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Executive Sumary

Motivation

CMOS is approaching fabrication, power, and thermal limits

Can new device technologies solve these problem?

Single electron tunneling transistor (SET)

Unique property: lowest projected power consumption

Challenges: fabrication for room-temperature operation, offset
charge noise, etc.

Goal: investigate possible uses of SETs in low-power design

IceFlex: fault-tolerant, SET/CMOS reconfigurable architecture

100× energy efficiency improvement over 22 nm CMOS

Designed for unique challenges posed by SETs

Outline
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Power challenges

High-performance applications: energy cost, temperature, reliability
Portable embedded systems: battery lifetime
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What does history teach us about power consumption?

Device innovations have been the most effective method

Vacuum tube to semiconductor device in the 1960s

Bipolar device to CMOS transistor in the 1990s
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Based on diagram by C. Johnson, IBM Server and Technology Group.

Single electron tunneling transistor structure

Device structure

Island, terminals (source, drain, gate)

Electron tunneling through tunneling junctions
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Single electron tunneling transistor behavior

Physical principles

Coulomb charging effect governs electron tunneling

Coulomb blockade VGS = me/CG , m = ±1/2,±3/2, · · · OFF,
m = 0,±1,±2, · · · ON
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SET properties and challenges

Ultra low power

Projected energy per switching event (1 × 10−18 J)

Room temperature and fabrication challenge

Electrostatic charging energy must be greater than thermal
energy

e2/CP > kBT

Requires e2/CP > 10kBT or even e2/CP > 40kBT



SET properties and challenges

Performance challenge

Electrons must be confined in the island

RS ,RD > h/e2, h/e2 = 25.8 kΩ

High resistance, low driving strength

Reliability concerns

Tunneling between charge traps cause run-time errors

Unknown before fabrication

Device technology: Improved by silicon islands

Reliable design: Post-fabrication adaptation

Run-time error correction

IceFlex: low-power, fault-tolerant, hybrid SET/CMOS
reconfigurable architecture

Goal

Develop a testbed to investigate possible uses of SETs in low-power
embedded system design

Design metrics

Power consumption, peformance, reliability, fabrication, cooling

SET-specific design features

Fabrication challenge: Regular architecture to ease fabrication

Reliability challenge: Built-in redundancy, fault-tolerant design

Performance challenge: Hybrid SET/CMOS design

Unique properties: Multi-gate design for non-linearly-separable
functions and voting logic

IceFlex architecture

Fault-tolerant, hybrid SET/CMOS reconfigurable architecture

Multi-gate SET-based reconfigurable look-up tables and switch
fabric

SET-based arithmetic unit

SET-based reconfiguration memory

SET threshold logic-based majority voting logic

Hybrid SET/CMOS multi-level interconnect fabric

Majority

voting logic

SET multi-gate

look-up table

SET input switch fabric SET registers

SET local

interconnect

Hybrid SET/CMOS

global interconnect

SET configuration

memory

Multi-gate SET reconfigurable lookup table

SET multi-gate integration

Gate charging effect: a function of
∑

CGi
VGSi

Multiplexer design: reduce logic depth, hence circuit delay
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SET configuration memory

Multi-context on-chip storage design

Multi-context configuration cache

Dual-island SET design

SET configuration memory
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Efficient SET arithmetic function

SET non-unate logic

Complicated design using threshold logic, BJT, and CMOS

Taking advantage of the periodic nature of SET I–V
characteristics
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Interconnect

Local interconnect

Requires limited driving strength

Constant-latency, SET-based design

Simplify physical design, i.e., routing

Global interconnect

Requires high driving strength

Hybrid SET/CMOS design
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Potential uses of single-electron tunneling transistors

Application domains

High-performance
applications

Battery-powered systems

Design metrics

Power, performance

Fabrication, reliability

Benchmarks Description Benchmarks Description

AES AES (Rijndael) IP core ARM7 Power-efficient RISC CPU

AVR ATMega103 microcontroller ASPIDA DLX Synchronous / DLX core
CORDIC Coordinate rotation computer Jam RISC Five-stage pipeline RISC CPU

ECC ECC core LEON2 SPARC Entire SPARC V8 processor
FPU 32-bit IEEE 754 floating-point Microblaze RISC CPU
RS Reed Solomon encoder miniMIPS MIPS I clone

USB USB 2.0 function MIPS MIPS processor
VC Video compression systems Plasma Supports most MIP I opcodes

UCore MIPS I integer only clone YACC MIPS I clone



Energy efficiency

SET-based design can improve system energy efficiency by 100×
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IceFlex optimized for high-performance applications
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IceFlex optimized for battery-powered applications
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Room-temperature operation, cooling, and fabrication

CΣ = e
2/(10kBT ) CΣ = e

2/(40kBT )
Temperature Island Island Island Island

(K) capacitance diameter capacitance diameter
(aF) (nm) (aF) (nm)

40 CMOS operation 4.65 52.48 1.16 13.12
77 Liquid nitrogen cooling 2.41 27.26 0.60 6.82
103 Average cloud top temp. 1.80 20.38 0.45 5.10
120 Cryogenic 1.55 17.49 0.39 4.37
200 SET device 0.93 10.50 0.23 2.62
250 Stacked Peltier heat pump 0.74 8.40 0.19 2.10
300 Room temperature 0.62 7.00 0.15 1.75

Observations

Nanometer-scale fabrication to enable room-temperature
operation

Compact cooling design at cryogenic temperature range

Reliability

Impact of Majority Voting Logic

MVL can significantly minimize circuit failures

IceFlex supports Run-time failure detect and correction

SET fault probability 1/10, 000
Majority vote inputs 3 5 7

Raw fail prob. 1/157 1/157 1/157
SET MVL prob. 1/8,200 1/372,000 1/5,650,000

Recent advances in device technology may greatly reduce error rate.

Estimates by Likharev in “Single-electron devices and their applications,” Proc.
IEEE.

Case study: High-performance parallel applications

Assume many-core systems can be efficiently used in the future

Given 100 W power budget

Supports approximately 4,500 LEON2 SPARC cores at 1 GHz

Approximately 4.8 Terra instructions per second

Case study: Battery-powered applications

Given one AA battery

IceFlex AVR can run 20 years

Given 5 cm3 scavenging volume

Can run at max frequency from vibrations (200 µW/cm3)

Max frequency from temperature variations (10 µW/cm3)

3.7MHz from indoor solar energy (4 µW/cm3)

2.8 kHz from 75 dB acoustic noise (0.003 µW/cm3)

Energy densities from Roundy, Wright, and Rabaey in “A Study of Low Level
Vibrations as a Power Source for Wireless Sensor Nodes,” Computer
Communications.

Conclusions

Investigated potential of SETs in low-power system design

Designed IceFlex, a low-power, fault-tolerant, hybrid SET/CMOS
reconfigurable architecture

Opportunities and challenges

Orders of magnitude power and energy efficiency improvement

Fabrication, cooling design, and reliability challenges


