Executive Sumary

Motivation

Towards an Ultra-Low-Power Architecture Using Single-Electron
Tunneling Transistors

- CMOS is approaching fabrication, power, and thermal limits
- Can new device technologies solve these problem?

Single electron tunneling transistor (SET)

Unique property: lowest projected power consumption

Challenges: fabrication for room-temperature operation, offset
charge noise, etc.
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High-performance applications: energy cost, temperature, reliability
Portable embedded systems: battery lifetime
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What does history teach us about power consumption? Single electron tunneling transistor structure

Device innovations have been the most effective method
- Vacuum tube to semiconductor device in the 1960s
Bipolar device to CMOS transistor in the 1990s

Device structure

Island, terminals (source, drain, gate)

Electron tunneling through tunneling junctions
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Based on diagram by C. Johnson, IBM Server and Technology Group.

Single electron tunneling transistor behavior SET properties and challenges

Physical principles

- Coulomb charging effect governs electron tunneling

Coulomb blockade Vgs = me/Cg, m = £1/2,43/2,--- OFF, Ultra low power
A= thedhernos O - Projected energy per switching event (1 x 10718 J)
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SET properties and challenges

Performance challenge

Electrons must be confined in the island
Rs,Rp > h/e?, h/e* = 25.8kQ
High resistance, low driving strength

Reliability concerns

+ Tunneling between charge traps cause run-time errors
Unknown before fabrication
Device technology: Improved by silicon islands
Reliable design: Post-fabrication adaptation

Run-time error correction

IceFlex architecture

Fault-tolerant, hybrid SET/CMOS reconfigurable architecture

Multi-gate SET-based reconfigurable look-up tables and switch
fabric

- SET-based arithmetic unit

+ SET-based reconfiguration memory

- SET threshold logic-based majority voting logic
Hybrid SET/CMOS multi-level interconnect fabric
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Multi-context on-chip storage design

Multi-context configuration cache

Dual-island SET design

Configuration sets
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Interconnect

Local interconnect

Requires limited driving strength
- Constant-latency, SET-based design
- Simplify physical design, i.e., routing

Global interconnect

Requires high driving strength
Hybrid SET/CMOS design
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IceFlex: low-power, fault-tolerant, hybrid SET/CMOS
reconfigurable architecture

Develop a testbed to investigate possible uses of SETs in low-power
embedded system design

Design metrics

Power consumption, peformance, reliability, fabrication, cooling

SET-specific design features

Fabrication challenge: Regular architecture to ease fabrication
Reliability challenge: Built-in redundancy, fault-tolerant design
Performance challenge: Hybrid SET/CMOS design

Unique properties: Multi-gate design for non-linearly-separable
functions and voting logic

Multi-gate SET reconfigurable lookup table

SET multi-gate integration

- Gate charging effect: a function of } Cg, Vs,
Multiplexer design: reduce logic depth, hence circuit delay
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Efficient SET arithmetic function

SET non-unate logic
- Complicated design using threshold logic, BJT, and CMOS
+ Taking advantage of the periodic nature of SET |-V
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Potential uses of single-electron tunneling transistors

Application domains " :
n Design metrics
High-performance

L Power, performance
applications

Fabrication, reliability
Battery-powered systems

Benchmarks Description Benchmarks Description
AES AES (Rijndael) IP core ARM7 Power-efficient RISC CPU
AVR ATMegal03 microcontroller ASPIDA DLX Synchronous / DLX core
CORDIC Coordinate rotation computer Jam RISC Five-stage pipeline RISC CPU

ECC ECC core LEON2 SPARC Entire SPARC V8 processor
FPU 32-bit IEEE 754 floating-point Microblaze RISC CPU

RS Reed Solomon encoder miniMIPS MIPS | clone

usB USB 2.0 function MIPS MIPS processor

VC Video compression systems Plasma Supports most MIP | opcodes
UCore MIPS | integer only clone YACC MIPS | clone



Energy efficiency

SET-based design can improve system energy efficiency by 100x

Energy (J/cycle)

IceFlex optimized for battery-powered applications

Freq (MHz)

Reliability
Impact of Majority Voting Logic

Estimates by Likharev in “Single-electron devices and their applications,” Proc.

Case study: Battery-powered applications
Given one AA battery
IceFlex AVR can run 20 years

Given 5cm?® scavenging volume

Energy densities from Roundy, Wright, and Rabaey in “A Study of Low Level
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IceFlex optimized for high-performance applications
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MVL can significantly minimize circuit failures
IceFlex supports Run-time failure detect and correction

SET fault probability 1/10,000
Majority vote inputs 3 5 7
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Room-temperature operation, cooling, and fabrication

Raw fail prob. 1/157  1/157 1/157
SET MVL prob. 1/8,200 1/372,000 1/5,650,000

Recent advances in device technology may greatly reduce error rate.

IEEE.

Can run at max frequency from vibrations (200 yW/cm?)
Max frequency from temperature variations (10 W /cm?3)

- 3.7 MHz from indoor solar energy (4 pW/cm3)
- 2.8kHz from 75dB acoustic noise (0.003 p\W/cm?)

Vibrations as a Power Source for Wireless Sensor Nodes,” Computer
Communications.

Cs = €’/(10kg T) Cs = €°/(40ks T)
Temperature Island Island Island Island

(K) capacitance | diameter | capacitance | diameter
(aF) (nm) (aF) (nm)
40 CMOS operation 4.65 52.48 1.16 13.12
77 | Liquid nitrogen cooling 2.41 27.26 0.60 6.82
103 | Average cloud top temp. 1.80 20.38 0.45 5.10
120 Cryogenic 1.55 17.49 0.39 4.37
200 SET device 0.93 10.50 0.23 2.62
250 | Stacked Peltier heat pump 0.74 8.40 0.19 2.10
300 Room temperature 0.62 7.00 0.15 1.75

Nanometer-scale fabrication to enable room-temperature
operation

- Compact cooling design at cryogenic temperature range

Case study: High-performance parallel applications

+ Assume many-core systems can be efficiently used in the future
Given 100 W power budget

+ Supports approximately 4,500 LEON2 SPARC cores at 1 GHz

+ Approximately 4.8 Terra instructions per second

Conclusions

Investigated potential of SETs in low-power system design

Designed IceFlex, a low-power, fault-tolerant, hybrid SET/CMOS
reconfigurable architecture

Opportunities and challenges

+ Orders of magnitude power and energy efficiency improvement

Fabrication, cooling design, and reliability challenges



