Unified Incremental Physical-Level and
High-Level Synthesis

Zhenyu (Peter) GuStudent Member, IEEBja Wang,
Robert P. Dick Member, IEEE Hai Zhou,Senior Member, IEEE

Abstract— Achieving design closure is one of the biggest chal-

lenges for modern VLSI designers. This problem is exacerbat
by the lack of high-level design automation tools that consier
the increasingly important impact of physical features, sgh as
interconnect, on integrated circuit area, performance, ail power
consumption. Using physical information to guide decisios in the
behavioral-level stage of system design is essential to #olthis
problem. In this paper, we present an incremental floorplanring
high-level synthesis system. This system integrates hidével and
physical design algorithms to concurrently improve a desig's
schedule, resource binding, and floorplan, thereby allowig the
incremental exploration of the combined behavioral-leveland
physical-level design space. Compared with previous appazhes
that repeatedly call loosely coupled floorplanners for phyigal es-
timation, this approach has the benefits of efficiency, stabty, and
better quality of results. The average CPU time speedup resting
from unifying incremental physical-level and high-level ynthesis
was 24.7% and area improvement was 13.76%. The low power
consumption of a state-of-the-art, low-power, interconnet-aware
high-level synthesis algorithm was maintained. The bene#t of
concurrent behavioral-level and physical design optimizéon
increased for larger problem instances.

I. INTRODUCTION

area or performance estimation, a number of researchees hav
considered the impact of physical details, e.g., floorpilagn
information, on high-level synthesis [18]—[23].

In the past, it was possible for high-level synthesis algo-
rithms to focus on logic, i.e., functional units such as adde
and multipliers. The contribution of wire delay and area was
typically neglected without much loss of accuracy. Focgsin
logic was once reasonable since logic was responsible &or th
majority of delay and power consumption. However, process
scaling into the deep sub-micron realm has changed the focus
of VLSI design from transistors to global interconnect.dt i
no longer possible to simplify the high-level synthesislpiem
by ignoring interconnect.

Taking interconnect cost into consideration during high-
level synthesis has attracted significant attention. Iviptes
work [24]-[28], the number of interconnects or multiplexer
was used to estimate interconnect cost. The performance and
power impacts of interconnect and interconnect buffers are
now first-order timing and power considerations in VLSI
design [29]. It is no longer possible to accurately prediet t
power consumption and performance of a design without first

Process scaling has enabled the production of integratgtbwing enough about its floorplan to predict the structure

circuits (ICs) with millions of transistors. This has alled

of its interconnect. This change has dramatically compli-

the design of more full-featured and high-performance ICsated both design and synthesis. For this reason, a number
However, these increased capabilities have come at a costof researchers have worked on interconnect-aware high-lev
order to deal with increased design complexity and sizes it $ynthesis algorithms [30]-[32]. These approaches tyjgical
becoming increasingly important to automate the highesltev use a loosely coupled independent floorplanner for physical

of the design process.

estimation. Although this technique improved on previous

High-level synthesis systems [1]-[4] automatically camvework by allowing estimation of physical properties, there

behavioral, algorithmic, descriptions of design requieats, are two drawbacks for this approach. First, the independent
e.g., control data flow graphs (CDFG) [5], into optimizedloorplanner may not be stable, i.e., a small change in the
register-transfer level (RTL) descriptions in languageshsas input netlist may result in a totally different floorplan.rAove
VHDL or Verilog. Based on a behavioral description, a highis a discrete change made to a solution during optimization
level synthesis system determines an allocation of ressyrdhat results in transition to a new position in the solution
assignment of operations to resources, and a schedule gpace. Floorplan instability may result in a high-leveltsgsis
operations, in an attempt to satisfy the design specifisatioalgorithm that bases its moves on cost functions without
and minimize some combination of delay, area, and powedntinuity. Second, even if a floorplanner is stable, crepti

consumption [6]-[17]. Recently, in order to improve desiga floorplan from scratch for each high-level synthesis mave i

Copyright ©2006 IEEE. Personal use of this material is pteni However,
permission to use this material for any other purposes mastbiained from
the IEEE by sending an email to pubs-permissions@ieee.org.

This work is supported by the NSF in part under award CCR-9347and
in part under award CCR-0238484.

The authors are with the Department of Electrical Engimegeriand
Computer Science, Northwestern University, Evanston, 0208 USA
(e-mail: zgu646@eecs.northwestern.edu, jwall2@eetiswestern.edu,
dickrp@eecs.northwestern.edu, haizhou@eecs.nortbrmestu)

inefficient, given the fact that the new floorplan frequethihs
only small differences with the previous one. The consivact
approach works for small problem instances but is unlikely
to scale to large designs. New techniques for tightly cagpli
behavioral and physical synthesis that dramatically imero
their combined performance and quality are now necessary.
Incremental automated design promises to build tighter
relationship between high-level synthesis and physicsilgte
improving the quality of each [33]-[35]. A number of high-

level synthesis algorithms are based on incremental opgimi In the above equations, each control step corresponds to a
tion and are, therefore, amenable to integration with incréme period of one clock cycle, and the sample pefigds the
mental physical design algorithms. This has the potenfial constraint on the input data rate. The solution got from high
improving both quality and performance. Incremental mdtholevel synthesis must be able to process an input sampleebefor
improve quality of results by maintaining important phydic the next one arrives. For a given specification, the sample
level properties across consecutive physical estimationeg period is fixed. Hencegsteps indicates the number of clock
synthesis. Moreover, they shorten CPU time by reusing angcles required to process an input sample. The varigble
building upon previous high-quality physical design swng is the chip clock frequencyli;,.x iS the chip clock period.
that required a huge amount of effort to produce. ISCALP searches for the lowest-power architecture for each
This paper describes an incremental high-level syntheggssible value otsteps.
system that reduces synthesis time dramatically while pro-Given a value ofcsteps, which allows the clock period to
ducing ICs with better area and low power consumptidme determined, the inner loop first uses the fastest availabl
compared to a state-of-the-art power-aware high-level syfiunctional unit from the library to implement each operatio
thesis algorithm. The benefits of this approach increask win as-soon-as-possible (ASAP) schedule is then generated f
increasing problem size and complexity. Our work is based ¢ime initial solution to determine whether it meets its tigin
the interconnect-aware high-level synthesis tool, ISCARH, requirements. The initial solution is then further optiedz
which was based on the low-power datapath synthesis toldiving obtained an initial solution that meets the sample
SCALP [15]. We reuse the power modeling and iterativgseriod constraint for the current value ofteps, the itera-
improvement high-level synthesis framework from ISCALRive improvement phase attempts to improve the architectur
However, this work differs from previous work in that aby reducing the switched capacitance while satisfying the
truly incremental floorplanner is used to estimate the intesample period constraints. More details can be found in
connect structure [36], instead of a fast constructivertlym. literature [15],[31] .
Moreover, the high-level synthesis algorithm, itself, isde
incremental. As shown in Section V, this resulted in an ayeraB. Motivating Example
speedup of 24.72 and an average area improvement of |SCALP employs a fast constructive slicing floorplanner
13.76%, while maintaining the low power consumption of Based on netlist partitioning and rotation/orientatiotese
state-of-the-art power-aware high-level synthesis dgar. In tion to obtain a floorplan optimized for wire length and
addition, wire delay is considered in this work to guarantegea [37],[38]. Although it improved on its predecessors by
that the implementation meets its performance requiresnentonsidering the impact of floorplanning on synthesis, tlaeee
This paper is organized as follows. Section Il explains the:veral drawbacks to this approach.
motivation for this work. Section Ill describes the desigwfl First, an incremental high-level synthesis algorithm only
for the proposed high-level synthesis system. The detdils ghanges a small portion of the modules and connections in
our incremental floorplanner are introduced in Section Néach move. However, a constructive (conventional) floorpla
Experimental results are presented in Section V. Conahssicmer always starts floorplanning from scratch. It is not edfiti

and future work are presented in Section VI. because it does not reuse the floorplan information obtained
during the previous run. Moreover, it is possible that the
Il. MOTIVATION newly-produced floorplan will be totally different from the

In this section, we first present definitions useful in thBrévious one, despite only small changes in the set of medule
discussion of high-level synthesis. Then motivationaheptes and interconnections. This lack of autocorrelation in fisian
are given based on our observations of the synthesis proc&§utions may result in a high-level synthesis algorithrsig
Examples are used to explain and motivate the use of unifiéd future moves on information that immediately becomes

high-level and physical-level optimization. invalid after the moves are applied. S
Second, the efficiency of the constructive slicing struetur

__ floorplanner decreases dramatically for blocks with noityun
A. Definition aspect ratios (ISCALP assume blocks with unity aspect)atio
The input to ISCALP is a control-data flow graph (CDFG)As a result of constraining the solution space to slicingrfloo
G, an input arrival (and output sampling) peridfl,, and a plans, it is prone to reaching sub-optimal solutions. Haevev
library, L, of functional units for data path implementationsimply replacing the slicing floorplanner with a high-qiali
ISCALP produces an RTL circuit in which power consumptioflgorplanner would result in unacceptably-high CPU time.
(including logic and wire power consumption) and estimated To solve these problems, we propose an incremental it-
area are optimized. The ISCALP algorithm has two loopgrative improvement high-level synthesis algorithm tight
Given the supply voltage, the outer loop incrementally cedu integrated with a high-quality incremental floorplannehist
the number of control steps;steps, from its maximum to synthesis system is called IFP-HLS, i.e., incremental floor
minimum value, wheresteps is defined as planning high-level synthesis. We run the same benchmarks
csteps = Ty % f) on both ISCALP and IFP-HLS, listing the number of merge
operations and CPU time for each benchmark in Table I.
or alternatively,
Tetock = TS/CSteps (2) tiotal = Nmoves * (tHLS + tfp) (3)

(low-power) regions of the solution space while ISCALP must
5 essentially restart optimization for each new potentiakckl
2 frequency. This allows improvement to both optimizationei

IFPHLS -~
ISCALP

240

7 oo
220 ¢

e

and solution quality for IFP-HLS.

Note that ISCALP starts the floorplanner from scratch after
L A each high-level design change. The incremental physiaal an
B architectural optimization used in IFP-HLS reduces CPUetim

b

'«
E¥
*
o
200 fp
e
180 fi

o lETETE

Power (mW)

160 |-

L)

i j :fm dramatically, especially for large applications. Tabladicates
140 “; vy T that the average CPU time speedup is 24.7Zhe improve-

e 9 ment is greatest for the largest benchmarks. For exampknwh
wor ﬁﬁﬁ@@@@§ & ¥] run on Random300, ISCALP does not finish within 5 days,
while IFP-HLS finishes within 4 hours. In addition, IFP-HLS
16 achieves 13.76% improvement in area compared to ISCALP.

umber of eteps The above examples clearly illustrate the value of using uni
(a) Power consumption of intermediate solution during rofation for fied incremental physical-level and high-level design bgsis.
all the values of csteps.

As shown in detail in Section V, this approach improves both
' design quality and CPU time.

IFPHLS -3
240 - ISCALP &

100 *

220 - @ * 4 III

| NCREMENTAL HIGH-LEVEL SYNTHESIS

In this section, we describe our incremental floorplan-
A] ning high-level synthesis algorithm (IFP-HLS). IFP-HLS is
160 - o % 1 built upon ISCALP [31]. However, incorporating incrementa
ol L E | floorplanning required substantial changes to that algarit
;ﬁ resulting in a new low-power incremental floorplanning high
10 i 1 level synthesis algorithm. IFP-HLS considers both datapat
. St] and interconnect power consumption. As shown in Figure 2,
) ; the CDFG is simulated with typical trace in order to profile

‘ the switching activity of each operation and data transfigiee
0 1

200 - ¥

Power (mW)

120

Number of csteps z A RTL design library is set up to provide the power and
(b) Power consumption of intermediate solution during mjation for area information. The proflllng information combined wikfist

the values of csteps from 0 to 2. RTL design library and floorplanner is then used to evaluate
,)]]) o the power consumption of both datapath and interconneet. IF
E%AlLP z"l‘ﬁ’gr_ﬁfg‘f'umpt'on of intermediate solution duripgroization of -y g \,se5 a new incremental method for improving functional
unit binding during high-level synthesis. Although this-im
provement, alone, would result in a reduction in synthesis
As Equation 3 shows, the CPU time of the high-level syr%i-me’ its motivation was to facilitate the integration of an
thesis run can be divided into two parts: high-level Syﬁmeéncrementql floorplannmg algont-hm with high-level sye.ﬂns.
moves and the resulting physical design carried out by t%c.)rderto improve solution quaht;_/ and rgduce synthesiet
floorplanner. As shown in Table Il, floorplanning is the mos IS gllows t.h.e high-level synthesis a}lgonth.m .to Qetemﬂne
time consuming of these. It uses at least 75.69% of the CFPlI]yS'(:al position of each modqle during opt|m|ze_1t|on_, dimap)
time on average for both ISCALP and IFP-HLS. As Showwterconnect power consumption and delay estimation.
in Table I, IFP-HLS achieves an average reduction of 50% in

the number of high-level synthesis merge operations coatpaA. Incremental High-level Synthesis Framework
to ISCALP. This results in a large reduction in floorplanner |n this section, we describe our incremental high-level
CPU time. The reduction in moves, and CPU time, is mainynthesis tool, IFP-HLS. The flowchart of IFP-HLS is shown

due to the incremental high-level synthesis and floorplaginiin Figure 2. IFP-HLS differs from ISCALP in a number
algorithms used in IFP-HLS. Many high-level synthesis nsovef ways. Instead of generating an initial solution for each
result in time-consuming changes to the floorplan. IFP-HLg&lue of csteps, IFP-HLS only generates one solution at
can greatly reduce CPU time by reducing the number of mergfRe maximum value ofcsteps and incrementally changes
operations, especially for larger benchmarks which haggési the solution ascsteps decreases. Thus, in addition to using
solution space to explore. incremental floorplanning, IFP-HLS also eliminates recamtd
Figure 1 illustrates the power consumptions of intermediaioves by taking advantages of incremental steps in high-
solutions during optimization in ISCALP and IFP-HLS. Fotevel synthesis. Initially, we still use an ASAP schedula an
each value of csteps, we plot the intermediate solutions pfally parallel allocation to estimate whether there exiats
duced by the optimization algorithm. Note that these ineermvalid solution for the current value ofsteps. If not, it is
diate solutions all have the same value of csteps. Increaahentot necessary to do further moves for the current number of
optimization allows IFP-HLS to focus on the most promisingontrol steps because a binding that further reduces trehfini

‘ CDFG simulation ‘ the split move may be found in Section II-B.
"+ For a given value ofcsteps, when a move is chosen,
‘ Initial estimiation \ IFP-HLS incrementally changes the floorplan to see whether
the change improves solution quality. If so, the change is
accepted. Otherwise, the change is rejected and other moves
are attempted. This technique differs from that in ISCALP. |
ISCALP, floorplanning is only done at the end of eagleps
iteration; it does not take advantage of solution correfati
Y to save effort acrosssteps values. ISCALP uses only power
consumption to guide high-level synthesis moves. In cahtra
STack computation e tiaon IFP-HLS uses a weighted sum of area and power consumption
Ingglg]gﬁgaéﬁgnge‘ Reschedule ‘ in floorplan (pW), with a ratio of Ium? to 5pW, in order to evaluate
Local optimization [= ‘ solution quality.
in flootplan A high-quality incremental floorplanner was developed
and incorporated into IFP-HLS to guide high-level synthesi

Valid csteps?

Meet the timing
requirement?

= moves. Each time the high-level synthesis algorithm needs
' physical information, it extracts that information frometh
N @ current, incrementally generated, floorplan. Costs dérik@m
in floorplan . . .
the floorplan are also used to guide high-level synthesisasiov
By using incremental floorplanning, closer interactionamesn

Find merges?

'[%’gpgg}ﬁ:] change high-level synthesis and physical design is possible, e
in floorplan high-level synthesis algorithm may determine the impact of
potential changes to binding upon physical attributes aagch
‘ Extract physical info ‘ interconnect power consumption and area.

Cost estimation

The core idea of incremental design is to maintain good
physical-level properties across consecutive physictiinas
tions during high-level synthesis moves. It is possiblefpla
the idea of using an incremental optimization framework to
integrate other algorithms, provided that the algorithtressgh
‘ Save current solution ‘ level of design can be made incremental. Let us consider a few

other examples. In force-directed scheduling, all the afiens

may be scheduled iteratively in the order of increasingly
cost and the cost of scheduling each unscheduled operation

¢ is updated after each operation is scheduled. This provides
\ csteps = csteps -1 ‘ a potential opportunity to tightly integrate an increménta
floorplanner to physical information feedback. For maximal
cligue based resource sharing, since it is a NP-hard prgblem
a heuristic algorithm will be used in practice. As long as
the heuristic algorithm itself is iterative, it can be made

MIN csteps?

- A incremental.
meﬂwpﬁaﬁon In summary, IFP-HLS performs scheduling, allocation,
Print best solution and binding by iteratively changingsteps and determining
whether operations need to be rescheduled or re-bound) (spli
Fig. 2. Incremental high-level synthesis algorithm. in order to meet timing constraints. At each step the floarpla

is updated and re-optimized.

time of an ASAP schedule ig npt possiple. Howgver, if.a@)' Extended Move

ASAP schedule meeting the timing requirements is possible,

we will use the best solution from the previous value of This subsection describes the split moves, reschedulinty, a
csteps and reschedule it based on the current value, whiéhnew graph technique to determine split locations.

is equal to the previoussteps minus 1. If, after rescheduling, We observed that whenrsteps decreases by one, each
the solution meets its timing requirements, rebinding i$ nodividual operation takes, at most, the same number ofrobnt
necessary. Otherwise, it will be necessary to parallelirees steps as it did for the previous value efteps. Given that
of the operations to improve performance. @it moveis csteps is no less than the previousteps minus one, we can
used to eliminate resource contention by splitting a pair ebnclude that the ASAP schedule for the previous value of
operations that were initially assigned to the same funelio csteps violates the deadline for the current value ©fteps
unit onto separate functional units. A detailed descriptdd by, at most, one clock cycle. We will use nods slack, S;,

to represent this information, which is defined as follows: When csteps is reduced from 10 to 9, instead of binding and
scheduling from scratch, the algorithm reschedules based o

Si = LST; — EST; (4) current binding. For this example, after reschedulingrehe

are still timing violations for operations *3, *4, and *5

Here, EST; is the earliest start time antST; is the latest ecause they were all bound to FU2, as shown in Figure 3(c)
start time which were computed by a topological sort. Hard- Y ' 9 '

ware resource contention has already been considered. herefpre, the split move i_s necessary in order to a.‘”QW all
. .) ._._gperations to meet their timing requirements. A descriptb

Nodes with non-negative slack values do not imply tlmlnﬁ1e split move follows

violations. However, nodes with slack values ofi cause P :)

timing violations, i.e., they must be executed one cycléierar Basgd on_the result of slac_:k computauon,_ we produce a

These timing violations can be removed by splitting merg&{aph _mcl_udmg all the operations with ne_g_atlve slack. fEac

operations which, although useful for previous values eration is represe_nted by a node. In addition, there zee th

csteps, now harm performance. Based on this observation, t glds of edges, defined as follows:

split move is used to eliminate timing violations. Therefor 1) Data dependency edges, indicating that the destination

the whole high-level synthesis algorithm is implemented in node takes the source node’s data as input;

an incremental way from maximum to minimum values of 2) Merge edges, indicating that the two nodes are currently

csteps without rebinding from scratch at each valueieps. bound to the same functional unit or same storage unit;

Few changes to binding and scheduling are required as a and

result of single-unit change testeps. However, in order to 3) Pseudo edges, used to restructure the graph for appli-

meet timing requirements, it is sometimes necessary to spli cation of the min-cut algorithm. A pseudo source node

operators mapped to the same functional unit. The split move and pseudo sink node are introduced into the graph. All

makes it possible to quickly apply these isolated changes. input nodes are connected to the pseudo source node

Previous high-level synthesis systems, e.g., SCALP and IS- and all output nodes are connected to the pseudo sink

CALP, started from a fully parallel implementation for each node.

value of csteps and repeatedly merged operators to reduce afier constructing this graph, a min-cut algorithm is exe-
area. Although both techniques are reasonable in the absef\Geq. First, an infinite capacity is assigned to all the geeu

of an integrated floorplanner, the incremental approacll Usgyges and data dependency edges. Merge edges are each givel
in IFP-HLS speeds optimization (without degrading SOID't'Ocapacities of one. If two nodes are connected by both a

quality) by requi.ring far fewer changes to the floorplan. Wseyata dependency edge and a merge edge, the merge edge is
together, the split and merge moves allow complete expérat gjiminated because split moves on nodes sharing dependency

of the solution space. However, the primary goal of changingyges do not improve the timing properties. Using a min-cut
the number of control steps is meeting timing constraints. \Y,qqrithm in this manner splits a minimal cardinality subse
therefore start our exploration of the solution space atbet ¢ hoges; allowing a reduction in the finish time of the ASAP.
promising region by iteratively splitting functional usion the e could consider the impact of area and power consumption
critical timing path. within the min-cut max-flow algorithm by weighting the
edges appropriately. However, this would generally leatbto

Algorithm 1 Reschedule and Split Procedure additional split operations, increasing CPU time.
1: Reschedule the design Although decrementing:steps may increase delay by at
2: Compute slacks of all operations most one clock cycle, there may be some valuecakps
3: while there exists negative slaclo for which even fully parallel bindings do not allow an ASAP
4. Compute slack of all operations schedule to meet its timing constraints. Therefore, miraodl
5: Construct graph including all the operations and edg@sscheduling may not be carried out for some valuestfps.
with negative slack After the split move, the operations are rescheduled aruk sla

6: Use maximum flow to find the minimum cut in thejs recomputed to determine whether timing constraints ae m
graph The algorithm described above was used to construct the

7. Do the split move graph shown in Figure 3(d). The dashed lines represent merge

8 Reschedule the design edges. The solid lines represent pseudo-edges and data de-

9: end while pendence edges. Nodes S and T represent pseudo source anc

sink nodes respectively. After slack computation, we elaié

The reschedule and split procedure is shown in Algorithm &ll the nodes and edges which are not on the critical path
We will give an example to further describe this procedurand assign a capacity of one to merge edges and a capacity
Consider the data flow graph shown in Figure 3(a), in whiabf infinity to other edges, as shown in Figure 3(e). For this
arrows represent the data dependencies. Scheduling and akample, it is possible to cut through either edge (+2, +1),
cation yield the DFG in Figure 3(b). Here, we can see that edges (*3, *1) and (*4, *2). Here, we cut through +2 and
three functional units (FUs) are used. Operations *1 and *2., which is the minimal cut, thereby assigning +1 to a new
share FU1, operations *3, *4, and *5 share FU2, and operatifunctional unit, FU4. +3 and +2 remain bound to the original
+1, +2, and +3 share FU3. The sample period is 108 rfanctional unit, FU3. As shown in Figure 3(f), no operation
each multiplication takes 20 ns, and each addition takesl10wiolates timing constraints.

Fig. 3.

(a) CDFG
tion.

FU1 FU2 FU3

(b) Scheduling and alloca- (c) Timing violation.

@ 1

e Inf Inf

0 1

(d) Slack computation.

g Inf
inf ,,1,,, Inf @ Inf °

(e) Min-cut flow.

FU1 FU2 FU3 FU4

(f) After split move.

Incremental changes on HLS.

Y

‘ csteps = prev_csteps ‘

Reschedule

Slack compute
Split operation
Incremental change
Local optimization

in floorplan

Fig. 4. Iterative split move for slack smaller than -1.

simulated annealing floorplanner into the IFP-HLS alganith
In this section, we describe this incremental floorplanner.
This floorplanner handles blocks with different aspecbsati
and produces non-slicing floorplans. Unlike the netlisttipar
tioning approach used in ISCALP, it was designed primarily
for quality, not speed. Although the impact on synthesisetim
would prevent incorporation of a conventional high-qualit
floorplanner in the inner loop of a high-level synthesis egst
using incremental floorplanning enables both high quality
and low synthesis time. High-level synthesis moves typical
remove a single module or split a module into two. Therefore,
many changes are small and their effects on the floorplan are
mostly local. We reuse the modified previous floorplan as a
starting point for each new floorplan. The previous floorp&an
optimized. Therefore, re-optimization of the current flgan
to incorporate local changes is fast. In practice, we have
found that this technique leads to quality-of-results aed p
formance improvements over constructive floorplanningnev

Another case must also be considered. If no valid solutioMé1en compared with a very fast constructive floorplanner.
exist for the current value afsteps, IFP-HLS will skip further
optimization and decrementsteps. IFP-HLS may reach a A. Floorplan Representation
valid value of cst after repeatedly decrementingteps. . .
cseps b y ngieps The Adjacent Constraint Graph (ACG) floorplan repre-

In this case, the slack values for some operations may Iesst ton i d within IEP-HLS’S i tal fl |
than -1. Hence, the value afsteps is decremented and theSeNtaton 1S used within k S Incremental Toorplan-

split move, followed by rescheduling, are repeated untilédv ner [36],[39], [40]. This representation will be briefly sum
' y marized here.

solution is produced. This process is as shown in Figure 4. An ACG is a constraint graph satisfying the following three
conditions: first, there is at most one relation (either ramtal
IV. INCREMENTAL FLOORPLANNING or vertical) between any pair of vertices; second, there are
As discussed in previous sections, in order to introduce ine transitive edges; third, there are omsses A cross is a
cremental combined behavioral and physical optimizatido i special edge configuration that can result in quadratic rermb
high-level synthesis, a high-quality incremental floorplar is of edges in the constraint graph. Figure 5 shows two cases
necessary. We have tested this idea by building an increahemtf crosses and Figure 6 shows that a constraint graph with

a@ /@1 ¢ simulated annealing is necessary in many cases, per-move
floorplanning is done with a greedy iterative improvement

b @—@ d algorithm.

®) The details of our approach follow. First, after generating
the first ASAP schedule and binding, we have an initial set
Fig. 5. (a) Horizontal cross and (b) vertical cross. of modules and interconnections. Simulated annealingesl us

to obtain an initial floorplan. Since every interconnect na$
exactly one driving module, multi-pin nets are broken into
two-pin wires with the driving module as the source. The wire
length is calculated as the Manhattan distance between the
two modules connected by the wire. At this point, the unit-
length switched capacitances of data transfers between two
modules are available. We use these as weights for the wire
Fig. 6. A constraint graph without over-specifications arahsitive edges |engths. The weighted total wire length is related to power
can have quadratic number of edges. consumption, i.e., optimizing weighted wire length mirzes
interconnect power consumption. A weighted sum of the area

Hg the interconnect power consumption is calculated as the
5 orplanner’s cost function, that is,

crosses may have quadratic number of edges even when
first two conditions are met. It is proved that the number
edges in an ACG is at mos? (n'-®) wheren is the number A+wd C.D. (5)

of vertices [40]. B
The operations of removing and inserting vertices in anh Ais th is th i ighi;
existing ACG are designed to reflect high-level binding dernere Is the areau 1S the power constumption weig
is the set of all wirese is an interconnect wire(C. is the

cisions, i.e., merging and splitting. To obtain the phykica . . .
position of eachgm?) dule pgckin% based on Iong%s)t/lspalfﬂ't'length switched capacitance for the data transfangio
' d D, is the length ofe. With this approach, we optimize

;(r);r;);;utatlon 's employed since the ACG itself is & COﬂStl’alﬁ_lPe floorplan for both the interconnect power consumption

Perturbations on the graph are designed so that the ACG (?é‘r(lj the area. The resulting floorplan W'II be_ improved during
. . . . o X e consecutive incremental floorplanning high-level bgsts
be used in an iterative optimization heuristic such as sateal

. oves. Therefore, the number of simulated annealing itera-
annealing (SA). They change the graph topology locally ar?:?%ns is bounded to reduce synthesis time.

have straightforward meanings _in physical space. Sinc_e.t After each high-level synthesis move, per-move floorplan-
l;teli]cc;)dnur:zgt lfvﬂ?éﬂsisrfu?r?tggg:enr? dd 21)1, tt?]i p(; r);Sp;f]altom:ﬁc?gning first modifies the previous floorplan by removing or
! gblitting a module. The modules and switched capacitances

?)Fzﬁleyrl?Jge:PuerZZt?oer:tsuir:nggsrgthaatl;%e; tmhgéz}grgﬁgnemgiare updated based upon the impact of these merges and splits.
The floorplan is then re-optimized with a greedy iterative

the two modules represented by any pair of vertices. Therlatltm rovement algorithm using the same cost function as the
changes the interconnect globally. P 9 9

simulated annealing algorithm. The greedy improvemerds ar
divided into consecutive rounds. In every round we apply the
B. Incremental Floorplanner same number of perturbations to the floorplan. If less 4
There are four situations in which the incremental floowf the perturbations result in reduced costs, re-optirignat
planner is called by the IFP-HLS framework. First, a floomplastops. Although it would be easy to use a low simulated
should be generated after each ASAP schedule is producathealing temperature to allow some hill climbing during re
We calll this aninitial floorplanning. Second, a floorplan shouldptimization, this was not necessary in practice. It shadd
be modified and optimized after each high-level synthegi®inted out here that changes to switched capacitances may
move. We call thisper-movefloorplanning. Third, for each require a few global changes in the ACG to obtain power
csteps value, a floorplan for the best binding should beonsumption optimized floorplans. Therefore, we still wallo
generated and compared to the existing best floorplans. YWe exchange perturbation to change the floorplan globally,
call this per-cstepfloorplanning. Fourth, after determining thebut reduce its frequency to favor local perturbations.
best clock frequency and binding, floorplanning is carriatl 0 When we find the best binding for a given value®teps,
to provide the final result. We call thfinal floorplanning. we do per-cstep floorplanning and compare the result with
Although initial, per-cstep, and final floorplanning are donthe best floorplan from previous value ofteps. This time
with simulated annealing for quality, per-move floorplarmi non-zero temperature simulated annealing is used bectuse i
requires fewer global changes and less hill climbing. Moréacreases floorplan quality. These normal simulated aigeal
over, perturbations resulting from high temperatures may druns occur only once petsteps value, allowing their CPU
rupt high-quality floorplan structures. Therefore, it imsen- costs to be amortized.
able to use lower temperatures for per-move floorplannimg. | After determining the best binding across all the possible
practice, we have found that using a temperature of zerdiseswalues of csteps, a final floorplanning run is carried out for
in good quality and performance. In other words, althoughat binding. This final floorplanning occurs only once per

synthesis run. Therefore, it is acceptable to use a highdacobi with 24 multiplications, 8 divisions, 8 additionsida
quality, but slower, annealing schedule than those in therin 16 subtractions. In addition, we generate five CDFGs using
loop of high-level synthesis, thereby reducing chip ared aa pseudo random graph generator [45]. Random100 has 20

interconnect power consumption. additions, 15 subtractions, and 19 multiplications. Ran#200
During the annealing schedule, we use a constant mulias 39 additions, 44 subtractions, and 36 multiplications.
plicative cooling factory, i.e., Random300 has 59 additions, 58 subtractions, and 72 mul-
T —rxT (©) tiplications.

IFP-HLS had better performance than ISCALP on these
whereT is the current temperature afid is the temperature large randomized benchmarks. In order to determine whether
for the next iteration. The cooling factors for initial, pestep, the improved performance of IFP-HLS was the result of
and final floorplanning aré.7, 0.8, and 0.9 respectively. At random graph structure or benchmark size, we generated two
one temperature, if less thar0% of the perturbations are structured benchmarks, Small and Serial. Small is composed
accepted, the annealing process stops. The ratio betweenahfive operations connected in parallel. Serial is compased
numbers of the perturbations at one temperature for initidl> operations connected in serial. As shown in Table I, IFP-
per-cstep, and final floorplanning is: 1 : 5. The number HLS has better CPU time for structured the large benchmark
of perturbations per round for per-move floorplanning is th8erial. This is consistent with the results for other otlaegé
same as that in the final floorplanning. benchmarks.

The interconnect power consumption weight, is com- The area of each benchmark described in this section was
puted during synthesis for each floorplanning to avoid thestimated using pre-synthesized functional-units (@dders,
difficulty of determining a proper value for all the situat®» multipliers, etc.) based on NEC’s O.jih process and the
Before each floorplanning, we calculate the area-to-powdieorplanner from high-level synthesis tool. The logic powe
consumption ratiogg, using the existing floorplan, which isconsumption of each benchmark was evaluated using power
either the previous floorplan for per-move, per-cstep, amal fi models from the pre-synthesized functional-unit leveligies
floorplanning or the starting floorplan for initial floorplaimg. library. A full-system switching activity simulator was ec
For initial, per-cstep and final floorplanning, the weight during power consumption computation. Wire power con-
is set t00.5 - wy to balance the area and the interconnestimption and wire delay were calculated based on the wire
power consumption. For per-move floorplanning, it is moreapacitances estimated using Cong’'s and Pan'’s techniglie [4
important to provide a prediction of the trend of intercocineand the wire length information from floorplanner of high-
power consumption in a limited time so that is set to level synthesis design tools. As described in Section bthb
2.5 - wq instead. Note that in this stage, not area cost but thegic and wire delays were calculated to determine whether
prediction of the interconnect power consumption is theamajeach design meets its timing requirements. However, shee t
consideration. Therefore, the wire length weight was sdteto wire delay estimation is only implemented in IFP-HLS; this
a big value compared to the area weight. function was not used when comparing to ISCALP.

V. EXPERIMENTAL RESULTS B. Results

In this section, we present the results produced by the

. . . : The results of running ISCALP and IFP-HLS on non-unity
IFP-HLS incremental floorplanning high-level synthesis al ; :) -
) .) . aspect ratio functional units are shown in Figure 7. As shown
gorithm described in Sections 1ll and IV when run on

a . . .
number of benchmarks. The results generated by ISCAII_?r’]tg?/;'gu;egéaJ’t'i:r;?;rse Zgbgban:fzielyezlélsgflﬂﬁ ?g\f/;le_ve
and IFP-HLS are compared. As explained in Section 1= 9 P P (570 Imp

. .ment in area, and 50% reduction in the number of merge
A, both approaches optimize area and power consumption.

; . . .move in comparison with ISCALP. Low power consumption
The experiments were conducted on Linux workstations WII{E maintainedp P P

dual 933 MHz Pentium Il processors and 512MB of randor ISCALP uses a constructive floorplanner that may suffer
access memory. . . .
performance degradation when used with non-unity aspect
ratio functional units. In order to determine whether the
A. Benchmarks improvement in quality and run time were the result of the
We evaluated seventeen high-level synthesis benchmaskecific type of floorplanner used in ISCALP, we repeated
using a 0.1&m technology library.Chemical and IIR77 all experiments using only unity aspect ratio functionaitsin
are infinite impulse response (lIR) filters used in industnAs shown in Figure 8, Table I, and Table lll, the IFP-HLS
DCT._IJPEG:is the Independent JPEG Group’s implementaticalgorithm achieves an average CPU time speedup 0fx2.03
of digital cosine transform (DCT) [41PCT.Wangis a DCT 11.32% improvement in area, and 54% reduction in the
algorithm named after the inventor [42]. Both DCT algorithhmnumber of merge move, while maintaining the same low power
work on8 x 8 arrays of pixelsElliptic, an elliptic wave filter, consumption as ISCALP.
comes from the NCSU CBL high-level synthesis benchmark As shown in Figure 7, Figure 8, Table I, and Table Iil,
suite [43].Jacobiis the Jacobi iterative algorithm for solvinglFP-HLS always has better CPU time than ISCALP for both
a fourth order linear system [44WDF is a finite impulse non-unity and unity aspect ratio cases except for two very
response (FIR) wave digital filter. The largest benchmark $nall unity aspect ratio benchmarks (PAULIN and MAC).

OISCALP BIFP-HLS
1000000
100000 |
10000 |
2 1000 —‘
o
£
2
o 100 |
10 +
1 L
o1 U
> & % o) o A N & & S I > N $ e $
. IS & & & & D & & » ¢ ¢ & S & N D
& 7 N) & \\& $ NS S & & N &
5 ¥ ¥ B] ?oé’ < é& &&
AN AN
(a) CPU time for non-unity aspect ratio functional units.
|O#MOVES MAREA HPOWER |
1.20
1.00 -
0.80 -
Ay
-
<
%
S 060
S
3
~
0.40 -
0.20 + ‘
0.00 -
> & S & % R A N o & > & S D N \ M
& 3 > & & %3 & N < N & & B N »
a&& > &\» 7 g}f & ¥ Q6°V ¢ N S Qo& 060&
¥ @ &

(b) Number of moves, area, and power consumption for notyw@spect ratio functional units.

Fig. 7. Comparison between ISCALP & IFP-HLS for non-unitypest ratio functional units.

There are two contributors to CPU time (as shown in Equarg and rotation/orientation selection to obtain a floompla

tion 3): the number of high-level synthesis moves and ttoptimized for wire length and area. It is faster than our
resulting floorplanning operations. ISCALP employs a fasimulated annealing floorplanner for small benchmarks with
constructive slicing floorplanner based on netlist pamiti only a few blocks largely due to its determinism. The sim-

OISCALP BIFP-HLS

1000000

100000 +

10000 +

1000 —l 1

CPU time (s)

0.1 U
> v F & &
S, S \x& ,\}) ffb &\&\ § 55”? &

¥ & & & &

(a) CPU time for unity aspect ratio functional units.

|O#MOVES MAREA HPOWER |

1.40

1.20

1.00

0.80 +

0.60

Ratio to ISCALP

0.40

0.20 +

0.00 -

e I B S
A

> & S _-\{\(\ <
» >

I D & & N N
<) D D Q
< o & < "N ;'1»

¥ & & &
(b) Number of moves, area, and power consumption for unipeetsratio functional units.

S S 4

Fig. 8. Comparison between ISCALP & IFP-HLS for unity aspextto functional units.

11

TABLE |
NUMBERS OFMERGES ANDCPU TIMES OF DIFFERENTBENCHMARKS
Unity aspect ratio Non-unity aspect ratio
Benchmark | No. of Merges [No. of Split CPU Time No. of Merges [No. of Splitg CPU Time
ISCALP IFP-HLY IFP-HLS [ISCALP (s) IFP-HLS (s) Speedupx{| ISCALP IFP-HLY IFP-HLS |[ISCALP (s) IFP-HLS (s) Speedup<)
CHEMICAL | 593 208 24 83.35 74.19 112 585 190 26 793.83 55.15 14.39
DCT.DIF 981 492 1 102.98 120.86 0.85 769 508 1 699.96 102.27 6.84
DCTIJPEG| 630 380 0 363.12 310.91 117 850 424 11 4297.13 183.36 23.44
DCT.LEE | 1512 674 2 248.07 194.41 1.28 1276 691 5 2669.18 166.56 16.03
DCT.WANG | 974 564 10 340.40 259.53 131 1019 515 3 5678.98 229.11 24.79
ELLIPTIC 562 172 16 77.46 57.04 1.36 533 212 11 804.29 53.16 15.13
IIR77 858 506 2 214.89 192.87 111 858 426 1 2102.27 126.04 16.68
JACOBLSM | 1652 572 52 1982.55 322.97 6.14 1755 530 26 31187.15 256.60 121.54
MAC 220 31 13 7.64 10.28 0.74 200 19 14 22.12 5.64 3.92
PAULIN 87 26 6 1.12 2.50 0.45 87 25 6 3.20 2.03 1.58
PR1 839 449 10 162.79 138.13 1.18 841 448 12 2041.15 121.94 16.74
PR2 1074 526 20 366.87 256.12 1.43 866 529 27 6145.86 177.36 34.65
SERIAL 5200 2620 3 1187.37 767.48 1.55 5200 2660 1 14503.25 599.59 24.19
SMALL 11 9 0 0.20 0.94 0.21 11 13 2 0.24 0.83 0.29
WDF 1827 631 6 185.52 118.74 1.56 1588 739 9 1092.92 118.92 9.19
RANDOM100 1359 511 10 462.14 246.24 1.88 1353 433 5 5951.79 204.52 29.10
RANDOM200 1110 780 1 16438.33 3498.53 4.70 1140 780 2 174540.95 2826.22 61.76
RANDOM300 2810 820 0 160997.92 18786.70 8.57 | N/A* 900 2 N/A* 12650.64 N/A
Average [1238.83 553.94 9.78 10179.04 1408.80 2.03 [1113.59 537.76 9.11 1485496 307.6T 24.7Z

*To solve non-unity aspect ratio Random300, ISCALP had nohgéted after 120 hours. The non-unity aspect ratio Randéi®nchmark was excluded
from the computation for average numbers.

TABLE 1l
CPU TIMES BREAK DOWN OF DIFFERENTBENCHMARKS
Unity aspect ratio Non-unity aspect ratio
ISCALP IFP-HLS ISCALP IFP-HLS
Benchmark
Tfp Tiotal Ratic* Tfp Tiotal Ratic* Tfp Tiotal Ratig* Tfp Tiotal Raticg*
() () (%) (s) (s) (%) (s) (s) (%) (s) (s) (%)
CHEMICAL 61.19 83.35 73.41] 61.24 74.19 8254 770.91 793.83 97.11| 43.60 55.15 79.06
DCT_DIF 75.57 102.98 73.38 101.86 120.86 84.28 674.93 699.96 96.42| 82.95 102.27 81.11

DCT.IUPEG 308.59 363.12 84.9§ 269.28 310.91 86.61 4238.01 4297.13 98.62| 146.66 183.36 79.98
DCT_LEE 191.11 248.07 77.04 159.66 194.41 82.13 2616.96 2669.18 98.04| 130.88 166.56 78.58
DCT_WANG 275.61 340.40 80.91 214.17 259.53 82.53 5613.21 5678.98 98.84| 185.94 229.11 81.16

ELLIPTIC 49.42 77.46 63.80 47.08 57.04 82.54 780.94 804.29 97.10| 41.44 53.16 77.95
IIR77 168.91 214.89 78.6Q 164.32 192.87 85.2Q 2056.25 2102.27 97.81| 104.88 126.04 83.21
JACOBLSM 1846.04 198255 93.11 245.88 322.97 76.13 31029.15 31187.15 99.49 188.11 256.60 73.31
MAC 4.80 7.64 62.83] 9.28 10.28 90.27| 19.42 22.12 87.79| 4.89 5.64 86.70
PAULIN 0.54 1.12 48.21 2.11 2.50 84.40 2.50 3.20 78.13 1.66 2.03 81.77
PR1 126.84 162.79 77.94 112.32 138.13 81.31 2003.70 2041.15 98.17| 96.38 121.94 79.04
PR2 299.53 366.87 81.64 213.68 256.12 83.43 6085.16 6145.86 99.01] 141.40 177.36 79.72
SERIAL 974.21 1187.37 82.03 634.26 767.48 82.64 14288.12 14503.25 98.52 476.38 599.59 79.45
SMALL 0.09 0.20 45.00 0.84 0.94 89.36 0.15 0.24 62.50 0.71 0.83 85.54
WDF 126.58 185.52 68.23 90.21 118.74 75.97 1037.36 1092.92 94.92] 88.49 118.92 74.41

RANDOM100 | 383.64 462.14 83.01 208.30 246.24 84.59 5869.24 5951.79 98.61] 172.87 204.52 84.52

RANDOM200 | 15484.14 16438.33 94.20 2877.49 3498.53 82.2% 173591.19 174540.95 99.46 2220.85 2826.22 78.58

RANDOMS300 | 151251.05 160997.92 93.9515798.36 18786.70 84.09 N/A** N/A** N/A** | 10089.21 12650.64 79.75
Average 9534.88 10179.04 75.69 1178.35 1408.80 83.35 14745.72* 14854.96* 94.15* | 242.83* 307.6F* 80.24*

* Ratio =Tfp/Ttotal
**To solve non-unity aspect ratio Random300, ISCALP had nbhgéted after 120 hours. The non-unity aspect ratio Ran@@hi®nchmark was excluded
from the computation for average numbers.

ulated annealing algorithm may re-visit same valid sohgio performance on large problem instances, for which run-tsne
multiple times before reaching the halting conditions whila concern. In addition, recall that ISCALP is an intercorthec
constructive slicing floorplanner can quickly considersdit- aware, power-driven high-level synthesis tool. These ltgsu
ing structure floorplanners, given small enough problerassiz show that, on average, IFP-HLS achieves better CPU time
In contrast, the simulated annealing floorplanner is netiti and area while maintaining good power consumption. We also
faster on large problem instances because it can focus dtslysis the time break down between high-level synthesis
moves on the most promising regions of the solution span®ves and floorplanning. As shown in Table Il, floorplanning
while the constructive floorplanner is left to explicitlyresider used more than 75.69% of the total CPU time on average for
an exponentially-increasing number of points in the sohluti both ISCALP and IFP-HLS; floorplanning is the most time-
space. Please note that both floorplanners run quickly ofi sm@nsuming part of the high-level synthesis design flow.

benchmarks. We are primarily concerned with floorplannerIn an attempt to isolate the impact of using a constructive

TABLE Il

12

AREA AND POWERIMPROVEMENTS OFDIFFERENTBENCHMARKS

Benchmark Area Improvement (%)] Wire Power Improvement (%) Total Power Improvement (%)
Unity Non-unity Unity Non-unity Unity Non-unity

CHEMICAL 6.23 22.67 22.69 9.39 4.17 5.72
DCT.DIF 4.36 -6.91 41.51 21.86 2.37 -0.16
DCT_IJPEG -5.09 12.35 49.59 -4.39 0.35 2.76
DCT_LEE 13.84 13.53 22.74 7.58 3.16 1.35
DCT_-WANG 16.60 13.61 38.50 42.82 7.00 5.15
ELLIPTIC 9.70 9.45 22.18 28.32 2.77 0.03
IIR77 22.69 15.03 21.32 -0.37 2.42 -0.34
JACOBILSM 22.26 24.17 14.13 9.76 -5.41 -6.51
MAC 36.13 18.84 9.65 13.72 -0.27 0.70
PAULIN 5.74 6.72 26.19 23.39 -8.72 -8.86
PR1 19.86 10.87 6.13 16.44 2.39 2.05
PR2 18.56 26.93 30.83 -7.75 2.67 1.84
SERIAL 11.16 32.04 11.74 31.57 -1.42 3.28
SMALL 22.89 13.78 36.93 48.83 1.36 1.98
WDF 8.79 11.10 9.87 -12.50 3.79 -0.91
RANDOM100 | 19.88 -2.41 14.67 19.94 -1.55 -4.24
RANDOM200 | -1.22 12.20 19.45 -1.90 0.01 -3.01
RANDOMS300 | -28.55 N/A: 31.80 N/A: -15.11 N/A:
Average 11.32 13.76 23.89 14.51 0.00 0.05

*To solve non-unity aspect ratio Random300, ISCALP had nohg#ed after 120 hours. The non-unity aspect ratio Randéi®nchmark was excluded
from the computation for average numbers.

floorplanner from the impact of using incremental optimizaaccess to their 0.38n technology library. We would also

tion, we compared the results produced by running ISCALKRe

to thank Yongpan Liu at Tsinghua University, Dr. Anand

followed by a high-quality simulated annealing floorplanbg Raghunathan at NEC Labs America, and Prof. Lin Zhong at
those produced by IFP-HLS. On average, this results in a 1.8Rige University for their helpful suggestions.

increase in area and 2.7% decrease in total power compared
to IFP-HLS for unity aspect ratio functional units and a 0.8%

increase in area and 1.3% decrease in total power consumptiia]
for non-unity aspect ratio functional units. Note that ISGA 2l
aggressively optimizes power consumption. These resuts i
dicate that the incremental optimization algorithm witkiP-

HLS permits comparable quality, using much less CPU timég3!
compared to a non-incremental behavioral synthesis atgori 4
followed by an iterative improvement floorplanner. 5l

VI. CONCLUSIONS

This article presented an incremental floorplanning, hight6l
level synthesis system that integrates high-level andipalys
level design algorithms to concurrently improve a design'sy
schedule, resource binding, and floorplan. Compared with
previous approaches that repeatedly call loosely coupbed-fl 8]
planners, this approach has the benefit of efficiency, dtabil
and better quality results. As shown in Section V, for noftyun
aspect functional units, incremental floorplanning alldves
average CPU time speedup of 24x72nd an area improve-
ment of 13.76%. For unity aspect ratio functional units, thiéo]
CPU time speedup was 2.Q3and area was improved by
11.32%. In both cases, the low power consumption of a sta
of-the-art, low-power, interconnect-aware high-levehthe-
sis algorithm was maintained. We conclude that incrementi!
floorplanning improved the quality of synthesis results and
improves performance dramatically, making synthesis froiisl
large specifications practical.

El

te:

[14]

VIlI. ACKNOWLEDGMENTS [15]

We would like to thank Prof. Niraj Jha at Princeton Uni-
versity for access to ISCALP and NEC Labs America for

REFERENCES

R. Camposano and W. Wolfdigh Level VLSI Synthesis Kluwer
Academic Publishers, MA, 1991.

D. C. Ku and G. D. Micheli,High Level Synthesis of ASICs Under
Timing and Synchronization Constraintluwer Academic Publishers,
MA, 1992.

D. Gajski, et al.,High-Level Synthesis: Introduction to Chip and System
Design Kluwer Academic Publishers, MA, 1992.

A. Raghunathan, N. K. Jha, and S. Déligh-level Power Analysis and
Optimization Kluwer Academic Publishers, MA, 1997.

P. G. Paulin, J. P. Knight, and E. F. Girczyc, “HAL: A mufiaradigm
approach to automatic data path synthesisPiac. Design Automation
Conf, June 1986, pp. 263-270.

R. K. Gupta and G. De Micheli, “Hardware-software codyatis for
digital systems,1EEE Design & Test of Computersol. 10, no. 3, pp.
29-41, Sept. 1993.

R. Mehra and J. Rabaey, “Behavioral level power estiomtand
exploration,” in Proc. Int. Wkshp. on Low Power DesigApr. 1994,
pp. 197-202.

A. Dasgupta and R. Karri, “Simultaneous scheduling airting for
power minimization during microarchitecture synthesis,"Proc. Int.
Symp. Low-Power Desigi\pr. 1994.

L. Goodby, A. Orailoglu, and P. M. Chau, “Microarchitecé synthesis
of performance-constrained, low-power VLSI designs,” Rroc. Int.
Conf. Computer DesigrOct. 1994.

A. Raghunathan and N. K. Jha, “Behavioral synthesislder power,”
in Proc. Int. Conf. Computer DesigiOct. 1994, pp. 318-322.

] A. P. Chandrakasan, et al., “Optimizing power usinqh$farmations,”

IEEE Trans. Computer-Aided Design of Integrated Circuitsl &ystems
vol. 14, no. 1, pp. 12-31, Jan. 1995.

R. S. Martin and J. P. Knight, “Power profiler: OptimigifASICs power
consumption at the behavioral level,” Broc. Design Automation Conf.
June 1995.

J. M. Chang and M. Pedram, “Register allocation and ibimdor low

power,” in Proc. Design Automation ConfJune 1995.

N. Kumar, et al., “Profile-driven behavioral synthegs low-power visi

systems,"IEEE Des. Testvol. 12, no. 3, pp. 70-84, 1995.

A. Raghunathan and N. K. Jha, “SCALP: An iterative-ioygment-

based low-power data path synthesis systdBEE Trans. Computer-
Aided Design of Integrated Circuits and Systemal. 16, no. 11, pp.
1260-1277, Nov. 1997.

13

[16] K. S. Khouri, G. Lakshminarayana, and N. K. Jha, “Highdl synthesis [31] L. Zhong and N. K. Jha, “Interconnect-aware low poweghilevel

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

of low power control-flow intensive circuitsJEEE Trans. Computer-
Aided Design of Integrated Circuits and Systemal. 18, no. 12, pp.
1715-1729, Dec. 1999.

H. P. Peixoto and M. F. Jacome, “A new technique for esting lower

bounds on latency for high level synthesis,”"Rmoc. Great Lakes Symp.
VLS|, Mar. 2000, pp. 129-132.

M. C. McFarland and T. J. Kowalski, “Incorporating bmti-up design

[32]

[33]

into hardware synthesis|[EEE Trans. Computer-Aided Design of Inte-[34]

grated Circuits and Systemsol. 9, no. 9, pp. 938-950, Sept. 1990.
D. W. Knapp, “Fasolt: A program for feedback-driven algiath opti-

mization,” IEEE Trans. Computer-Aided Design of Integrated Circuit435]

and Systemsvol. 11, no. 6, pp. 677-695, June 1992.

J. P. Weng and A. C. Parker, “3D scheduling: High-lewgithesis with
floorplanning,” inProc. Design Automation ConflJune 1992.

Y. M. Fang and D. F. Wong, “Simultaneous functionaltubinding and
floorplanning,” inProc. Int. Conf. Computer-Aided DesigNov. 1994.
M. Xu and F. J. Kurdahi, “Layout-driven rtl binding teciques for
high-level synthesis using accurate estimatoCM Trans. Design
Automation Electronic Systemeol. 2, no. 4, pp. 312-343, Oct. 1997.
W. E. Dougherty and D. E. Thomas, “Unifying behaviorghthesis and
physical design,” ifProc. Design Automation Conflune 2000.

P. G. Paulin and J. P. Knight, “Scheduling and bindingoathms for
high-level synthesis,” ifProc. Design Automation ConfJune 1989, pp.
C. A. Papachristou and H. Konuk, “A linear program drivecheduling
and allocation method followed by an interconnect optirtiiea algo-
rithm,” in Proc. Design Automation Confune 1990.

T. A. Ly, W. L. Elwood, and E. F. Girczyc, “A generalizedterconnect
model for data path synthesis,” Proc. Design Automation Conflune
1990.

S. Tarafdar and M. Leeser, “The DT-model: High-levehthesis using
data transfer,” inProc. Design Automation ConfJune 1998.

C. Jego, E. Casseau, and E. Martin, “Interconnect costral during
high-level synthesis,” inProc. Int. Conf. Design Circuits Integrated
SystemNov. 2000.

R. Ho, K. Mai, and M. Horowitz, “The future of wiresProc. |IEEE
vol. 89, no. 4, pp. 490-504, 2001.

P. Prabhakaran and P. Banerjee, “Simultaneous sdhgdbinding and
floorplanning high-level synthesis,” iAroc. Int. Conf. VLSI Desigrlan.
1998.

[36]

[37]

(38]

[39]

[40]

[41]
[42]

[43]
[44]

[45]

[46]

synthesis,"IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systemsvol. 24, no. 3, pp. 336-351, Mar. 2005.

A. Stammermann, et al., “Binding, allocation and fldarming in low
power high-level synthesis,” iRroc. Int. Conf. Computer-Aided Design
Nov. 2003.

0. Coudert, et al., “Incremental CAD,” iRroc. Int. Conf. Computer-
Aided Design Nov. 2000, pp. 236-244.

W. Choi and K. Bazargan, “Hierarchical global floorpgtatent using
simulated annealing and network flow migration,” Rroc. Design,
Automation & Test in Europe ConfMar. 2003.

Z. P. Gu, et al., “Incremental exploration of the condanphysical and
behavioral design space,” Proc. Design Automation Conflune 2005,
pp. 208-213.

H. Zhou and J. Wang, “ACG-Adjacent constraint graph @eneral
floorplans,” inProc. Int. Conf. Computer Desigi©ct. 2004.

C. M. Fiduccia and R. M. Mattheyses, “A linear-time histic for
improving network partitions,” irProc. Design Automation ConfJune
1982, pp. 173-181.

L. Stockmeyer, “Optimal orientations of cells in shg floorplan de-
signs,” Information & Contro| vol. 57, no. 2/3, pp. 91-101, May 1983.
J. Wang and H. Zhou, “Interconnect estimation withoatking via ACG
floorplans,” inProc. Asia & South Pacific Design Automation Codan.
2005.

J. Wang, “Floorplanning by adjacent constrain grapk #s applica-
tions,” Master’s thesis, Northwestern University, Jun®20
“Independent JPEG group,” www.ijp.org.

K. R. Rao and P. YipDiscrete Cosine Transform: Algorithms, Advan-
tages, Applications Academic, NY, 1990.
“NCSU CBL high-level synthesis
www.cbl.ncsu.edu/benchmarks.

S. Y. Kung, VLSI Array Processors Prentice-Hall, Englewood Cliffs,
NJ, 1988.

R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graplas free,”
in Proc. Int. Wkshp. Hardware/Software Co-Desidutar. 1998, pp. 97—
101.

J. Cong and Z. Pan, “Interconnect performance estonathodels for
design planning,”IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systemgpp. 739-752, June 2001.

benchmark suite,”

Zhenyu (Peter) Gu (S'04) received his B.S. and
M.S. degrees from Fudan University, China in 200
and 2003. He is currently a Ph.D. student at North
western University’s Department of Electrical Engi-
neering and Computer Science. Gu has publish
in the areas of behavioral synthesis and therm
analysis of integrated circuits.

14

Robert P. Dick (S'95-M’'02) received his B.S. de-
gree from Clarkson University and his Ph.D. degree
from Princeton University. He worked as a Visit-
ing Researcher at NEC Labs America, a Visiting
Professor at Tsinghua University's Department of
Electronic Engineering, and is currently an Assistant
Professor at Northwestern University’s Department
of Electrical Engineering and Computer Science.
Robert received an NSF CAREER award and won
his department's Best Teacher of the Year award in
2004. He has published in the areas of embedded

system synthesis, mobile ad-hoc network protocols, rititbehavioral syn-
thesis, data compression, embedded operating systemsheumdal analysis
of integrated circuits.

Jia Wang received the B.S. degree in Electronic En-
gineering from Tsinghua University, Beijing, China,
in 2002, and is currently working toward the Ph.D.
in computer engineering at Northwestern University,
Evanston, IL. His research interests are on VLSI
computer-aided design, especially algorithm design.

Hai Zhou (M’04-SM’04) received the B.S. and M.S.
degrees in computer science and technology from
Tsinghua University, Bejing, China, in 1992 and
1994, respectively, and the Ph.D. degree in computer
sciences from University of Texas, Austin, in 1999.
Before he joined the faculty of Northwestern
University, he was with the Advanced Technology
Group, Synopsys, Inc., Mountain View, CA. He is
currently an Assistant Professor of electrical engi-
neering and computer science at Northwestern Uni-
versity, Evanston, IL. His research interests include

very large scale integrated computer-aided design, #hgoridesign, and
formal methods.

Dr. Zhou served on the technical program committees of manjecences
on very large scale integrated circuits and computer-aidesign. He is a
recipient of the CAREER Award from the National Science Fation in
2003.

