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Executive Sumary

Motivation
e CMOS is approaching fabrication, power, and thermal limits

e Can new device technologies solve these problem?

Single electron tunneling transistor (SET)
* Unique property: lowest projected power consumption

e Challenges: fabrication for room-temperature operation, offset
charge noise, etc.

Goal: investigate possible uses of SETs in low-power design
e IceFlex: fault-tolerant, SET/CMOS reconfigurable architecture
e 100x energy efficiency improvement over 22 nm CMOS

® Designed for unique challenges posed by SETs
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Power challenges

High-performance applications: energy cost, temperature, reliability

Portable embedded systems: battery lifetime
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What does history teach us about power consumption?

Device innovations have been the most effective method
e Vacuum tube to semiconductor device in the 1960s
# Bipolar device to CMOS transistor in the 1990s
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Single electron tunneling transistor structure

Device structure

e Island, terminals (source, drain, gate)

® Electron tunneling through tunneling junctions
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Single electron tunneling transistor behavior

Physical principles
® Coulomb charging effect governs electron tunneling

» Coulomb blockade Vs = me/Cq, m=+1/2,4£3/2,--- OFF,
m=0,4+1,42,--- ON
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SET properties and challenges

Ultra low power

 Projected energy per switching event (1 x 10718 J)

Room temperature and fabrication challenge

o Electrostatic charging energy must be greater than thermal
energy

e e?/Cx > kpT
® Requires e?/Cs~ > 10kg T or even e€?/Cs~ > 40kg T
) )



SET properties and challenges

Performance challenge
e Electrons must be confined in the island
e Rs,Rp > h/e2, h/62 = 25.8kQ2

» High resistance, low driving strength

Reliability concerns
e Tunneling between charge traps cause run-time errors

Unknown before fabrication

Device technology: Improved by silicon islands

Reliable design: Post-fabrication adaptation

Run-time error correction



IceFlex: low-power, fault-tolerant, hybrid SET/CMOS
reconfigurable architecture

Goal

Develop a testbed to investigate possible uses of SETs in low-power
embedded system design

Design metrics

Power consumption, peformance, reliability, fabrication, cooling

SET-specific design features

Fabrication challenge: Regular architecture to ease fabrication

Reliability challenge: Built-in redundancy, fault-tolerant design
Performance challenge: Hybrid SET/CMOS design

Unique properties: Multi-gate design for non-linearly-separable
functions and voting logic



IceFlex architecture

Fault-tolerant, hybrid SET/CMOS reconfigurable architecture

e Multi-gate SET-based reconfigurable look-up tables and switch
fabric

SET-based arithmetic unit

SET-based reconfiguration memory

SET threshold logic-based majority voting logic
Hybrid SET/CMOS multi-level interconnect fabric
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Multi-gate SET reconfigurable lookup table

SET multi-gate integration

» Gate charging effect: a function of ) Cg, Vs,

o Multiplexer design: reduce logic depth, hence circuit delay
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SET configuration memory

Multi-context on-chip storage design
® Multi-context configuration cache
e Dual-island SET design

Configuration sets
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Efficient SET arithmetic function

SET non-unate logic

o Complicated design using threshold logic, BJT, and CMOS

e Taking advantage of the periodic nature of SET |-V
characteristics
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Interconnect

Local interconnect
® Requires limited driving strength
» Constant-latency, SET-based design
» Simplify physical design, i.e., routing

Global interconnect
® Requires high driving strength
* Hybrid SET/CMOS design
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Potential uses of single-electron tunneling transistors

Application domains

» High-performance
applications

» Battery-powered systems

Design metrics

* Power, performance

» Fabrication, reliability

Benchmarks Description Benchmarks Description
AES AES (Rijndael) IP core ARM7 Power-efficient RISC CPU
AVR ATMegal03 microcontroller ASPIDA DLX Synchronous / DLX core
CORDIC Coordinate rotation computer Jam RISC Five-stage pipeline RISC CPU

ECC ECC core LEON2 SPARC Entire SPARC V8 processor
FPU 32-bit IEEE 754 floating-point Microblaze RISC CPU

RS Reed Solomon encoder miniMIPS MIPS | clone

USB USB 2.0 function MIPS MIPS processor

\e Video compression systems Plasma Supports most MIP | opcodes
UCore MIPS | integer only clone YACC MIPS | clone




Energy efficiency

SET-based design can improve system energy efficiency by 100x
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IceFlex optimized for high-performance applications
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IceFlex optimized for battery-powered applications
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Room-temperature operation, cooling, and fabrication

Cs = €?/(10kg T)

Cr = €?/(40kgT)

Temperature Island Island Island Island
(K) capacitance | diameter | capacitance | diameter

(aF) (nm) (aF) (Gl)

40 CMOS operation 4.65 52.48 1.16 13.12
77 Liquid nitrogen cooling 2.41 27.26 0.60 6.82
103 | Average cloud top temp. 1.80 20.38 0.45 5.10
120 Cryogenic 1.55 17.49 0.39 4.37
200 SET device 0.93 10.50 0.23 2.62
250 | Stacked Peltier heat pump 0.74 8.40 0.19 2.10
300 Room temperature 0.62 7.00 0.15 1.75

Observations

* Nanometer-scale fabrication to enable room-temperature

o Compact cooling design at cryogenic temperature range

operation



Reliability

Impact of Majority Voting Logic
e MVL can significantly minimize circuit failures

o IceFlex supports Run-time failure detect and correction

SET fault probability 1/10,000
Majority vote inputs 3 5 7

Raw fail prob. 1/157 1/157 1/157
SET MVL prob. 1/8,200 1/372,000 1/5,650,000

Recent advances in device technology may greatly reduce error rate.

Estimates by Likharev in “Single-electron devices and their applications,” Proc.
IEEE.



Case study: High-performance parallel applications

Assume many-core systems can be efficiently used in the future
Given 100 W power budget

Supports approximately 4,500 LEON2 SPARC cores at 1 GHz
Approximately 4.8 Terra instructions per second



Case study: Battery-powered applications

Given one AA battery
IceFlex AVR can run 20 years

Given 5cm?3 scavenging volume
« Can run at max frequency from vibrations (200 yW /cm?3)

Max frequency from temperature variations (10 pW/cm?3)

3.7 MHz from indoor solar energy (4 pW/cm?)
2.8 kHz from 75dB acoustic noise (0.003 pW/cm?)

Energy densities from Roundy, Wright, and Rabaey in “A Study of Low Level
Vibrations as a Power Source for Wireless Sensor Nodes,” Computer
Communications.



Conclusions

Investigated potential of SETs in low-power system design

Designed IceFlex, a low-power, fault-tolerant, hybrid SET/CMOS
reconfigurable architecture

Opportunities and challenges
e Orders of magnitude power and energy efficiency improvement

e Fabrication, cooling design, and reliability challenges



