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Abstract— Achieving design closure is one of the biggest chal-
lenges for modern VLSI designers. This problem is exacerbated
by the lack of high-level design automation tools that consider
the increasingly important impact of physical features, such as
interconnect, on integrated circuit area, performance, and power
consumption. Using physical information to guide decisions in the
behavioral-level stage of system design is essential to solve this
problem. In this paper, we present an incremental floorplanning
high-level synthesis system. This system integrates high-level and
physical design algorithms to concurrently improve a design’s
schedule, resource binding, and floorplan, thereby allowing the
incremental exploration of the combined behavioral-leveland
physical-level design space. Compared with previous approaches
that repeatedly call loosely coupled floorplanners for physical es-
timation, this approach has the benefits of efficiency, stability, and
better quality of results. The average CPU time speedup resulting
from unifying incremental physical-level and high-level synthesis
was 24.72× and area improvement was 13.76%. The low power
consumption of a state-of-the-art, low-power, interconnect-aware
high-level synthesis algorithm was maintained. The benefits of
concurrent behavioral-level and physical design optimization
increased for larger problem instances.

I. I NTRODUCTION

Process scaling has enabled the production of integrated
circuits (ICs) with millions of transistors. This has allowed
the design of more full-featured and high-performance ICs.
However, these increased capabilities have come at a cost. In
order to deal with increased design complexity and size, it is
becoming increasingly important to automate the higher levels
of the design process.

High-level synthesis systems [1]–[4] automatically convert
behavioral, algorithmic, descriptions of design requirements,
e.g., control data flow graphs (CDFG) [5], into optimized
register-transfer level (RTL) descriptions in languages such as
VHDL or Verilog. Based on a behavioral description, a high-
level synthesis system determines an allocation of resources,
assignment of operations to resources, and a schedule for
operations, in an attempt to satisfy the design specifications
and minimize some combination of delay, area, and power
consumption [6]–[17]. Recently, in order to improve design
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area or performance estimation, a number of researchers have
considered the impact of physical details, e.g., floorplanning
information, on high-level synthesis [18]–[23].

In the past, it was possible for high-level synthesis algo-
rithms to focus on logic, i.e., functional units such as adders
and multipliers. The contribution of wire delay and area was
typically neglected without much loss of accuracy. Focusing on
logic was once reasonable since logic was responsible for the
majority of delay and power consumption. However, process
scaling into the deep sub-micron realm has changed the focus
of VLSI design from transistors to global interconnect. It is
no longer possible to simplify the high-level synthesis problem
by ignoring interconnect.

Taking interconnect cost into consideration during high-
level synthesis has attracted significant attention. In previous
work [24]–[28], the number of interconnects or multiplexers
was used to estimate interconnect cost. The performance and
power impacts of interconnect and interconnect buffers are
now first-order timing and power considerations in VLSI
design [29]. It is no longer possible to accurately predict the
power consumption and performance of a design without first
knowing enough about its floorplan to predict the structure
of its interconnect. This change has dramatically compli-
cated both design and synthesis. For this reason, a number
of researchers have worked on interconnect-aware high-level
synthesis algorithms [30]–[32]. These approaches typically
use a loosely coupled independent floorplanner for physical
estimation. Although this technique improved on previous
work by allowing estimation of physical properties, there
are two drawbacks for this approach. First, the independent
floorplanner may not be stable, i.e., a small change in the
input netlist may result in a totally different floorplan. Amove
is a discrete change made to a solution during optimization
that results in transition to a new position in the solution
space. Floorplan instability may result in a high-level synthesis
algorithm that bases its moves on cost functions without
continuity. Second, even if a floorplanner is stable, creating
a floorplan from scratch for each high-level synthesis move is
inefficient, given the fact that the new floorplan frequentlyhas
only small differences with the previous one. The constructive
approach works for small problem instances but is unlikely
to scale to large designs. New techniques for tightly coupling
behavioral and physical synthesis that dramatically improve
their combined performance and quality are now necessary.

Incremental automated design promises to build tighter
relationship between high-level synthesis and physical design,
improving the quality of each [33]–[35]. A number of high-
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level synthesis algorithms are based on incremental optimiza-
tion and are, therefore, amenable to integration with incre-
mental physical design algorithms. This has the potential of
improving both quality and performance. Incremental methods
improve quality of results by maintaining important physical-
level properties across consecutive physical estimationsduring
synthesis. Moreover, they shorten CPU time by reusing and
building upon previous high-quality physical design solutions
that required a huge amount of effort to produce.

This paper describes an incremental high-level synthesis
system that reduces synthesis time dramatically while pro-
ducing ICs with better area and low power consumption
compared to a state-of-the-art power-aware high-level syn-
thesis algorithm. The benefits of this approach increase with
increasing problem size and complexity. Our work is based on
the interconnect-aware high-level synthesis tool, ISCALP[31],
which was based on the low-power datapath synthesis tool,
SCALP [15]. We reuse the power modeling and iterative-
improvement high-level synthesis framework from ISCALP.
However, this work differs from previous work in that a
truly incremental floorplanner is used to estimate the inter-
connect structure [36], instead of a fast constructive algorithm.
Moreover, the high-level synthesis algorithm, itself, is made
incremental. As shown in Section V, this resulted in an average
speedup of 24.72× and an average area improvement of
13.76%, while maintaining the low power consumption of a
state-of-the-art power-aware high-level synthesis algorithm. In
addition, wire delay is considered in this work to guarantee
that the implementation meets its performance requirements.

This paper is organized as follows. Section II explains the
motivation for this work. Section III describes the design flow
for the proposed high-level synthesis system. The details of
our incremental floorplanner are introduced in Section IV.
Experimental results are presented in Section V. Conclusions
and future work are presented in Section VI.

II. M OTIVATION

In this section, we first present definitions useful in the
discussion of high-level synthesis. Then motivational examples
are given based on our observations of the synthesis process.
Examples are used to explain and motivate the use of unified
high-level and physical-level optimization.

A. Definition

The input to ISCALP is a control-data flow graph (CDFG),
G, an input arrival (and output sampling) period,Ts, and a
library, L, of functional units for data path implementation.
ISCALP produces an RTL circuit in which power consumption
(including logic and wire power consumption) and estimated
area are optimized. The ISCALP algorithm has two loops.
Given the supply voltage, the outer loop incrementally reduces
the number of control steps,csteps , from its maximum to
minimum value, wherecsteps is defined as

csteps = Ts × f (1)

or alternatively,
Tclock = Ts/csteps (2)

In the above equations, each control step corresponds to a
time period of one clock cycle, and the sample periodTs is the
constraint on the input data rate. The solution got from high-
level synthesis must be able to process an input sample before
the next one arrives. For a given specification, the sample
period is fixed. Hence,csteps indicates the number of clock
cycles required to process an input sample. The variablef
is the chip clock frequency.Tclock is the chip clock period.
ISCALP searches for the lowest-power architecture for each
possible value ofcsteps .

Given a value ofcsteps , which allows the clock period to
be determined, the inner loop first uses the fastest available
functional unit from the library to implement each operation.
An as-soon-as-possible (ASAP) schedule is then generated for
the initial solution to determine whether it meets its timing
requirements. The initial solution is then further optimized.
Having obtained an initial solution that meets the sample
period constraint for the current value ofcsteps , the itera-
tive improvement phase attempts to improve the architecture
by reducing the switched capacitance while satisfying the
sample period constraints. More details can be found in
literature [15], [31] .

B. Motivating Example

ISCALP employs a fast constructive slicing floorplanner
based on netlist partitioning and rotation/orientation selec-
tion to obtain a floorplan optimized for wire length and
area [37], [38]. Although it improved on its predecessors by
considering the impact of floorplanning on synthesis, thereare
several drawbacks to this approach.

First, an incremental high-level synthesis algorithm only
changes a small portion of the modules and connections in
each move. However, a constructive (conventional) floorplan-
ner always starts floorplanning from scratch. It is not efficient
because it does not reuse the floorplan information obtained
during the previous run. Moreover, it is possible that the
newly-produced floorplan will be totally different from the
previous one, despite only small changes in the set of modules
and interconnections. This lack of autocorrelation in floorplan
solutions may result in a high-level synthesis algorithm basing
its future moves on information that immediately becomes
invalid after the moves are applied.

Second, the efficiency of the constructive slicing structure
floorplanner decreases dramatically for blocks with non-unity
aspect ratios (ISCALP assume blocks with unity aspect ratio).
As a result of constraining the solution space to slicing floor-
plans, it is prone to reaching sub-optimal solutions. However,
simply replacing the slicing floorplanner with a high-quality
floorplanner would result in unacceptably-high CPU time.

To solve these problems, we propose an incremental it-
erative improvement high-level synthesis algorithm tightly
integrated with a high-quality incremental floorplanner. This
synthesis system is called IFP-HLS, i.e., incremental floor-
planning high-level synthesis. We run the same benchmarks
on both ISCALP and IFP-HLS, listing the number of merge
operations and CPU time for each benchmark in Table I.

ttotal = Nmoves ∗ (tHLS + tfp) (3)
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(a) Power consumption of intermediate solution during optimization for
all the values of csteps.
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(b) Power consumption of intermediate solution during optimization for
the values of csteps from 0 to 2.

Fig. 1. Power consumption of intermediate solution during optimization of
ISCALP & IFP-HLS.

As Equation 3 shows, the CPU time of the high-level syn-
thesis run can be divided into two parts: high-level synthesis
moves and the resulting physical design carried out by the
floorplanner. As shown in Table II, floorplanning is the most
time consuming of these. It uses at least 75.69% of the CPU
time on average for both ISCALP and IFP-HLS. As shown
in Table I, IFP-HLS achieves an average reduction of 50% in
the number of high-level synthesis merge operations compared
to ISCALP. This results in a large reduction in floorplanner
CPU time. The reduction in moves, and CPU time, is mainly
due to the incremental high-level synthesis and floorplanning
algorithms used in IFP-HLS. Many high-level synthesis moves
result in time-consuming changes to the floorplan. IFP-HLS
can greatly reduce CPU time by reducing the number of merge
operations, especially for larger benchmarks which have bigger
solution space to explore.

Figure 1 illustrates the power consumptions of intermediate
solutions during optimization in ISCALP and IFP-HLS. For
each value of csteps, we plot the intermediate solutions pro-
duced by the optimization algorithm. Note that these interme-
diate solutions all have the same value of csteps. Incremental
optimization allows IFP-HLS to focus on the most promising

(low-power) regions of the solution space while ISCALP must
essentially restart optimization for each new potential clock
frequency. This allows improvement to both optimization time
and solution quality for IFP-HLS.

Note that ISCALP starts the floorplanner from scratch after
each high-level design change. The incremental physical and
architectural optimization used in IFP-HLS reduces CPU time
dramatically, especially for large applications. Table I indicates
that the average CPU time speedup is 24.72×. The improve-
ment is greatest for the largest benchmarks. For example, when
run on Random300, ISCALP does not finish within 5 days,
while IFP-HLS finishes within 4 hours. In addition, IFP-HLS
achieves 13.76% improvement in area compared to ISCALP.

The above examples clearly illustrate the value of using uni-
fied incremental physical-level and high-level design synthesis.
As shown in detail in Section V, this approach improves both
design quality and CPU time.

III. I NCREMENTAL HIGH-LEVEL SYNTHESIS

In this section, we describe our incremental floorplan-
ning high-level synthesis algorithm (IFP-HLS). IFP-HLS is
built upon ISCALP [31]. However, incorporating incremental
floorplanning required substantial changes to that algorithm,
resulting in a new low-power incremental floorplanning high-
level synthesis algorithm. IFP-HLS considers both datapath
and interconnect power consumption. As shown in Figure 2,
the CDFG is simulated with typical trace in order to profile
the switching activity of each operation and data transfer edge.
A RTL design library is set up to provide the power and
area information. The profiling information combined with this
RTL design library and floorplanner is then used to evaluate
the power consumption of both datapath and interconnect. IFP-
HLS uses a new incremental method for improving functional
unit binding during high-level synthesis. Although this im-
provement, alone, would result in a reduction in synthesis
time, its motivation was to facilitate the integration of an
incremental floorplanning algorithm with high-level synthesis
in order to improve solution quality and reduce synthesis time.
This allows the high-level synthesis algorithm to determine the
physical position of each module during optimization, enabling
interconnect power consumption and delay estimation.

A. Incremental High-level Synthesis Framework

In this section, we describe our incremental high-level
synthesis tool, IFP-HLS. The flowchart of IFP-HLS is shown
in Figure 2. IFP-HLS differs from ISCALP in a number
of ways. Instead of generating an initial solution for each
value of csteps , IFP-HLS only generates one solution at
the maximum value ofcsteps and incrementally changes
the solution ascsteps decreases. Thus, in addition to using
incremental floorplanning, IFP-HLS also eliminates redundant
moves by taking advantages of incremental steps in high-
level synthesis. Initially, we still use an ASAP schedule and
fully parallel allocation to estimate whether there existsa
valid solution for the current value ofcsteps . If not, it is
not necessary to do further moves for the current number of
control steps because a binding that further reduces the finish
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Fig. 2. Incremental high-level synthesis algorithm.

time of an ASAP schedule is not possible. However, if an
ASAP schedule meeting the timing requirements is possible,
we will use the best solution from the previous value of
csteps and reschedule it based on the current value, which
is equal to the previouscsteps minus 1. If, after rescheduling,
the solution meets its timing requirements, rebinding is not
necessary. Otherwise, it will be necessary to parallelize some
of the operations to improve performance. Thesplit moveis
used to eliminate resource contention by splitting a pair of
operations that were initially assigned to the same functional
unit onto separate functional units. A detailed description of

the split move may be found in Section III-B.
For a given value ofcsteps , when a move is chosen,

IFP-HLS incrementally changes the floorplan to see whether
the change improves solution quality. If so, the change is
accepted. Otherwise, the change is rejected and other moves
are attempted. This technique differs from that in ISCALP. In
ISCALP, floorplanning is only done at the end of eachcsteps

iteration; it does not take advantage of solution correlation
to save effort acrosscsteps values. ISCALP uses only power
consumption to guide high-level synthesis moves. In contrast,
IFP-HLS uses a weighted sum of area and power consumption
(pW), with a ratio of 1µm2 to 5 pW, in order to evaluate
solution quality.

A high-quality incremental floorplanner was developed
and incorporated into IFP-HLS to guide high-level synthesis
moves. Each time the high-level synthesis algorithm needs
physical information, it extracts that information from the
current, incrementally generated, floorplan. Costs derived from
the floorplan are also used to guide high-level synthesis moves.
By using incremental floorplanning, closer interaction between
high-level synthesis and physical design is possible, i.e., the
high-level synthesis algorithm may determine the impact of
potential changes to binding upon physical attributes suchas
interconnect power consumption and area.

The core idea of incremental design is to maintain good
physical-level properties across consecutive physical estima-
tions during high-level synthesis moves. It is possible to apply
the idea of using an incremental optimization framework to
integrate other algorithms, provided that the algorithms at each
level of design can be made incremental. Let us consider a few
other examples. In force-directed scheduling, all the operations
may be scheduled iteratively in the order of increasingly
cost and the cost of scheduling each unscheduled operation
is updated after each operation is scheduled. This provides
a potential opportunity to tightly integrate an incremental
floorplanner to physical information feedback. For maximal
clique based resource sharing, since it is a NP-hard problem,
a heuristic algorithm will be used in practice. As long as
the heuristic algorithm itself is iterative, it can be made
incremental.

In summary, IFP-HLS performs scheduling, allocation,
and binding by iteratively changingcsteps and determining
whether operations need to be rescheduled or re-bound (split)
in order to meet timing constraints. At each step the floorplan
is updated and re-optimized.

B. Extended Move

This subsection describes the split moves, rescheduling, and
a new graph technique to determine split locations.

We observed that whencsteps decreases by one, each
individual operation takes, at most, the same number of control
steps as it did for the previous value ofcsteps . Given that
csteps is no less than the previouscsteps minus one, we can
conclude that the ASAP schedule for the previous value of
csteps violates the deadline for the current value ofcsteps

by, at most, one clock cycle. We will use nodei’s slack,Si,
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to represent this information, which is defined as follows:

Si = LST i − EST i (4)

Here,EST i is the earliest start time andLST i is the latest
start time which were computed by a topological sort. Hard-
ware resource contention has already been considered.

Nodes with non-negative slack values do not imply timing
violations. However, nodes with slack values of−1 cause
timing violations, i.e., they must be executed one cycle earlier.
These timing violations can be removed by splitting merged
operations which, although useful for previous values of
csteps , now harm performance. Based on this observation, the
split move is used to eliminate timing violations. Therefore,
the whole high-level synthesis algorithm is implemented in
an incremental way from maximum to minimum values of
csteps without rebinding from scratch at each value ofcsteps .
Few changes to binding and scheduling are required as a
result of single-unit change tocsteps . However, in order to
meet timing requirements, it is sometimes necessary to split
operators mapped to the same functional unit. The split move
makes it possible to quickly apply these isolated changes.
Previous high-level synthesis systems, e.g., SCALP and IS-
CALP, started from a fully parallel implementation for each
value of csteps and repeatedly merged operators to reduce
area. Although both techniques are reasonable in the absence
of an integrated floorplanner, the incremental approach used
in IFP-HLS speeds optimization (without degrading solution
quality) by requiring far fewer changes to the floorplan. Used
together, the split and merge moves allow complete exploration
of the solution space. However, the primary goal of changing
the number of control steps is meeting timing constraints. We
therefore start our exploration of the solution space at themost
promising region by iteratively splitting functional units on the
critical timing path.

Algorithm 1 Reschedule and Split Procedure
1: Reschedule the design
2: Compute slacks of all operations
3: while there exists negative slackdo
4: Compute slack of all operations
5: Construct graph including all the operations and edges

with negative slack
6: Use maximum flow to find the minimum cut in the

graph
7: Do the split move
8: Reschedule the design
9: end while

The reschedule and split procedure is shown in Algorithm 1.
We will give an example to further describe this procedure.
Consider the data flow graph shown in Figure 3(a), in which
arrows represent the data dependencies. Scheduling and allo-
cation yield the DFG in Figure 3(b). Here, we can see that
three functional units (FUs) are used. Operations *1 and *2
share FU1, operations *3, *4, and *5 share FU2, and operation
+1, +2, and +3 share FU3. The sample period is 108 ns,
each multiplication takes 20 ns, and each addition takes 10 ns.

Whencsteps is reduced from 10 to 9, instead of binding and
scheduling from scratch, the algorithm reschedules based on
current binding. For this example, after rescheduling, there
are still timing violations for operations *3, *4, and *5
because they were all bound to FU2, as shown in Figure 3(c).
Therefore, the split move is necessary in order to allow all
operations to meet their timing requirements. A description of
the split move follows.

Based on the result of slack computation, we produce a
graph including all the operations with negative slack. Each
operation is represented by a node. In addition, there are three
kinds of edges, defined as follows:

1) Data dependency edges, indicating that the destination
node takes the source node’s data as input;

2) Merge edges, indicating that the two nodes are currently
bound to the same functional unit or same storage unit;
and

3) Pseudo edges, used to restructure the graph for appli-
cation of the min-cut algorithm. A pseudo source node
and pseudo sink node are introduced into the graph. All
input nodes are connected to the pseudo source node
and all output nodes are connected to the pseudo sink
node.

After constructing this graph, a min-cut algorithm is exe-
cuted. First, an infinite capacity is assigned to all the pseudo
edges and data dependency edges. Merge edges are each given
capacities of one. If two nodes are connected by both a
data dependency edge and a merge edge, the merge edge is
eliminated because split moves on nodes sharing dependency
edges do not improve the timing properties. Using a min-cut
algorithm in this manner splits a minimal cardinality subset
of nodes, allowing a reduction in the finish time of the ASAP.
One could consider the impact of area and power consumption
within the min-cut max-flow algorithm by weighting the
edges appropriately. However, this would generally lead toto
additional split operations, increasing CPU time.

Although decrementingcsteps may increase delay by at
most one clock cycle, there may be some value ofcsteps

for which even fully parallel bindings do not allow an ASAP
schedule to meet its timing constraints. Therefore, min-cut and
rescheduling may not be carried out for some values ofcsteps .
After the split move, the operations are rescheduled and slack
is recomputed to determine whether timing constraints are met.

The algorithm described above was used to construct the
graph shown in Figure 3(d). The dashed lines represent merge
edges. The solid lines represent pseudo-edges and data de-
pendence edges. Nodes S and T represent pseudo source and
sink nodes respectively. After slack computation, we eliminate
all the nodes and edges which are not on the critical path
and assign a capacity of one to merge edges and a capacity
of infinity to other edges, as shown in Figure 3(e). For this
example, it is possible to cut through either edge (+2, +1),
or edges (*3, *1) and (*4, *2). Here, we cut through +2 and
+1, which is the minimal cut, thereby assigning +1 to a new
functional unit, FU4. +3 and +2 remain bound to the original
functional unit, FU3. As shown in Figure 3(f), no operation
violates timing constraints.
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Fig. 3. Incremental changes on HLS.

Another case must also be considered. If no valid solutions
exist for the current value ofcsteps , IFP-HLS will skip further
optimization and decrementcsteps . IFP-HLS may reach a
valid value of csteps after repeatedly decrementingcsteps .
In this case, the slack values for some operations may less
than -1. Hence, the value ofcsteps is decremented and the
split move, followed by rescheduling, are repeated until a valid
solution is produced. This process is as shown in Figure 4.

IV. I NCREMENTAL FLOORPLANNING

As discussed in previous sections, in order to introduce in-
cremental combined behavioral and physical optimization into
high-level synthesis, a high-quality incremental floorplanner is
necessary. We have tested this idea by building an incremental
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Fig. 4. Iterative split move for slack smaller than -1.

simulated annealing floorplanner into the IFP-HLS algorithm.
In this section, we describe this incremental floorplanner.

This floorplanner handles blocks with different aspect ratios
and produces non-slicing floorplans. Unlike the netlist parti-
tioning approach used in ISCALP, it was designed primarily
for quality, not speed. Although the impact on synthesis time
would prevent incorporation of a conventional high-quality
floorplanner in the inner loop of a high-level synthesis system,
using incremental floorplanning enables both high quality
and low synthesis time. High-level synthesis moves typically
remove a single module or split a module into two. Therefore,
many changes are small and their effects on the floorplan are
mostly local. We reuse the modified previous floorplan as a
starting point for each new floorplan. The previous floorplanis
optimized. Therefore, re-optimization of the current floorplan
to incorporate local changes is fast. In practice, we have
found that this technique leads to quality-of-results and per-
formance improvements over constructive floorplanning, even
when compared with a very fast constructive floorplanner.

A. Floorplan Representation

The Adjacent Constraint Graph (ACG) floorplan repre-
sentation is used within IFP-HLS’s incremental floorplan-
ner [36], [39], [40]. This representation will be briefly sum-
marized here.

An ACG is a constraint graph satisfying the following three
conditions: first, there is at most one relation (either horizontal
or vertical) between any pair of vertices; second, there are
no transitive edges; third, there are nocrosses. A cross is a
special edge configuration that can result in quadratic number
of edges in the constraint graph. Figure 5 shows two cases
of crosses and Figure 6 shows that a constraint graph with
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Fig. 5. (a) Horizontal cross and (b) vertical cross.

Fig. 6. A constraint graph without over-specifications and transitive edges
can have quadratic number of edges.

crosses may have quadratic number of edges even when the
first two conditions are met. It is proved that the number of
edges in an ACG is at mostO

(

n1.5
)

wheren is the number
of vertices [40].

The operations of removing and inserting vertices in an
existing ACG are designed to reflect high-level binding de-
cisions, i.e., merging and splitting. To obtain the physical
position of each module, packing based on longest path
computation is employed since the ACG itself is a constraint
graph.

Perturbations on the graph are designed so that the ACG can
be used in an iterative optimization heuristic such as simulated
annealing (SA). They change the graph topology locally and
have straightforward meanings in physical space. Since the
interconnect lengths are determined by the physical positions
of modules, which in turn depend on the graph topology,
applying these perturbations changes the interconnects locally.
Other perturbations include rotating a module and exchanging
the two modules represented by any pair of vertices. The latter
changes the interconnect globally.

B. Incremental Floorplanner

There are four situations in which the incremental floor-
planner is called by the IFP-HLS framework. First, a floorplan
should be generated after each ASAP schedule is produced.
We call this aninitial floorplanning. Second, a floorplan should
be modified and optimized after each high-level synthesis
move. We call thisper-movefloorplanning. Third, for each
csteps value, a floorplan for the best binding should be
generated and compared to the existing best floorplans. We
call this per-cstepfloorplanning. Fourth, after determining the
best clock frequency and binding, floorplanning is carried out
to provide the final result. We call thisfinal floorplanning.

Although initial, per-cstep, and final floorplanning are done
with simulated annealing for quality, per-move floorplanning
requires fewer global changes and less hill climbing. More-
over, perturbations resulting from high temperatures may dis-
rupt high-quality floorplan structures. Therefore, it is reason-
able to use lower temperatures for per-move floorplanning. In
practice, we have found that using a temperature of zero results
in good quality and performance. In other words, although

simulated annealing is necessary in many cases, per-move
floorplanning is done with a greedy iterative improvement
algorithm.

The details of our approach follow. First, after generating
the first ASAP schedule and binding, we have an initial set
of modules and interconnections. Simulated annealing is used
to obtain an initial floorplan. Since every interconnect nethas
exactly one driving module, multi-pin nets are broken into
two-pin wires with the driving module as the source. The wire
length is calculated as the Manhattan distance between the
two modules connected by the wire. At this point, the unit-
length switched capacitances of data transfers between two
modules are available. We use these as weights for the wire
lengths. The weighted total wire length is related to power
consumption, i.e., optimizing weighted wire length minimizes
interconnect power consumption. A weighted sum of the area
and the interconnect power consumption is calculated as the
floorplanner’s cost function, that is,

A + w
∑

e∈E

CeDe (5)

whereA is the area,w is the power consumption weight,E
is the set of all wires,e is an interconnect wire,Ce is the
unit-length switched capacitance for the data transfer along e,
and De is the length ofe. With this approach, we optimize
the floorplan for both the interconnect power consumption
and the area. The resulting floorplan will be improved during
the consecutive incremental floorplanning high-level synthesis
moves. Therefore, the number of simulated annealing itera-
tions is bounded to reduce synthesis time.

After each high-level synthesis move, per-move floorplan-
ning first modifies the previous floorplan by removing or
splitting a module. The modules and switched capacitances
are updated based upon the impact of these merges and splits.
The floorplan is then re-optimized with a greedy iterative
improvement algorithm using the same cost function as the
simulated annealing algorithm. The greedy improvements are
divided into consecutive rounds. In every round we apply the
same number of perturbations to the floorplan. If less than10%
of the perturbations result in reduced costs, re-optimization
stops. Although it would be easy to use a low simulated
annealing temperature to allow some hill climbing during re-
optimization, this was not necessary in practice. It shouldbe
pointed out here that changes to switched capacitances may
require a few global changes in the ACG to obtain power
consumption optimized floorplans. Therefore, we still allow
the exchange perturbation to change the floorplan globally,
but reduce its frequency to favor local perturbations.

When we find the best binding for a given value ofcsteps ,
we do per-cstep floorplanning and compare the result with
the best floorplan from previous value ofcsteps . This time
non-zero temperature simulated annealing is used because it
increases floorplan quality. These normal simulated annealing
runs occur only once percsteps value, allowing their CPU
costs to be amortized.

After determining the best binding across all the possible
values ofcsteps , a final floorplanning run is carried out for
that binding. This final floorplanning occurs only once per
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synthesis run. Therefore, it is acceptable to use a higher-
quality, but slower, annealing schedule than those in the inner
loop of high-level synthesis, thereby reducing chip area and
interconnect power consumption.

During the annealing schedule, we use a constant multi-
plicative cooling factor,r, i.e.,

T ′ = r × T (6)

whereT is the current temperature andT ′ is the temperature
for the next iteration. The cooling factors for initial, per-cstep,
and final floorplanning are0.7, 0.8, and0.9 respectively. At
one temperature, if less than10% of the perturbations are
accepted, the annealing process stops. The ratio between the
numbers of the perturbations at one temperature for initial,
per-cstep, and final floorplanning is1 : 1 : 5. The number
of perturbations per round for per-move floorplanning is the
same as that in the final floorplanning.

The interconnect power consumption weight,w, is com-
puted during synthesis for each floorplanning to avoid the
difficulty of determining a proper value for all the situations.
Before each floorplanning, we calculate the area-to-power-
consumption ratio,w0, using the existing floorplan, which is
either the previous floorplan for per-move, per-cstep, and final
floorplanning or the starting floorplan for initial floorplanning.
For initial, per-cstep and final floorplanning, the weightw
is set to 0.5 · w0 to balance the area and the interconnect
power consumption. For per-move floorplanning, it is more
important to provide a prediction of the trend of interconnect
power consumption in a limited time so thatw is set to
2.5 · w0 instead. Note that in this stage, not area cost but the
prediction of the interconnect power consumption is the major
consideration. Therefore, the wire length weight was set tobe
a big value compared to the area weight.

V. EXPERIMENTAL RESULTS

In this section, we present the results produced by the
IFP-HLS incremental floorplanning high-level synthesis al-
gorithm described in Sections III and IV when run on a
number of benchmarks. The results generated by ISCALP
and IFP-HLS are compared. As explained in Section III-
A, both approaches optimize area and power consumption.
The experiments were conducted on Linux workstations with
dual 933 MHz Pentium III processors and 512 MB of random
access memory.

A. Benchmarks

We evaluated seventeen high-level synthesis benchmarks
using a 0.18µm technology library.Chemical and IIR77
are infinite impulse response (IIR) filters used in industry.
DCT IJPEG is the Independent JPEG Group’s implementation
of digital cosine transform (DCT) [41].DCT Wangis a DCT
algorithm named after the inventor [42]. Both DCT algorithms
work on8×8 arrays of pixels.Elliptic, an elliptic wave filter,
comes from the NCSU CBL high-level synthesis benchmark
suite [43].Jacobi is the Jacobi iterative algorithm for solving
a fourth order linear system [44].WDF is a finite impulse
response (FIR) wave digital filter. The largest benchmark is

Jacobi with 24 multiplications, 8 divisions, 8 additions, and
16 subtractions. In addition, we generate five CDFGs using
a pseudo random graph generator [45]. Random100 has 20
additions, 15 subtractions, and 19 multiplications. Random200
has 39 additions, 44 subtractions, and 36 multiplications.
Random300 has 59 additions, 58 subtractions, and 72 mul-
tiplications.

IFP-HLS had better performance than ISCALP on these
large randomized benchmarks. In order to determine whether
the improved performance of IFP-HLS was the result of
random graph structure or benchmark size, we generated two
structured benchmarks, Small and Serial. Small is composed
of five operations connected in parallel. Serial is composedof
45 operations connected in serial. As shown in Table I, IFP-
HLS has better CPU time for structured the large benchmark
Serial. This is consistent with the results for other other large
benchmarks.

The area of each benchmark described in this section was
estimated using pre-synthesized functional-units (e.g.,adders,
multipliers, etc.) based on NEC’s 0.18µm process and the
floorplanner from high-level synthesis tool. The logic power
consumption of each benchmark was evaluated using power
models from the pre-synthesized functional-unit level design
library. A full-system switching activity simulator was used
during power consumption computation. Wire power con-
sumption and wire delay were calculated based on the wire
capacitances estimated using Cong’s and Pan’s technique [46]
and the wire length information from floorplanner of high-
level synthesis design tools. As described in Section III, both
logic and wire delays were calculated to determine whether
each design meets its timing requirements. However, since the
wire delay estimation is only implemented in IFP-HLS; this
function was not used when comparing to ISCALP.

B. Results

The results of running ISCALP and IFP-HLS on non-unity
aspect ratio functional units are shown in Figure 7. As shown
in the Figure 7(a), Figure 7(b), and Table I, IFP-HLS achieves
an average CPU time speedup of 24.72×, 13.76% improve-
ment in area, and 50% reduction in the number of merge
move in comparison with ISCALP. Low power consumption
is maintained.

ISCALP uses a constructive floorplanner that may suffer
performance degradation when used with non-unity aspect
ratio functional units. In order to determine whether the
improvement in quality and run time were the result of the
specific type of floorplanner used in ISCALP, we repeated
all experiments using only unity aspect ratio functional units.
As shown in Figure 8, Table I, and Table III, the IFP-HLS
algorithm achieves an average CPU time speedup of 2.03×,
11.32% improvement in area, and 54% reduction in the
number of merge move, while maintaining the same low power
consumption as ISCALP.

As shown in Figure 7, Figure 8, Table I, and Table III,
IFP-HLS always has better CPU time than ISCALP for both
non-unity and unity aspect ratio cases except for two very
small unity aspect ratio benchmarks (PAULIN and MAC).
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(a) CPU time for non-unity aspect ratio functional units.

(b) Number of moves, area, and power consumption for non-unity aspect ratio functional units.

Fig. 7. Comparison between ISCALP & IFP-HLS for non-unity aspect ratio functional units.

There are two contributors to CPU time (as shown in Equa-
tion 3): the number of high-level synthesis moves and the
resulting floorplanning operations. ISCALP employs a fast
constructive slicing floorplanner based on netlist partition-

ing and rotation/orientation selection to obtain a floorplan
optimized for wire length and area. It is faster than our
simulated annealing floorplanner for small benchmarks with
only a few blocks largely due to its determinism. The sim-
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(a) CPU time for unity aspect ratio functional units.

(b) Number of moves, area, and power consumption for unity aspect ratio functional units.

Fig. 8. Comparison between ISCALP & IFP-HLS for unity aspectratio functional units.
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TABLE I

NUMBERS OFMERGES ANDCPU TIMES OF DIFFERENTBENCHMARKS

Unity aspect ratio Non-unity aspect ratio
Benchmark No. of Merges No. of Splits CPU Time No. of Merges No. of Splits CPU Time

ISCALP IFP-HLS IFP-HLS ISCALP (s) IFP-HLS (s) Speedup (×) ISCALP IFP-HLS IFP-HLS ISCALP (s) IFP-HLS (s) Speedup (×)
CHEMICAL 593 208 24 83.35 74.19 1.12 585 190 26 793.83 55.15 14.39

DCT DIF 981 492 1 102.98 120.86 0.85 769 508 1 699.96 102.27 6.84
DCT IJPEG 630 380 0 363.12 310.91 1.17 850 424 11 4297.13 183.36 23.44
DCT LEE 1512 674 2 248.07 194.41 1.28 1276 691 5 2669.18 166.56 16.03

DCT WANG 974 564 10 340.40 259.53 1.31 1019 515 3 5678.98 229.11 24.79
ELLIPTIC 562 172 16 77.46 57.04 1.36 533 212 11 804.29 53.16 15.13

IIR77 858 506 2 214.89 192.87 1.11 858 426 1 2102.27 126.04 16.68
JACOBI SM 1652 572 52 1982.55 322.97 6.14 1755 530 26 31187.15 256.60 121.54

MAC 220 31 13 7.64 10.28 0.74 200 19 14 22.12 5.64 3.92
PAULIN 87 26 6 1.12 2.50 0.45 87 25 6 3.20 2.03 1.58

PR1 839 449 10 162.79 138.13 1.18 841 448 12 2041.15 121.94 16.74
PR2 1074 526 20 366.87 256.12 1.43 866 529 27 6145.86 177.36 34.65

SERIAL 5200 2620 3 1187.37 767.48 1.55 5200 2660 1 14503.25 599.59 24.19
SMALL 11 9 0 0.20 0.94 0.21 11 13 2 0.24 0.83 0.29

WDF 1827 631 6 185.52 118.74 1.56 1588 739 9 1092.92 118.92 9.19
RANDOM100 1359 511 10 462.14 246.24 1.88 1353 433 5 5951.79 204.52 29.10
RANDOM200 1110 780 1 16438.33 3498.53 4.70 1140 780 2 174540.95 2826.22 61.76
RANDOM300 2810 820 0 160997.92 18786.70 8.57 N/A∗ 900 2 N/A∗ 12650.64 N/A∗

Average 1238.83 553.94 9.78 10179.04 1408.80 2.03 1113.59∗ 537.76∗ 9.11 14854.96∗ 307.61∗ 24.72∗

∗To solve non-unity aspect ratio Random300, ISCALP had not yet halted after 120 hours. The non-unity aspect ratio Random300 benchmark was excluded
from the computation for average numbers.

TABLE II

CPU TIMES BREAK DOWN OF DIFFERENTBENCHMARKS

Unity aspect ratio Non-unity aspect ratio

Benchmark ISCALP IFP-HLS ISCALP IFP-HLS
Tfp Ttotal Ratio∗ Tfp Ttotal Ratio∗ Tfp Ttotal Ratio∗ Tfp Ttotal Ratio∗

(s) (s) (%) (s) (s) (%) (s) (s) (%) (s) (s) (%)
CHEMICAL 61.19 83.35 73.41 61.24 74.19 82.54 770.91 793.83 97.11 43.60 55.15 79.06

DCT DIF 75.57 102.98 73.38 101.86 120.86 84.28 674.93 699.96 96.42 82.95 102.27 81.11
DCT IJPEG 308.59 363.12 84.98 269.28 310.91 86.61 4238.01 4297.13 98.62 146.66 183.36 79.98
DCT LEE 191.11 248.07 77.04 159.66 194.41 82.13 2616.96 2669.18 98.04 130.88 166.56 78.58

DCT WANG 275.61 340.40 80.97 214.17 259.53 82.52 5613.21 5678.98 98.84 185.94 229.11 81.16
ELLIPTIC 49.42 77.46 63.80 47.08 57.04 82.54 780.94 804.29 97.10 41.44 53.16 77.95

IIR77 168.91 214.89 78.60 164.32 192.87 85.20 2056.25 2102.27 97.81 104.88 126.04 83.21
JACOBI SM 1846.04 1982.55 93.11 245.88 322.97 76.13 31029.15 31187.15 99.49 188.11 256.60 73.31

MAC 4.80 7.64 62.83 9.28 10.28 90.27 19.42 22.12 87.79 4.89 5.64 86.70
PAULIN 0.54 1.12 48.21 2.11 2.50 84.40 2.50 3.20 78.13 1.66 2.03 81.77

PR1 126.84 162.79 77.92 112.32 138.13 81.31 2003.70 2041.15 98.17 96.38 121.94 79.04
PR2 299.53 366.87 81.64 213.68 256.12 83.43 6085.16 6145.86 99.01 141.40 177.36 79.72

SERIAL 974.21 1187.37 82.05 634.26 767.48 82.64 14288.12 14503.25 98.52 476.38 599.59 79.45
SMALL 0.09 0.20 45.00 0.84 0.94 89.36 0.15 0.24 62.50 0.71 0.83 85.54

WDF 126.58 185.52 68.23 90.21 118.74 75.97 1037.36 1092.92 94.92 88.49 118.92 74.41
RANDOM100 383.64 462.14 83.01 208.30 246.24 84.59 5869.24 5951.79 98.61 172.87 204.52 84.52
RANDOM200 15484.14 16438.33 94.20 2877.49 3498.53 82.25 173591.19 174540.95 99.46 2220.85 2826.22 78.58
RANDOM300 151251.05 160997.92 93.9515798.36 18786.70 84.09 N/A∗∗ N/A∗∗ N/A∗∗ 10089.21 12650.64 79.75

Average 9534.88 10179.04 75.69 1178.35 1408.80 83.35 14745.72∗∗ 14854.96∗∗ 94.15∗∗ 242.83∗∗ 307.61∗∗ 80.24∗∗

∗ Ratio = Tfp/Ttotal
∗∗To solve non-unity aspect ratio Random300, ISCALP had not yet halted after 120 hours. The non-unity aspect ratio Random300 benchmark was excluded

from the computation for average numbers.

ulated annealing algorithm may re-visit same valid solutions
multiple times before reaching the halting conditions while
constructive slicing floorplanner can quickly consider allslic-
ing structure floorplanners, given small enough problem sizes.
In contrast, the simulated annealing floorplanner is relatively
faster on large problem instances because it can focus its
moves on the most promising regions of the solution space
while the constructive floorplanner is left to explicitly consider
an exponentially-increasing number of points in the solution
space. Please note that both floorplanners run quickly on small
benchmarks. We are primarily concerned with floorplanner

performance on large problem instances, for which run-timeis
a concern. In addition, recall that ISCALP is an interconnect-
aware, power-driven high-level synthesis tool. These results
show that, on average, IFP-HLS achieves better CPU time
and area while maintaining good power consumption. We also
analysis the time break down between high-level synthesis
moves and floorplanning. As shown in Table II, floorplanning
used more than 75.69% of the total CPU time on average for
both ISCALP and IFP-HLS; floorplanning is the most time-
consuming part of the high-level synthesis design flow.

In an attempt to isolate the impact of using a constructive
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TABLE III

AREA AND POWER IMPROVEMENTS OFDIFFERENTBENCHMARKS

Benchmark Area Improvement (%) Wire Power Improvement (%) Total Power Improvement (%)
Unity Non-unity Unity Non-unity Unity Non-unity

CHEMICAL 6.23 22.67 22.69 9.39 4.17 5.72
DCT DIF 4.36 -6.91 41.51 21.86 2.37 -0.16

DCT IJPEG -5.09 12.35 49.59 -4.39 0.35 2.76
DCT LEE 13.84 13.53 22.74 7.58 3.16 1.35

DCT WANG 16.60 13.61 38.50 42.82 7.00 5.15
ELLIPTIC 9.70 9.45 22.18 28.32 2.77 0.03

IIR77 22.69 15.03 21.32 -0.37 2.42 -0.34
JACOBI SM 22.26 24.17 14.13 9.76 -5.41 -6.51

MAC 36.13 18.84 9.65 13.72 -0.27 0.70
PAULIN 5.74 6.72 26.19 23.39 -8.72 -8.86

PR1 19.86 10.87 6.13 16.44 2.39 2.05
PR2 18.56 26.93 30.83 -7.75 2.67 1.84

SERIAL 11.16 32.04 11.74 31.57 -1.42 3.28
SMALL 22.89 13.78 36.93 48.83 1.36 1.98

WDF 8.79 11.10 9.87 -12.50 3.79 -0.91
RANDOM100 19.88 -2.41 14.67 19.94 -1.55 -4.24
RANDOM200 -1.22 12.20 19.45 -1.90 0.01 -3.01
RANDOM300 -28.55 N/A∗ 31.80 N/A∗ -15.11 N/A∗

Average 11.32 13.76∗ 23.89 14.51∗ 0.00 0.05∗

∗To solve non-unity aspect ratio Random300, ISCALP had not yet halted after 120 hours. The non-unity aspect ratio Random300 benchmark was excluded
from the computation for average numbers.

floorplanner from the impact of using incremental optimiza-
tion, we compared the results produced by running ISCALP
followed by a high-quality simulated annealing floorplanner by
those produced by IFP-HLS. On average, this results in a 1.6%
increase in area and 2.7% decrease in total power compared
to IFP-HLS for unity aspect ratio functional units and a 0.8%
increase in area and 1.3% decrease in total power consumption
for non-unity aspect ratio functional units. Note that ISCALP
aggressively optimizes power consumption. These results in-
dicate that the incremental optimization algorithm withinIFP-
HLS permits comparable quality, using much less CPU time,
compared to a non-incremental behavioral synthesis algorithm
followed by an iterative improvement floorplanner.

VI. CONCLUSIONS

This article presented an incremental floorplanning, high-
level synthesis system that integrates high-level and physical-
level design algorithms to concurrently improve a design’s
schedule, resource binding, and floorplan. Compared with
previous approaches that repeatedly call loosely coupled floor-
planners, this approach has the benefit of efficiency, stability,
and better quality results. As shown in Section V, for non-unity
aspect functional units, incremental floorplanning allowed an
average CPU time speedup of 24.72× and an area improve-
ment of 13.76%. For unity aspect ratio functional units, the
CPU time speedup was 2.03× and area was improved by
11.32%. In both cases, the low power consumption of a state-
of-the-art, low-power, interconnect-aware high-level synthe-
sis algorithm was maintained. We conclude that incremental
floorplanning improved the quality of synthesis results and
improves performance dramatically, making synthesis from
large specifications practical.
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