- · What are these waves?
- · What happens to the energy of these electrons?
- · What happens when wires start very, very cool?
- · What is electrical resistance?
- · What is thermal resistance?

- $\cdot\,$ Scattering of electrons due to destructive interference with waves in the lattice
- $\cdot\,$ Where do these waves come from?
- $\cdot\;$ Where do the electrons come from?
 - Intrinsic carriers
 - Dopants
- $\cdot\;$ What happens as the semiconductor heats up?
 - · Carrier concentration increases
 - · Carrier mobility decreases
 - · Threshold voltage decreases

Robert Dick Embedded System Design and S

Power consumption Homework Power consumption modeling Power consumption in synchronous CMOS

Power consumption Homework Dever consumption Wiring power consumption


- $\cdot~$ In the past, transistor power \gg wiring power
- $\cdot~$ Process scaling \Rightarrow ratio changing
- \cdot Conventional CAD tools neglect wiring power
- \cdot Indicate promising areas of future research

- · Initial optimization at transistor level
- \cdot Further research-driven gains at this level difficult
- · Research moved to higher levels, e.g., RTL
- \cdot Trade area for performance and performance for power
- · Clock frequency gains linear
- · Voltage scaling V_{DD}^2 very important

Adiabatic charging

- $\cdot~$ Voltage step function implies $E={\it CV_{CAP}}^2/2$
- \cdot Instead, vary voltage to hold current constant: $E = C V_{CAP}{}^2 \cdot RC/t$
- · Lower energy if T > 2RC
- Impractical when leakage significant

Leakage

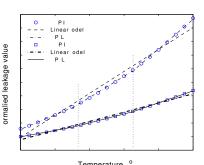
umption modeling

Power consumption Power consumption modeling

Subthreshold leakage current

$$I_{subthreshold} = A_s \frac{W}{L} v_T^2 \left(1 - e^{\frac{-V_{DS}}{v_T}}\right) e^{\frac{(V_{GS} - V_{th})}{mv_T}}$$

- \cdot where A_s is a technology-dependent constant,
- $\cdot V_{th}$ is the threshold voltage,
- $\cdot \,$ L and W are the device effective channel length and width,
- · V_{GS} is the gate-to-source voltage,
- \cdot *n* is the subthreshold swing coefficient for the transistor,
- · V_{DS} is the drain-to-source voltage, and
- · v_T is the thermal voltage.


A. Chandrakasan, W.J. Bowhill, and F. Fox. Design of High-Performance Microprocessor Circuits. IEEE Press, 2001

Robert Dick Embedded Sy

 $V_{DS}\gg v_T$ and $v_T=\frac{kT}{q}.~q$ is the charge of an electron. Therefore, equation can be simplified to

Simplified subthreshold leakage current

$$I_{subthreshold} = A_s \frac{W}{L} \left(\frac{kT}{q}\right)^2 e^{\frac{q(V_{GS} - V_{th})}{nkT}}$$
(1)

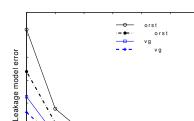
Temperature

ert Dick Embedded Sys

Gate leakage

$$I_{gate} = WLA_J \left(\frac{T_{oxr}}{T_{ox}}\right)^{nt} \frac{V_g V_{aux}}{T_{ox}^2} e^{-BT_{ox}(a-b|V_{ox}|)(1+c|V_{ox}|)}$$

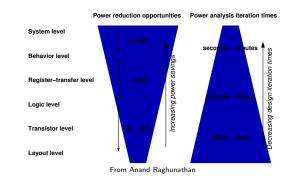
- · where A_J, B, a, b , and c are technology-dependent constants,
- \cdot *nt* is a fitting parameter with a default value of one,
- · V_{ox} is the voltage across gate dielectric,
- \cdot T_{ox} is gate dielectric thickness,
- T_{oxr} is the reference oxide thickness,
- · V_{aux} is an auxiliary function that approximates the density of tunneling carriers and available states, and
- $\cdot V_g$ is the gate voltage.
- K. M. Cao, W. C. Lee, W. Liu, X. Jin, P. Su, S. K. H. Fung, J. X. An, B. Yu, and C. Hu. BSIM4 gate leakage model including source-drain partition. In IEDM Technology Dig., pages 815-818, December 2000


Power consumption conclusions

- $\cdot\,$ Voltage scaling is currently the most promising low-level power-reduction method: V^2 dependence.
- · As V_{DD} reduced, V_T must also be reduced.
- · Sub-threshold leakage becomes significant.
- · What happens if $P_{LEAK} > P_{SWITCH}$?
- · Options to reduce leakage (both expensive):
 - · Liquid nitrogen diode leakage
 - · Silicon-on-insulator (SOI) ISUB

Embedded System Design and Sy

What can be done to reduce power consumption in embedded systems?


Please take/refer to your notes for this portion of the lecture. It is meant to be interactive.

Piecewise linear leakage model name

Design level power savings

Piece-wise linear error

Reference

Embedded Sys

G. Chen, R. Yang, and X. Chen. Nanoscale heat transfer and thermal-electric energy conversion. J. Phys. IV France, 125:499-504, 2005

 $\cdot\,$ Reduce switching activity/clock frequency, glitching

· Reduce voltage (quadratic)

Power minimization techniques

- · Reduce capacitance
- · Reduce temperature or increase threshold to reduce leakage

ert Dick Embedded System Design and S

- · Power/clock gating
- · System-level power management, prediction

Sensor networking and compression references

onsumption Homework

- Lan Bai, Lei Yang, and Robert P. Dick. Automated Compile-Time and Run-Time Techniques to Increase Usable Memory in MMU-Less Embedded Systems. In Proc. Int. Conf. Compilers, Architecture & Synthesis for Embedded Systems, pages 125–135, October 2006
- Changyun Zhu, Zhenyu Gu, Li Shang, Robert P. Dick, and Robert Knobel. Towards an ultra-low-power architecture using single-electron tunneling transistors. In *Proc. Design Automation Conf.*, pages 312–317, June 2007

Assignment: Write a short paragraph describing the most important points in both of these articles.

Robert Dick Embedded System Design and Synthesis