Robert Dick

http://ziyang.eecs.northwestern.edu/~dickrp Department of Electrical Engineering and Computer Science Northwestern University

Embedded system: A computer within a host device, when the host device itself is not generally considered to be a computer.

Not a general-purpose desktop computer.

In many applications, well-designed, correctly functioning embedded systems are almost invisible to their users.

ert Dick Design and Synthesis of Embedded S

ert Dick Design and Synthesis of Embedded Syst

Embedded system market size

Dominates general-purpose computing market in volume)		
Similar in monetary size to general-purpose computing market			
Growing at 15% per year, 10% for general-purpose computing			

CMP Media LLC survey

Conflicting expectations make design difficult and unpredictable

- · 1,100 embedded system developers
- · Majority of projects were running late
- Four-month delay normal
- $\cdot\,$ Majority had lower performance than predicted · 50% expected and planned performance normal

Design process unpredictability due to manual, ad-hoc design

bert Dick Design and Syr

Problem background

RAM quantity limits application functionality

sion for emb

RAM price dropping but usage growing faster Secure Internet access, email, music, and games

How much RAM?

- · Functionality
- · Power consumption

Embedded systems examples

Embedded system requirements

Hard real-time: Deadlines must not be violated	
Wireless: Effects of the communication medium important	
Reliable: Better crash desktops than cars	
First time correct: Field repairs difficult	
Rapidly implemented: IP use, HW–SW co-design	
Low price: Fierce competition between many companies	
High-performance: Massively parallel, using ASICs	
Low power: Battery life and cooling costs	

Our research goals

Develop better embedded system design ideas

Automate embedded system design process

Ideal hardware-software design process

on for embedded sys

Real hardware-software design process

Allow application RAM requirements to overrun initial estimates even after hardware design

Reduce physical RAM, negligible performance and energy cost

Improve functionality or performance with same physical RAM

Robert Dick Design and Synthesis of Embedded Syste

Design principles

Page selection

Scheduling compression and decompression

Memory compression for embedded s

Organizing compressed and uncompressed regions

Dynamically adjust compressed region size

Compression scheme

- · High performance
- · Energy efficient
- · Good compression ratio
- · Low memory requirement

Robert Dick Design and Syn

on for embe Options

Option 1: Add more memory Implications: Hardware redesign, miss shipping target, get fired Option 2: Rip out memory-hungry application features Implications: Lose market to competitors, fail to recoup design and production costs, get fired Option 3: Make it seem as if memory increased without changing

ert Dick Design and Synthesis of Embedded S

hardware, without changing applications, and without performance or power consumption penalties Nobody knew how to do this

Robert Dick Design and Synthesis of Embedded Systems

Aemory compression for embedded :

Past work

HW RAM compression: Tremaine 2001, Benini 2002, Moore 2003

- · Hardware (de)compression unit between cache and RAM
- $\cdot\,$ Hardware redesign and application-specific compression hardware
- · Past work claimed application-specific hardware essential to keep power and performance overhead low

Robert Dick Design and Synthesis of En

ion for emb CRAMES design

is of Embedded S

Memory compression for embedded systems Low-power wireless sensor networks Low-power and temperature-aware design

Pattern-based partial dictionary match coding

Robert Dick Design and Synthesis of Embedded S

Memory compression for embedded systems Low-power wireless sensor networks

Pattern-based partial match

Algorithm

- · Consider each 32-bit word as an input
- · Allow partial dictionary match
- · Use most frequent patterns based on statistical analysis

Optimizations

· Two-way associative LRU 16-entry hash-mapped dictionary

Robert Dick Design and Synthesis of Er

- · Optimized coding scheme
- $\cdot\,$ Early termination for uncompressable data
- · Fine-grained operation parallelization

emory compression for embedded systems

Benchmarks

PBPM twice as fast as LZO

Impact of using CRAMES to reduce physical RAM

Results for

 $\,\cdot\,$ ADPCM: Speech compression application from MediaBench

Design and Synthe

- · JPEG: Image encoding application from MediaBench
- MPEG2: Video CODEC application from MediaBench
- Straight-forward matrix multiplication
 Intentionally difficult for CRAMES
- Also tested on
 - · 10 GUI applications that came with Qtopia
 - \cdot Next-generation cellphone prototype

Weak link: Compression algorithm

LZO average performance penalty 9.5% when RAM reduced to 40%	J
Developed simulation environment to permit profiling	
Compression and decompression were taking most time	
Needed a better compression algorithm)

t Dick Design and Synthesis of Embedded S

Memory compression for embedded systems Low-power wireless sensor networks Low-power and temperature-aware design Data regularity

Experimental setup

ssion for embedded s

Sharp Zaurus SL-5600 PDA

Design and Synthesis of Embedded Syste

- Intel XScale PXA250
- · 32 MB flash memory

rt Dick Design and Sv

- · 32 MB RAM
- Embedix (Linux 2.4.18 kernel)
- $\cdot~$ Qt/Qtopia PDA edition

Memory compression for embedded syst Low-power wireless sensor netwo Low-power and temperature-aware des

Results

Reduced RAM from 20 MB to $8\,\text{MB}$

Base case: 20 MB RAM, no compression

Without CRAMES

- · All suffered significant performance penalties
- · Matrix multiplication cannot execute

With CRAMES

- · LZO average case 9% overhead, worst case 29%
- $\cdot\,$ PBPM average case 2.5% overhead, worst case 9%

Also works on arbitrary in-RAM filesystems

Wenery compression for embedded systems Low-power wireless sensor networks Low-power and temperature-aware design

Self-organized wireless networks of sensors	
Extremely tight resource constraints	
· Limited performance processor	
 Tight memory constraints, e.g., 4 KB 	
 Have solution based on compiler technology 	
· Energy constraints	

ert Dick Design and Synthesis of Embedded Syste

Low-power wireless sensor netwo Low-power and temperature-aware des

Lucid dreaming

16 µW event detector power	
consumption	
	1

Extends battery life from weeks to many months

Low-power and temperature-aware design Power and its associated evils

Until then, NEC gave us these T-shirts

Memory compression for embedded systems Low-power wireless sensor networks Low-power and temperature-aware design Event-driven applications

Events occur at unpredictable times

E.g., structural integrity monitoring

Should not be ignored

- Existing sensor network nodes only poll
- Some have proposed SW solutions, e.g., Zheng 2003
 Will either miss events or waste power

bert Dick Design and Synthesis of Embedded Syst

· Designed hardware solution

Low-power wireless sensor networks Low-power and temperature-aware design

High power consumption results in

- · Expensive, bulky packaging
- Limited performance
- Short battery life
- Reduced reliability

High-level trade-offs among

Power, speed, price, area, and temperature

Low-power wireless sensor networks Low-power and temperature-aware design

Synthesis motivation and definition

VLSI ICs among most complex systems designed by humans

Robert Dick Design and Synthesis of Embedded S

- · Automation is essential
- Manual design no longer possible

Synthesis is the use of algorithms for automatic design

Asynchronous time marching

Asynchronous elements

- · Local time estimation expensive for higher-order methods
- For each element, compute partial results based on *n* neighbors $n = (4d^3/3 + 2d^2 + 8d/3)$

bert Dick Design and S

 Allow step sizes to differ in space and time
 I

 This eliminates local time synchronization
 I

 How to handle steps when neighbors at different time?
 I

· Discretized octahedron

<text><text><image><figure><text><text><text><text><text>

Asynchronous temporal adaptation

- · Neighbors at different times
- · Extrapolate neighbor temperatures to take step
- · Adapt step size by taking two $^{3}/_{4}$ h, one $^{3}/_{2}$ h steps and comparing

$$s_i(t_i) = u \cdot \sqrt[v]{\left|\frac{dT_i}{dt}(t_i) \cdot \frac{3}{2} \cdot h_i - \frac{3}{4} \cdot h_i\left(\frac{dT_i}{dt}(t_i) + \frac{dT_i}{dt}(t_i + \frac{3}{4} \cdot h_i)\right)\right|}$$

t Dick Design and Synthesis of E

where v is the order of the method in use

Memory compression for embedded systems Low-power and temperature-aware design Asynchronous time marching validation

	ISAC			GARK4		
Problem	CPU	Speedup	Mem.	Error	CPU	Mem.
	time (s)	(×)	(KB)	(%)	time (s)	(KB)
chemical	1.35	1354	463.47	0.13	1827.41	4,506
dct_wang	0.39	1457	312.64	0.09	568.22	4,506
dct_dif	0.40	1807	332.91	0.05	722.64	4,506
dct_lee	0.85	1071	439.22	0.04	910.88	4,506
elliptic	2.24	1361	412.23	0.02	3042.61	4,506
iir77	0.86	1521	803.09	0.08	1305.25	4,506
jcb_sm	0.58	1890	357.30	0.11	1092.98	4,506
mac	1.65	1105	403.47	0.45	1817.71	4,506
paulin	0.77	1439	354.28	0.18	1111.68	4,506
pr2	1.06	1831	489.36	0.35	1932.95	4,506

Low-power and temperature-aware design Example asynchronous method

$$0 = \sum_{i=1}^{6} \frac{T(t) - T_i \cdot u(t)}{R_i} + C \frac{dT}{dt} - P \cdot u(t)$$

By Laplace transform, linearity theorem, and inverse Laplace transform.

$$\frac{dT}{dt} = \left(\frac{\sum_{i=1}^{6} T_i/R_i + P - T(0^-) \cdot \sum_{i=1}^{6} 1/R_i}{C}\right) \cdot e^{-t/C \sum_{i=1}^{6} 1/R_i}$$

Design and Synthesis of Embedded Sy

Allows computation of temperature after time step.

Low-power wireless sensor Low-power and temperature-awa Step size adaptation

Low-power wireless sensor networks Low-power and temperature-aware design Optimal temperature-aware real-time scheduling

Developed MILP formulation of temperature-aware real-time signment and scheduling problem
Ninimize peak temperature under hard time constraints
CPLEX can optimally solve for ICs with 3×3 processor cores
Compared to optimal energy consumption minimization
· Peak temperature reduction of 8.7 °C, on average
 Peak temperature reduction up to 24.7 °C

Developed fast heuristic that deviates from optimality by $< 2.8\,^\circ\text{C}$

h

Design and Sy

<u>SET</u> I–V curve

Memory compression for embedded syste Low-power wireless sensor netwo

Summary of research philosophy

Some projects should ship soon, some should be risky

Low-power wireless sensor netw Low-power and temperature-aware d Acknowledgments

Mentors, for blunt and good advice since my arrival

Prof. Lawrence Henschen (my faculty mentor), Prof. Alok Choudhary (CES Division Head), and Prof. Abraham Haddad

Sponsors, for making our research possible

Dr. Helen Gill (NSF), Dr. Srimat Chakradhar (NEC Labs America), Dr. David Yeh (SRC), Dr. Anita LaSalle (NSF), and Dr. William Joyner (SRC)

One possible future CMOS replacement

Projected switching energy: $1\times 10^{-18}\,\text{J}$

t Dick Design and Synthesis of En

Evaluated for embedded and high-performance use

Circuit design and modeling

Architectural reliability enhancements

Synthesized numerous processors in proposed architecture ARM7, ASPIDA DLX, Jam RISC, LEON2 SPARC, Microblaze RISC, miniMIPS, MIPS, PLASMA, UCore, YACC, AES, AVR, CORDIC, ECC, FPU, RS, USB, and VC

Two orders of magnitude improvement in energy efficiency over $\ensuremath{\mathsf{CMOS}}$

bert Dick Design and Synthesis of Embedded S

Low-power wireless sensor net Low-power and temperature-aware o

Acknowledgments

Advisees, for doing all the heavy lifting

Lan Bai, Zhenyu Gu, Sasha Jevtic, Ai-Hsing Liu, Lei Yang, Yonghong Yang, and Changyun Zhu

Collaborators

Srimat Chakradhar, Peter Dinda, Xiaobo Sharon Hu, Russ Joseph, Mat Kotowsky, Haris Lekatsas, Gokhan Memik, Li Shang, Huazhong Yang, and Hai Zhou

Thank you for attending!

Design and Synthesis of Embedded S

More information at http://www.eecs.northwestern.edu/~dickrp

Other upcoming Meet the EECS Faculty Seminars

- 4 May: Fabián Bustamante
- Grand Challenges in Large-Scale Distributed Systems
- 18 May: Dongning Guo
 - Information and Estimation in Communications

Robert Dick Design and Synthesis of Embedded Systems

Backup slides

Design and Synthesis of Embed

Lekatsas 2000, Xu 2004

- · Store code compressed, decompress during execution
- · Compress off-line, decompress on-line
- · For RAM, less important than on-line data compression

Memory compression for embedded systems Low-power wireless sensor networks Low-power and temperature-aware design Past work: Compression for swap performance

· Compressed caching

- Douglis 1993, Russinovich 1996, Wilson 1999, Kjelso 1999
 Add compressed software cache to VM
- Swap compression
 - · RamDoubler, Cortez 2000, Roy 2001, Chihaia 2005
 - Compress swapped-out pages and store them in software cache

ert Dick Design and Synthesis of Embedded Syste

- · Both techniques
 - \cdot Target: general purpose system with disks
 - · Goal: improve system performance
 - \cdot Interface to backing store (disk)

Low-power wireless sensor networks

Thermal modeling

Lorenzo Codecasa, Dario D'Amore, and Paolo Maffezzoni. An Arnoldi based thermal network reduction method for electro-thermal analysis. *Trans. Components and Packaging Technologies*, 26(1):168–192, March 2003

Thermal-aware synthesis

- Rajarshi Mukherjee, Seda Ogrenci Memik, and Gokhan Memik. Temperature-aware resource allocation and binding in high-level synthesis. In *Proc. Design Automation Conf.*, June 2005
- W.-L. Hung, G. Link, Y. Xie, N. Vijaykrishnan, N. Dhanwada, and J. Conner. Temperature-aware voltage islands architecting in system-on-chip design. In *Proc. Int. Conf. Computer Design*, October 2005

ert Dick Design and Synthesis of Embedd

Memory compression for embedded systems Low-power wireless sensor networks Low-power and temperature-aware design

Memory expansion for MMU-less embedded systems

bservations and Results
 Main application: Sensor network nodes
 Implemented in LLVM and tested on TelosB nodes
 Increases usable memory by 50%, no changes to applications
 Performance and energy penalties small after compiler optimizations
CACECIAC

With Lan Bai and Lei Yang

Design and Synthesis of Embedded

Related work

Thermal modeling

- P. Li, L. T. Pileggi, M. Ashghi, and R. Chandra. Efficient full-chip thermal modeling and analysis. In *Proc. Int. Conf. Computer-Aided Design*, pages 319–326, November 2004
- Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy, Karthik Sankaranarayanan, and David Tarjan.
 Temperature-aware microarchitecture. In *Proc. Int. Symp. Computer Architecture*, pages 2–13, June 2003
- · COMSOL Multiphysics (FEMLAB)

Robert Dick Design and Synthesis of Embedded Syster

Low-power wireless sensor networks Low-power and temperature-aware design

Wave propagation and update order

 $\cdot\,$ Bound neighbor difference to prevent wave propagation problem

$$h'_i = \min\left(s_i(t_i), \min_{n \in N_i}(w \cdot (t_n + h_n - t_i))\right)$$

- w a small constant, e.g., 3
- · Asynchronous times, which element to update?
- · Discrete event simulator
- · Used event queue ordered by earliest step target time $t_i + h_i$

Application characterization for system synthesis

Applications

Design and Synthesis of Fi

- Extract communication graphs from arbitrary multithreaded applications
 Non-intrusive
- · NON-INCLUSIVE
- Use for application-specific multiprocessor synthesis
- · CODES-ISSS'06
- · Publicly released

With Ai-Hsin Liu

art Dick Design and Synthesis of Embedded Systems