Towards an Ultra-Low-Power Architecture Using Single-Electron **Tunneling Transistors**

Queen's University Changyun Zhu Li Shang Robert Knobel

Northwestern University Zhenyu Gu Robert Dick

6 June 2007

Outline

- Introduction
- $\cdot\,$ Power, energy, and thermal challenges · Background
- · SET properties and challenges Testbed design
- · IceFlex: a hybrid SET/CMOS reconfigurable architecture Evaluation
- Possible uses of SETs in low-power design
- · Conclusions

What does history teach us about power consumption?

- Vacuum tube to semiconductor device in the 1960s
- · Bipolar device to CMOS transistor in the 1990s

Based on diagram by C. Johnson, IBM Server and Technology Group.

Single electron tunneling transistor behavior

Physical principles

- Coulomb charging effect governs electron tunneling · Coulomb blockade $V_{GS} = me/C_G$, $m = \pm 1/2, \pm 3/2, \cdots$ OFF,
 - $m = 0, \pm 1, \pm 2, \cdots$ ON

Executive Sumary

Motivation

- · CMOS is approaching fabrication, power, and thermal limits
- · Can new device technologies solve these problem?

Single electron tunneling transistor (SET)

- · Unique property: lowest projected power consumption
- · Challenges: fabrication for room-temperature operation, offset charge noise, etc.

Goal: investigate possible uses of SETs in low-power design

- · IceFlex: fault-tolerant, SET/CMOS reconfigurable architecture
- $\cdot~$ 100 \times energy efficiency improvement over 22 nm CMOS
- · Designed for unique challenges posed by SETs

Power challenges

High-performance applications: energy cost, temperature, reliability Portable embedded systems: battery lifetime

Single electron tunneling transistor structure

Device structure

- Island, terminals (source, drain, gate)
- · Electron tunneling through tunneling junctions

SET properties and challenges

Ultra low power
\cdot Projected energy per switching event (1 $\times10^{-18}$ J)
Room temperature and fabrication challenge
 Electrostatic charging energy must be greater than thermal energy e²/C_∑ > k_BT Requires e²/C_∑ > 10k_BT or even e²/C_∑ > 40k_BT

Performance challenge

- Electrons must be confined in the island
- $R_S, R_D > h/e^2, h/e^2 = 25.8 \,\mathrm{k}\Omega$
- · High resistance, low driving strength

Reliability concerns

- · Tunneling between charge traps cause run-time errors
- · Unknown before fabrication
- · Device technology: Improved by silicon islands
- · Reliable design: Post-fabrication adaptation
- · Run-time error correction

IceFlex architecture

Fault-tolerant, hybrid SET/CMOS reconfigurable architecture

- Multi-gate SET-based reconfigurable look-up tables and switch fabric
- · SET-based arithmetic unit
- · SET-based reconfiguration memory
- · SET threshold logic-based majority voting logic
- · Hybrid SET/CMOS multi-level interconnect fabric

SET configuration memory

Multi-context on-chip storage design

- · Multi-context configuration cache
- · Dual-island SET design

SET configuration memory

Interconnect

Local interconnect

- · Requires limited driving strength
- · Constant-latency, SET-based design
- · Simplify physical design, i.e., routing

IceFlex: low-power, fault-tolerant, hybrid SET/CMOS reconfigurable architecture

Goal

Develop a testbed to investigate possible uses of SETs in low-power embedded system design

Design metrics

Power consumption, peformance, reliability, fabrication, cooling

SET-specific design features

- · Fabrication challenge: Regular architecture to ease fabrication
- · Reliability challenge: Built-in redundancy, fault-tolerant design
- · Performance challenge: Hybrid SET/CMOS design
- · Unique properties: Multi-gate design for non-linearly-separable functions and voting logic

Multi-gate SET reconfigurable lookup table

SET multi-gate integration

- · Gate charging effect: a function of $\sum C_{G_i} V_{GS_i}$
- · Multiplexer design: reduce logic depth, hence circuit delay

m-to-1 multi-gate multiplexer SET tree m_c-to-1 multi-gate SET multiplexer

Efficient SET arithmetic function

-20

20

60

0

V_{GS}(mV)

Potential uses of single-electron tunneling transistors

-60 -40

Application domains High-performance applications Battery-powered systems 		Design metrics • Power, performance • Fabrication, reliability		
Benchmarks	Description	Benchmarks	Description	
AES	AES (Rijndael) IP core	ARM7	Power-efficient RISC CPU	
AVR	ATMega103 microcontroller	ASPIDA DLX	Synchronous / DLX core	
CORDIC	Coordinate rotation computer	Jam RISC	Five-stage pipeline RISC CPU	
ECC	ECC core	LEON2 SPARC	Entire SPARC V8 processor	
FPU	32-bit IEEE 754 floating-point	Microblaze	RISC CPU	
RS	Reed Solomon encoder	miniMIPS	MIPS I clone	
USB	USB 2.0 function	MIPS	MIPS processor	
VC	Video compression systems	Plasma	Supports most MIP I opcodes	
UCore	MIPS I integer only clone	YACC	MIPS I clone	

IceFlex optimized for battery-powered applications

Reliability

Impact of Majority Voting Logic

- MVL can significantly minimize circuit failures
- · IceFlex supports Run-time failure detect and correction

Recent advances in device technology may greatly reduce error rate.

Estimates by Likharev in "Single-electron devices and their applications," Proc. IEEE.

Case study: Battery-powered applications

Given one AA battery

IceFlex AVR can run 20 years

Given 5 cm³ scavenging volume

- \cdot Can run at max frequency from vibrations (200 $\mu W/cm^3)$
- $\cdot\,$ Max frequency from temperature variations (10 $\mu W/cm^3)$
- \cdot 3.7 MHz from indoor solar energy (4 μ W/cm³)
- $\cdot~$ 2.8 kHz from 75 dB acoustic noise (0.003 $\mu W/cm^3)$

Energy densities from Roundy, Wright, and Rabaey in "A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes," Computer Communications.

IceFlex optimized for high-performance applications

Room-temperature operation, cooling, and fabrication

	$C_{\Sigma} = e^2/(10^{-5})^2$		$0k_BT) C_{\Sigma} = e^2/(40k_BT)$		
Temperature		Island	Island	Island	Island
(K)		capacitance	diameter	capacitance	diameter
		(aF)	(nm)	(aF)	(nm)
40	CMOS operation	4.65	52.48	1.16	13.12
77	Liquid nitrogen cooling	2.41	27.26	0.60	6.82
103	Average cloud top temp.	1.80	20.38	0.45	5.10
120	Cryogenic	1.55	17.49	0.39	4.37
200	SET device	0.93	10.50	0.23	2.62
250	Stacked Peltier heat pump	0.74	8.40	0.19	2.10
300	Room temperature	0.62	7.00	0.15	1.75

Observations

- Nanometer-scale fabrication to enable room-temperature operation
- operation
- \cdot Compact cooling design at cryogenic temperature range

Case study: High-performance parallel applications

- $\cdot\,$ Assume many-core systems can be efficiently used in the future
- · Given 100 W power budget
- · Supports approximately 4,500 LEON2 SPARC cores at 1 GHz
- · Approximately 4.8 Terra instructions per second

Conclusions

Investigated potential of SETs in low-power system design

Designed IceFlex, a low-power, fault-tolerant, hybrid $\mathsf{SET}/\mathsf{CMOS}$ reconfigurable architecture

Opportunities and challenges

- · Orders of magnitude power and energy efficiency improvement
- \cdot Fabrication, cooling design, and reliability challenges