
104 Computer

E M B E D D E D C O M P U T I N G

F or more than two decades, ap-
plied formal methods have re-
mained the unexplored frontier
of embedded system design—
just beyond the reach of prac-

tice. There have been inroads, certainly,
but no sign of a revolution—even a
quiet one—in industry. Considering the
rapid progress of technology over this
time, the dynamic expansion of appli-
cations, and the meager investment in
formal methods, just keeping pace with
the advancing frontier speaks pretty
well for the research.

Having watched these trends over
the years, I would not forecast any dra-
matic changes in practice. We should
be looking for a sea change, not a rev-
olution. Formal methods have a cumu-
lative impact, reflected in languages
and “informal” methods as much as in
automated reasoning tools.

Nevertheless, I see their use in em-
bedded systems design accelerating in
the coming five years, especially if
we consider the full spectrum of
approaches described in the “Formal
Methods Terminology” sidebar. Sys-
tem developers must watch this trend
closely and foster appropriate long-
term strategies.

The most important strategic invest-
ment is in expertise. The big winners
will be the successful risk takers, but
the risks are still significant enough to
make expertise more important than
technology.

A BEACHHEAD IN PRACTICE:
HARDWARE VERIFICATION

In the early 1980s, a branch of
formal methods research coalesced

around digital hardware. Algorithmic
breakthroughs and groundbreaking
case studies, as well as promotion by
CAD developers, piqued industry’s
interest. Improved automation, along
with some well-publicized design fail-
ures—most notably, perhaps, an error
in the Pentium I’s arithmetic unit—
helped motivate a few large companies
to establish in-house formal verification
groups in the 1990s. Microprocessor
manufacturing led the movement, with
telecommunications and multiprocess-
ing also showing substantial advances.

Success has come at all automation
levels—from broad-based use of equiv-
alence checking to pervasive applica-
tions of model checking to targeted
applications of theorem-proving in
areas such as floating-point arithmetic.

Hardware-like systems first
Embedded systems that share quali-

ties with hardware systems are the first
candidates for use of formal methods.
Deeply embedded control systems are
one example. They have a dedicated
real-time function and are difficult to
physically modify. Smart cards, on the
other hand, present extreme security
and privacy requirements.

Because formal methods are based

on mathematical models, physical sim-
ilarities with hardware are less impor-
tant than abstract similarities. Being
“hardware-ike” has more to do with
design concepts than with form or
function. Specifically, hardware design
practice employs a synchronous
methodology with relatively low levels
of data and control abstraction. In
combination, these features are com-
patible with direct, compositional for-

malization, paving the way for effec-
tive decision procedures and useful
proof strategies.

The early adopters of formal meth-
ods for embedded system design will
be those developers whose design prac-
tice is already hardware-like—hard
real-time control is an example. Appli-
cations that can adopt more stringent,
uniform design methods will be able
to benefit from formal methods by
doing so.

Programming language dilemma
The notion of making embedded

software design more hardware-like
raises a problem. Industry is under
pressure to use prevailing program-
ming paradigms to populate its work-
force. Unfortunately, these paradigms
and languages, inspired by geographi-
cally distributed systems, are ill-suited
for both embedded applications and
effective formal analysis. Java and C++
are asynchronous object- and event-
oriented languages. Embedded system
design calls for synchronous process-
oriented languages.

The prominent hardware simulation
languages, VHDL and Verilog, are also
asynchronous; so are some system
design languages, such as SystemC and

Formal Methods in
Embedded Design
Steven D. Johnson, Indiana University

The future benefits of
using formal methods in
embedded system design
warrant investment in the
underlying expertise.

November 2003 105

1980s, industry has so far been reluc-
tant to get involved.

LET THE RACE BEGIN
For formal methods to contribute

significantly to safety-critical systems,
at least one major industry must take
the plunge. John Rushby has argued
cogently for the automotive industry as
a likely candidate (“Bus Architectures
for Safety-Critical Embedded Systems,”
Proc. 1st Workshop on Embedded
Software [EMSOFT 2001], Springer-
Verlag, 2001, pp. 306-323).

Automotive embedded control
architecture is undergoing a funda-
mental transition, making it more vul-
nerable to design errors. Until recently,
dedicated controllers communicating
over private channels implemented
critical control functions. Because of
their isolation from one another, these
subsystems were reasonably well insu-
lated from systemwide failures.

Automotive control complextity has
reached the threshold at which ad hoc
system architecture must give way to
more cost-effective integrated solutions.
Integrated systems depend on shared
resources—specifically, a common com-
munication network. Consequently,

every process becomes vulnerable to
failure in any component, making
global fault containment a necessity.

The aerospace community has grap-
pled with this problem for many years,
so a foundation exists to work from.
The cost of achieving reliability for air-
borne systems is prohibitive for auto-
mobiles, so a major market exists for
derivative products.

All this should stimulate both acad-
emic and entrepreneurial activity. In a
competitive industry, some company is
likely to adopt a strategy of investing
in formal methods, if only to hedge
against future rivals. So the race begins.

EXTENDING THE TERRITORY
In his keynote presentation at the

2001 European Joint Conferences on
Theory and Practice of Software,
Michael Lowry surveyed NASA’s con-
siderable experience with embedded
systems for space missions (www-
etaps.imag.fr/Invited/invited.php).
He pointed out that failures are typi-
cally consequences of unanticipated
scenarios and Byzantine subsystem
interactions. Lowry’s concept of
“interaction” is a broad one, including
not only component interactions

SpecC. To enable automated reason-
ing, the hardware simulation lan-
guages superimpose synchronous
dialects for verification and synthesis.
Developers must apply the same
methodology in embedded software
design. Unfortunately, this will delay
the deployment and diminish the effec-
tiveness of formal methods.

A FOOTHOLD IN CRITICAL
SYSTEMS SOFTWARE

In the 1970s, proponents found
potential applications for formal meth-
ods in embedded software for avionics,
space exploration, nuclear control, and
so on, where the consequences of a
design error are extreme. Simulation
and testing cannot demonstrate the reli-
ability these systems require. Rigorous
mathematical analysis is essential.
Validating this analysis and correlating
it to actual implementations suggested
uses for automated reasoning. Of
course, this rationale begged the ques-
tion of whether anyone knew how to
perform the analysis in the first place.

Justifiable indignation of practition-
ers about the naivete of formalists,
supercilious philosophical debates, and
internal bickering among researchers
all generated bad publicity, but formal
methods have nonetheless made steady
progress in critical systems design.
Today, modeling foundations are con-
verging, unified tools and methods are
emerging, and products are in devel-
opment whose design and ceritification
entail the use of formal methods.

Regulatory agencies and govern-
ment-sponsored research, particularly
at NASA, have provided the initiative
for these efforts. For example, govern-
ment advocates pushed for formal ver-
ification as an auxiliary means of
verifying and validating avionics sys-
tems seeking the highest levels of safety
certification.

Despite progress, none of this work
will lead to mandated use of formal
methods any time soon. For that to
occur, effectiveness, practicality, and a
standard of practice must emerge. Like
the situation with hardware in the

Formal Methods Terminology

Formal methods are often described as the application of mathematical rigor
to system design and implementation. The description is fair in some respects,
but off the mark. In this context, “formal” refers to the direct or indirect use
of a logical formalism as the basis for computer-assisted reasoning. Such for-
malisms include a syntactical grammar, axioms, and symbolic manipulation
rules. There is at best a marginal relationship between the notion of mathe-
matical rigor and the mechanical rigidity of automated reasoning.

Hardware and software engineering sometimes draw different distinctions
between verification and testing. In the hardware literature, the term formal
verification distinguishes proof-based, exhaustive verification from the simu-
lation-based, conventional verification techniques employed in practice. In
software, verification often connotes formal analysis.

Verification is one of many modes of reasoning about design correctness.
Formal synthesis is an example of an alternative mode of reasoning by which
correct implementations are algebraically derived from their specifications.
Constructions, constraints, refutation, and so on add further texture to the
taxonomy. I apply the term “formal methods” to the entire genre of auto-
mated, interactive reasoning applied to system design.

106 Computer

reason formally about applications or
their programming interfaces.

Formal software verification involves
automated model extraction to elimi-
nate extraneous detail from target
implementations and thus enable
model checking. Alternatively, a syn-
thesis tool starts with a protocol model
and adds implementation details. Tools
for these tasks are the subject of cur-
rent research, with some products now
becoming available.

Formal intellectual property
As the use of formal models in-

creases, so does pressure on vendors to
include them with components. Pro-
viding formal specifications suitable
for automated reasoning adds value to
products. It can also indemnify pro-
ducers against component misuse.
Producers can avoid blame for system
failures if they can formally verify
correct functionality.

EDUCATION IS THE
LIMITING FACTOR

At the beginning of this essay I said
that the embedded systems industry
needs to be watchful but is not facing
a widespread increase in the use of for-
mal methods. There are some techno-
logical impediments, but the root issue
is a severe shortage of expertise.

I have outlined ways that I believe
formal methods may infiltrate main-
stream practice. Missing from the list is
the massive adoption of highly auto-
mated verification tools that the hard-
ware industry experienced. Designers
will use existing hardware tools wher-
ever they can profitably do so, of
course, but there is no evidence to sug-
gest that something as transparent as
equivalence checking will be useful
in embedded system design. The hard
problems are global in nature.

Designers can rarely use formal
methods out of the box. They must
adapt even the most automated tools
to the design context. This requires not
merely tool skills, but also a concep-
tual grasp of logical modeling, mathe-
matical manipulation, abstraction,

within a system or its environment but
also interactions between engineering
tasks or management levels. He
observes that as systems become larger
and less regular, design paradigms
must strike a different balance between
analytic and constructive approaches.

We cannot limit automated reason-
ing to analytic approaches of verifica-
tion and property checking. It also
includes iterated design, refinement,
and synthesis, with comparable and
compatible automation. Unfortunately,
tool support for constructive formal
methods lags far behind the support for
model checking and theorem proving,
and this gap is another impediment to
advancement in practice.

Although more limited in scale, the
experience in software suggests new
pathways for incorporating formal
methods. The implementation of these
pathways is a matter of speculation,
but I offer some guesses.

Requirements analysis
Industrial pilot studies have repeat-

edly demonstrated the value of for-
malizing early specification stages.
Frail tools, insufficient expertise, or
problems integrating with existing
design flows inhibit subsequent adop-
tion of formal specification paradigms.
In spite of these problems, formal
requirements specification and analy-
sis is the obvious way to initiate formal
methods use.

Reliable infrastructure
The coming generation of certifiably

fault-tolerant networks, hardware, and
middleware for automotive and avion-
ics applications already entails formal
methods use. In these and other safety-
related components, formalization
translates directly to commercial value
in terms of certifiability.

Conformance validation
A reliable infrastructure permits sys-

tem design and testing at a higher
abstraction level. Developers can apply
formal methods to a symbolic mathe-
matical representation and use it to

decomposition, concurrency, and so
on. Sadly, the computer science and
engineering curriculum provides too
little exposure to these concepts, and
what exposure it does offer follows
paradigms that are poorly suited for
embedded applications.

W e need to close the loop be-
tween practice and education,
but we don’t have enough

interested practioners or knowledge-
able educators to prime the pump. The
situation foretells a gradual change in
practice, starting with the most exact-
ing applications and dependent on
continued government sponsorship.

Perhaps a consortium of industrial
interest in formal methods will
develop, as happened with VLSI in the
1980s. Even were this to happen, how-
ever, it would take the educational
establishment a number of years to
respond with significant numbers of
graduates. Formal methods constitute
a difficult major, demanding not only
an engineering background but strong
aptitude in mathematics and tool pro-
ficiency. The alternative of retraining
practicing designers is daunting with-
out a proper conceptual foundation.

For some parts of the industry, the
time to move forward into formal
methods is now, but most can afford
to wait and see what develops. It is
only time to start looking at how for-
mal methods will fit their needs. �

Steven D. Johnson is a professor of
computer science in the Indiana Uni-
versity College of Arts and Sciences.
Contact him at sjohnson@cs.indiana.
edu.

E m b e d d e d C o m p u t i n g

Editor: Wayne Wolf, Dept. of Electrical Engi-
neering, Princeton University, Princeton,
NJ, 08544-5263; wolf@princeton.edu

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

