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Abstract ticular, industry data for a high-performance processor in a
130nm technology shows that individual dies produced with

Parameter variation due to manufacturing error will be an the same fabrication equipment can have as much as a 30%
unavoidable consequence oftechnology scaling infuture gen- die-to-die frequency variation and a 20 x leakage power vari-
erations. The impact of random variation in physicalfactors ation [7]. ITRS predicts that manufacturing variability will
such as gate length and interconnect spacing will have a pro- have an increasing prominence in future designs.
found impact on not only performance of chips, but also their The large magnitude of the power variability present in
power behavior While circuit-level techniques such as adap- current chips is expected to worsen in future scaled process
tive body-biasing can help to mitigate mal-fabricated chips, technologies. This is primarily due to the exponential rela-
they cannot completely alleviate severe within die variations tionship between transistor gate length and subthreshold leak-
forecastedfor nearfuture designs. age current [28] and increasingly intensified leakage power

Despite the large impact that power variability will have percentage in total power. Consequently, very small devia-
on future designs, there is a lack ofpublished work that ex- tions in this critical parameter can have detrimental effects on
amines architectural implications of this phenomenon. In this the overall power profile of a chip. Statistical variations in
work, we develop architecture level models that model power other transistor parameters such as gate width can also have
variability due to manufacturing error and examine its influ- a significant impact on power consumption. Projective stud-
ence on multicore designs. We introduce VariPower, a toolfor ies have shown that physical variations in interconnects will
modeling power variability based on an microarchitectural have an increasingly important influence on overall chip per-
description and floorplan of a chip. In particular, our mod- formance and will eventually overtake devices as a dominant
els are based on layout level SPICE simulations and project source of performance variability [26].
power variability for different microarchitectural blocks us- The net effect of these manufacturing errors is that com-
ing statistical analysis. Using VariPower, (1) we characterize ponents and chips will be increasingly prone to fabrication
power variability for multicore processors, (2) explore appli- induced asymmetry where physical instantiations of cores, in-
cation sensitivity to power variability, and (3) examine clus- terconnection components, and caches on the same chip may
tering techniques that can appropriately classify groups of differ widely although they have identical schematic descrip-
processors and chips that have similar variability character- tions. In contrast, to architected asymmetry [21], which can
istics. be artfully constructed to balance power, throughput, latency,

and area goals for a target workload, fabrication asymme-
try is considerably more nettlesome. The major difficulty

1 Introduction is that many of the fundamental characteristics such as cir-
cuit power and latency for various microarchitectural struc-
tures are no longer constant. They are subject to devia-

In future technology generations, manufacturing variation tions due to imperfections in the materials and equipment
will have a profound impact on the reliability, performance, used to fabricate the chip, as well as unavoidable, statistical
and power consumption of microprocessor designs. Man- variance. Furthermore, the Semiconductor Industry Associa-
ufacturing deviations due to both systematic fabrication er- tion (SIA) whose forecast anticipates improvements from de-
rors as well as random statistical variations affect gate size, vice/fabrication processes, still paints a grim picture for pa-
dopant concentration, interconnect width, spacing, and thick- rameter control in deep submicron technology nodes [29].
ness. This translates directly to chips that miss critical cir- Microarchitecture can have a significant impact on param-
cuit design targets including latency, power, and resilience to eter variation. Pipeline depth and chip organization can in-
noise. In current designs, foundry induced physical devia- fluence the susceptibility of a design to parameter variation
tions already produce significant die-to-die variation. In par- [7]. Furthermore, by choosing structures that can be config-
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ured on a per instance basis after fabrication and design styles experimental methodology and a series of case studies that
that are more robust to the power, performance, and reliability explore power variation in a multicore design. We offer a dis-
consequences of parameter variation, designers can mitigate cussion and comparison to existing work in Section 7, and
variability. In addition, cooperative strategies that consider finally we conclude in Section 8.
both circuit-level implementation and architectural organiza-
tion are promising because they allow for tradeoffs at many 2 Background
levels of the design. To properly understand these tradeoffs it
is imperative that architects have access to models that con- 2.1 Physical Manufacturing Variations
sider physical structure and capture the relationship between
early stage architectural organization decisions and the statis- In current fabrication technologies, the physical dimen-
tical profile of key design metrics. sions of circuit elements, such as gate length and wire width,
1.1 Contributions commonly deviate from their nominal values. This is often a

by-product of errors in the any one of many elaborate manu-
facturing steps used in modern VLSI manufacture. Recently

In this work, we describe VariPower, a microarchitectural the problem has received significant attention because tech-
tool for modeling statistical variability in the power consump- nology scaling magnifies the slightest errors [6, 7].
tion of a high-performance microprocessor design. We target Some manufacturing processes, such as lithography and
power variability as an initial target for architectural manufac- chemical mechanic polishing, are fundamentally more diffi-
turability studies due to the emergence of power as a first class cult to control with current technology. Consequently, they
design constraint [29], and the large amount of power varia- introduce variation in the physical dimensions of devices and
tion already seen in commercially available chips [7]. We interconnects. Operational characteristics for MOS transis-
focus our study on the impact of power variability on a chip tors are heavily determined by relevant physical parameters,
multiprocessor (CMP) design which is composed of schemat- such as gate length, gate oxide thickness, and dopant density.
ically homogenous cores and caches. Due to within-die pa- Manufacturing steps that influence these physical parameters
rameter variation, these components may have fabrication in- have a larger bearing on the final result. As transition into the
duced asymmetry in power consumption. Furthermore, we nanoscale era, the problem will worsen [25, 26]. This will
argue that architects will also need high-level strategies for have direct impact on both the yield and quality of the final
reasoning about statistical variation and classifying types of products.
cores and chips with respect to their variation. In general, manufacturing errors fall into two categories:

This makes the following principal contributions: systematic and random [15]. Systematic variations can affect
.We d p i rthe whole lot, wafer, die or portion of the die in a common* We develop architectural models for studying probabilis- and repeatable pattern. Most of these errors may be corrected

ticnsdie-to-die and within-die manufacturing powervaria- or alleviated if the patterns are observed and corresponding
measures, such as optical proximity correction, are taken. On

* From a power perspective, we explore application sensi- the other hand, random variations are extremely difficult if not
tivity to variability. impossible to predict and generally require a statistical tech-

nique to analyze the problem. Random die-to-die variations
* We introduce an automatic approach for classifying rep- will affect all the on-die devices in the same way, while ran-

resentative groups of cores and chips that have consider- dom within-die variations will produce parameter differences
able parameter variation. that change on a device-to-device basis on a single die.

In some cases, within-die variations also have spatial cor-
Overall, this work is one of the first to consider relation patterns [18]. For two transistors on the same die,

architecture-level models for manufacturing variability. In it has been shown that gate lengths are linearly correlated
addition, we offer approaches for characterizing power asym- with distance. This correlation has an important implication:
metry due to process variation and illustrate the potential for neighboring devices are more likely to share common prop-
variation aware management. erties. Consequently, a leaky transistor is likely to be sur-

rounded by other leaky transistors. As a result, regional clus-
1.2 Organization ters of leaky transistors can quickly make the microarchitec-

tural unit that they appear in less attractive to use as whole.
The remainder of this paper is organized as follows: In This is a concept that we explore in our case studies.

Section 2, we describe the chief sources of parameter varia-
tion in chip manufacture. We then introduce a model for pro- 2.2 Static Leakage Current Under Varia-
jecting the statistical profile of a design under power variabil- tion and Correlation
ity in Section 3. In Section 4, we validate our model against
detailed SPICE simulation and published data on commer- Static leakage current is primarily composed of three com-
cially available chips. In Sections 5 and 6, we present our ponents: subthreshold leakage, gate leakage and substrate
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leakage. Simulation on sample circuit structures with SPICE non-negligible overheads and may not be suitable for fine-
and PTM [13] 65nm technology predictive model card identi- grain, localized adjustments necessary for within-die varia-
fies subthreshold leakage as the dominate leakage source for tion. Flexible approaches that simultaneously consider both
near future technologies. The subthreshold leakage of a single architectural and circuit trade-offs [24], may offer a better
OFF transistor is determined by gate length, gate width, and chance of reaching an optimal design. Without high-level
threshold voltage. Subthreshold leakage has a linear relation- models that can capture the degree of variation, early stage
ship with gate length and has exponentially relationships with studies will be difficult to produce.
gate length and threshold voltage. Due to this exponential In this work, we introduce VariPower an architecture-level
dependence on gate length, small deviations in this parameter power variability modeling tool based on circuit-level macros.
can introduce leakage current that is significantly larger than At the heart of VariPower is a lookup table driven power
the nominal case. density estimator that uses SPICE derived scaling factors to

In general, leakage analysis is difficult in an arbitrary model the impact of physical parameter deviations on both
logic or memory cell due to the stack effect [28]. Under dynamic and static power consumption. VariPower models
this phenomena, chaining of multiple OFF transistors reduces within-die as well as die-to-die power variability via Monte
both the leakage variation and leakage current. Different cir- Carlo simulation and can project the probability distribu-
cuit structures may consequently have very different leakage tions for power consumption under parameterized architec-
power [ 1]. Detailed leakage power modeling under the stack tural models and application usage profiles. This flexibility al-
effect requires analysis to identify a set of prime inputs and lows VariPower to predict the severity of fabrication induced
their corresponding probability of appearing. However, one power asymmetry for a design and its consequences on dif-
very common building block, the 6-T SRAM cell does not ferent classes of workloads and power management policies.
create a stack effect concern because it has no chained tran- Figure 1 outlines the flow for the generation of a single
sistors. sample. An architecture-level description for a chip is fed

into VariPower. This description identifies the major compo-
2.3 Dynamic Circuit Power Under Varia- nents of the design, expresses their area and placement, and

tion characterizes their basic circuit composition. VariPower uses
this information to create a high-level description of the chip.

Dynamic power is consumed by the charging and dis- Using a series of random numbers which represent parame-
charging of internal capacitors contributed by transistors and ter variation, and circuit-level models that estimate power, the.. .~~~~~~~~~~~~~simulator oroduces a sower orofile for the chio
wiring network. The capacitance of these parasitical ca- pt p p
pacitors mostly has a linear relationship with the structure 3.1 Hierarchical Representation of A Phys-
dimension. Hence, the deviation in structural dimensions ical Design
would only cause an approximately linear variation in dy-
namic power, instead of an exponential one as in the case of
static power. As a result, dynamic power variation is signifi- In fabricated chips, parameter variation is partially depen-
cantly smaller than static power variation, a result confirmed dent on spatial properties of the circuit blocks [18, 27]. Typ-
by our SPICE simulations in the following sections. ically, nearby circuits tend to have strong parameter corre-

Though the variation is limited, dynamic power is still a lations. As the distance between circuits increase, the cor-
primary source of chip power dissipation. For the purposes relations decrease. Physical geometry of microarchitectural
of completeness and comparison, we continue to include dy- structures will have a significant impact on their statistical
namic power in the models that we propose. profiles. To capture these effects, VariPower models all com-

ponents of a design in hierarchical floorplan.
In VariPower, a chip-level design is expressed in a de-

3 VarnPower: Statistical Power Modeling scriptionfile using the Python scripting language. Individ-
ual cores, caches, and other architectural structures are rep-

The importance of early-stage power estimates to guide resented as Python objects. The Python interface allows
architectural design decisions will increase as manufacturing components to be represented in terms of physical dimen-
variations become more prominent. At first glance, it would sions: length, width, and placement on chip. To facilitate
appear that low-level fabrication errors are too far removed easy replication and placement of common superstructures,
from the architectural domain, and those approaches targeted VariPower allows the user to define hierarchical components
at the circuit level might offer more benefit. in a group. Using basic support routines, grouped items can

However, architectural design options such as pipeline be re-instantiated and stamped down anywhere on chip. This
depth and cache sizing often dictate the overall perfor- allows for easy representation of tiled architecture as depicted
mance and power characteristics of a processor. Further- in Figure 2. In this example, a simple processor core is de-
more, they frequently place bounds on which circuits can fined in terms of its major subcomponents: caches, router,
be used to implement functionality. In addition, pure circuit and execution pipeline. The components are grouped to form
approaches such as adaptive body-biasing (ABB) [33] have a core. The core is then replicated many times to describe a
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Repeat N Times
Parameter
Variation

uArch Description uArch Units uArch Description Sample PopulationMacro Circuit Scenario
Models Genarator Single Sample Generation

(a) Single Sample Generation (b) Monte Carlo Approach

Figure 1: Modeling infrastructure used in this work.

whole chip layout. metal layers and polysilicon, as well as gate sizing descrip-
tions for devices. The resistive and capacitive values are de-

I$ I$ *X|I$ |I-X| icache = Resource(name='I$', termined via analytic models [35]. The electrical components
bbox=Box(5,5,3,2.5),...SPCWet nth

dcache = Resource (name='D$', are then output to a SPICE file. We then simulate the macro
I$EX I$ ex = Resource(nambe=EBox (5,75,3,25) circuit under a number of different inputs and collect both

D$ D$ b(bbox=Box(8, 5,2,4),... static and dynamic power.
router = Resource (name='R'sR$ bbox=Box(8,9,1,1),... To model the impact of variation on the macro circuit,

I$ I"X I$ I-X I$ I-X baseCore = Core([icache, dcache,

=$ D I)$ =ex, router]) we vary physical dimensional parameters for the entire lay-
out description, re-extract electrical component values and re-

(a) (b) evaluate the circuit under SPICE. For interconnect, VariPower
layout level models allow us to directly model the impact

Figure 2: Hierarchical models used in VariPower that wire width, thickness, and inter-layer dielectrics have on

Inadditionto describing physical placementofcompo-
power. For devices, we model gate length, which is known

In dditio tondesibn phyical cement compo- to have an exponential impact on leakage power, as well as
nents, the description file also specifies circuit composition gaewdhed ntdrcl oe tevrainlmpc
of architectural structures. Each component or physical re-

gaewdh ed o ietymdltevrainlipco h u t r a ponent or physicalre- on dopant ion concentration or gate oxide thickness and plan
source, can be comprised of one or more circuit macro blocks to add extensions to model these parameters as part of future
which together implement functionality. For example, a cache work.
structure might be composed of a tag array, data array, sense In our circuit characterizations we assume that within a cir-
amps, decoders, and drivers. Each of these functional sub- cuit, macro dimensional parameters of wires are perfectly cor-
sections could be represented by its own circuit macro block related, and that dimensional parameters of devices are also
within the larger cache structure. perfectly correlated. This simplifying assumption is reason-

able because physical parameters of circuit neighboring struc-
tures have been shown to be strongly correlated [18, 27]. This
is a result of imperfections in a manufacturing step, for ex-Circuit macros are the key to modeling statistical power aml ethig imatn negbrn stutue in aiia

profiles in VarnPower. Each macro is a small circuit that is manner. We construct tables for dynamic and leakage power
representative of a larger circuit structure. These macros can varying physica pames for the acr circuit wih
be thought of as basic building blocks. Just like the full cir- th rang of thetnominal vle.
cuits that they represent, these macros have their own corre-
sponding power densities and sensitivity to parameter varia- 3.3 Modeling Parameter Variations
tions. To capture implementation specific details and the re-
lationship between power and physical parameter deviation, As described in section 2, integrated circuit fabrication
VarnPower uses layout-level circuit models to express var- processes introduce both systematic and unavoidable random
ability for key classes of circuit structures that are used in a variation in the physical features that comprise transistors and
processor. Specifically, VariPower has representative circuit interconnects in high-performance processors. In particular,
macros for regular array structures, such as cells from register lithography, etching, and chemical mechanic polishing are all
files, cells from cache arrays, as well as slices of an ALU. subject to error. Consequentially, physical dimensions such as

With the benefit of layout-level empirical models, gate length and wire width will vary for features in circuits,VarnPower can predict the impact physical variations will leading to electrical variations in their power behavior.
have on the power consumption of a design. The layout de- Each of the physical parameters can be modeled as the sum
scription for individual macro circuits includes nominal sizing of die-to-die (D2D) and within-die (WID) variances as:
and physical placement of devices and interconnect. Based
on this geometric information, VaniPower support utilities au- 2 2 2
tomatically extract resistances and capacitances for multiple ojx, Y) =c(D2D + cYWID'Jp(, y)dP (I)
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where the overall variance of a parameter is a function of lated values is simple yet flexible. We can essentially change
its location on the chip. The global variance is determined the rate at which the correlation approaches zero by chang-
by or2D and it relates the overall deviations that are present ing the size of the convolution sum. By changing the aspect
across all fabricated dies. The second term expresses the spa- ratio of the convolution box, we can also change the horizon-
tial correlation of the physical parameter. Empirical studies tal and vertical correlation factor. In addition, we can model
have shown that critical parameters can have strong positive non-monotonic correlations with more irregular shapes. Fur-
correlation for two neighboring points [18, 27]. With this sim- thermore, by allowing the convolution sum to "wrap-around",
ple, yet flexible model, VariPower can effectively model com- we can model concave correlation patterns [18].
mon types of statistical parameter variation. The last step in generating P is to add a single random

number (,u O,(= D2D) to all elements of the matrix.
This represents the global sample-wide parameter deviation.
The entire process is repeated to generate variation matrices
for all physical parameters that VariPower models.

.,,,,,A,/,,,,,,.,,.gXX,z,,/,/' To compute the local dynamic and static power variation
of each region of a chip, VariPower overlays the parameter
matrix over the hierarchical layout of the design as shown in

/'//Xf,7XX/X4/7__7 7X/7-7--777 Figure 3. Within each region, VariPower uses the local pa-
rameter matrix values to index the lookup table for the cor-

7,,,,,,/,,,,,/,,,,,,,/,,,,,,/, responding circuit macro. This allows us to model spatially
dependent power densities across the chip.

Figure 3: Computing correlated parameter variation using convolu- - $
tion sums.

VariPower introduces a novel scheme for generating vir- /i. -.-------i---- - --------
tually any kind of correlated parameter profile. For a given I------

parameter that we wish to model, VariPower generates an -- -
n x n matrix P, which represents how the parameter varies
locally on chip. The grid edge length, n, can be tuned for ac- Figure 4: Division of architectural floorplan into regions subject to
curacy/speed tradeoffs. We note that by discretizing the chip parameter variation.
into parameter domains, we are introducing parameter model-
ing error which is inversely proportional to the edge length n.
This modeling error can manifest itself in one of two ways: 3.4 Resource Utilization and Circuit Modes
(i) circuits in the same grid region may be separated from
each other by a maximum distance of ChipLength/n yet While process variation affects the maximum power pro-
be modeled to have the same correlation and (ii) circuits in file for a chip, application utilization patterns and runtime
neighboring grid regions may have a separation distance of power saving strategies have a significant impact on the typ-
less than ChipLength/n and hence have weaker correlations ical power consumption of the chip. For example, switching
than their true separation would suggest. In our experience, activity factors determine the dynamic power consumption of
modest values of n give good results. In the case of n = 1024, a pipeline. Dynamic and static power saving strategies such
we note that the correlation step sizes are on the order of 0.001 as clock-gating and power-gating transition unused portions
for a linear spatial correlation model. We choose this edge of a processor into low-power states. The degree to which
length in our work. they can save power is highly dependent on the activity pro-

To construct the final parameter matrix, P, VariPower first files and performance demands of running applications.
generates, G, an n x n matrix of independent Gaussian ran- VariPower's scenario generator allows it to examine chip
dom numbers. To determine each element, Pij, VariPower power and its variability under relevant workloads and poli-
sums a subset of elements for G to create virtually any cor- cies. In particular, VariPower takes an activity profile
relation pattern. Figure 3, shows an example where elements which captures the hardware usage patterns of benchmark
in the final matrix, P, will have a correlations in horizon- applications. The activity profile can be readily generated
tal/vertical directions that decrease linearly and reach zero af- by cycle accurate power/performance simulators like Sim-
ter a space of three elements. This works because elements plescalar/Wattch [10, 9] and expresses the number of cycles
in P that are near each other have a large number of items in spent in active, idle, and low-power states for caches, regis-
common. Elements that are far away from each other have ter files, execution units, and other resources in the processor.
none in common. In essence, correlated parameter generation VariPower applies application usage profiles on power macro
is very similar to 2D convolution kernels used in image ma- models for each core to generate a cross product of usage pat-
nipulation. The procedure for generating these random, corre- terns and cores. From this cross product it can select entries
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that represent interesting user-defined scenarios.
VaniPower has built-in support for identifying the average

power over all possible assignments (asymmetry agnostic), as IEwell as worst-case power (pathologically bad assignment) and L
best-case power (optimal assignment strategy). Furthermore
the Scenario Generation model can be extended to examine
more complicated assignment patterns. This allows us to an-
swer questions like, What is the best assignment under lim-
ited knowledge ofpower asymmetry? As architects begin to
explore the effects of parameter variations, it will be increas-
ingly important to answer these what-if questions.

(a) (b)

4 Gaining Confidence in Variation Models
Figure 5: Circuit layout for (a) SRAM cell used in caches and (b)

For architecture-level power models, the emphasis is tra- portion of an adder implemented in dynamic logic.
ditionally placed on fidelity rather than absolute accuracy. In models to project the deviation under parameter variation. In
this way, architectural models can be used to help guide early the evaluations in this paper, we apply the later mechanism.
stage design decisions without the complexity and detail that At present, VariPower does not have enough representative
would be essential under an absolute accuracy requirement. circuit blocks to provide absolute, overall power projections
VariPower is designed to produce high-fidelity projections on for an entire processor. We therefore use a slightly modified
power variability. version of Watt ch [9] as our baseline and apply VariPower

At present, validating VariPower is difficult for two pri- models to project variation.
mary reasons. First, there is limited, detailed, published in-
dustrial data on parameter variation. In particular, we do 4.2 Chip-Wide Parameter Deviation and
not know of any comprehensive data on the power variation Power Variation
of microarchitectural structures. Second, VariPower aims to
model the susceptibility of future architectures to variation Our first partial validation compares VariPower projections
trends in future technologies. This is a common challenge in to published measurements from fabricated designs. We first
the architecture community. In this section, we describe some compare our modeled on-chip gate length to those reported
of our low-level power building blocks and offer some partial by Friedberg et al [18]. In their work, the authors used elec-
validation for VariPower's projections. tronic linewidth metrology (ELM) to capture critical gate di-

mensions for a 200mm wafer fabricated in a 130nm process.
4.1 Low Level Circuit Blocks ELM works by passing a known current through gates and

measuring the voltage across a section of those gates. Fried-
We choose several basic memory and logic cells as repre- berg et al found strong spatial gate length correlations be-

sentative structures of the whole processor. At present, we tween transistors on the same die. The correlation decreased
have layout/circuit models for a simple dual bitline SRAM roughly linearly with distance and leveled off at about half
cell, a multi-ported (4r,2w) SRAM cell, a simple CAM cell, the chip length. We configured VariPower to model a similar
an ALU bit slice, and a pipeline latch comparable to one used correlation profile. Figure 7 shows the resulting gate length
in the PowerPC 603 [32]. As we continue the development of correlation. Note that our convolution based parameter gen-
VariPower, we hope to extend this list to cover more circuits. eration is capable of producing a close facsimile of the em-
We anticipate that the use of SPICE simulations with inter- pirical findings in [18]. In Figure 6, we present two samples
connect resistance/capacitance extracted from actual layouts of a four core CMP modeled using our correlation method.
would provide a sufficient accuracy for these blocks. Figure 5 The two chips have very different gate length variation pat-
shows the layout for two macro blocks used by VariPower. In terns. This underscores the impact that local paramater varia-
the process of assembling these models, we sanity-checked tion will have on multicore power.
for correct functional operation under the target clock fre- Our second validation examines chip-wide power.
quency. VariPower allows us to model both dynamic and static

VariPower can generate power estimates under variation power variation. In the literature, we could not find many
using two different mechanisms. Under the first mechanism, reported figures for dynamic power variation. Nassif notes
we directly apply the block level power estimates to calculate that the impact of manufacturing variation on this topic
absolute power for a given processor model. The benefit of has not received much attention [15]. One of the benefits
this approach is that the power variations and absolute power of VariPower is its ability to give a comprehensive power
are tied to the same underlying circuit-level implementation. projection. In Figure 9, we present our estimates of dynamic
Under the second mechanism, we use existing power simula- and static power variation for a four core chip multiprocessor
tors to form a baseline power estimate and apply VaniPower which we describe in detail in Section 5. Our results focus
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cess. Each core of the processor is comparable to an Alpha
21264 (EV6) scaled to current technology [19]. Under this

a-1111 simple technology scaling, we assume that the processor will
not be able to reach the maximum frequency for 65nm, and
instead operates at a 3.0GHz frequency. A similar scaling

- i_ methodology was used by Kumar et al. in [21]. The cores in
the processor have private LI data and instruction caches and
private L2 unified caches. Intercore communication and off-
chip memory transfers travel across an on-chip bus network.
Table 1 summarizes our base processor model.

(a) (b) Our simulation infrastructure is based on a heavily mod-
ified version of the M5 Stand-Alone Execution simulator [5]

Figure 6: Gate length variation in two chip samples. The chips rep- which includes detailed models of pipelines, caches, buses,
resent two physical instances of the four core CMP described in Sec- and off-chip memory. We extend M5 by modeling nominal
tion 5. power under parameter variation as described in Section 3.

0.9 r Single Core
Clock Rate 3.0 GHz

0.8
-- IIFetch/Decode Width 4 inst

D 0.7 Issue Width 6 inst, out-of-order
(D 0.6 IQALSQ/ROB 32/40/80 entries
°05 Functional Units 4 IntALU, 1 IntMult/Div
*o X 1 FPALU, 1 FPMul/Div0.4

°0.3 L 2 MemPorts
C 0.3 LI Inst Cache 64KB 2-way 64B blocks

0.2 l LI Data Cache 64KB 2-way 64B blocks
0.1 3 cycle load hit
0 i--l-vi- |Chip Multiprocessorl

00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Cores ChpMltipoceso
Normalized Distance L2 { 2MB 16-way private 128B blocks

Off-chip memory latency 200 cycles
Figure 7: Modeled intra-die variation in gate length. Power Parametersl

on within-chip parameter variation. We note first that the VDDClock T o3yGHz
dynamic power variation is limited in comparison to the Feature Size 65nm
static power variation. In addition, the leakage distribution
is skewed, with a small number of chips that have very large Table 1: Processor Parameters
leakage factors. We also see approximately a 4 x variation
in leakage power. These results are all comparable to those
reported in [4]. However, the relative spread in leakage is 5.2 Workloads
much smaller than the 20 x variation described in [7]. We
still believe that our projections are reasonable because they To evaluate the efficacy of VariPower, we use several
reflect only within-die parameter variation while the samples workloads that showcase a variety of hardware usage patterns.
studied by Borkar also had substantial die-to-die parameter Individual applications are taken from the SPEC CPU2000
variation. Die-to-die variation is known to make a major benchmark suite. To reduce the total number of simulations,
contribution to total variation [8]. we identify a subset of SPEC applications which exhibit a

range of power and performance characteristics and then fo-
5 Experimental Methodology cus our case studies on these benchmarks. Table 2 lists all the

benchmarks used in our experiements. To isolate representa-
In this section, we describe the processor model and work- tive simulation windows, we use SimPoint [30] to identify rel-

loads used in our case studies. While VariPower is capable evant instruction execution intervals for all benchmarks and
of modeling the power variation of virtually any CMP con- save checkpoints. Using these checkpoints, we simulate until
figuration, we choose to show a number of different uses of at least one thread has committed 200 million instructions.
VariPower on a single CMP design. 6 Results

5.1 Processor Model
In this section, we conduct a series of case studies using

Our experiments model power variability and performance VanPower. These studies serve as examples of the kinds of
of 4-core homogenous chip multiprocessors for a 65nm pro- early stage studies that VaniPower can perform.
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INT benchmarks FP benchmarks 0.2
crafty swim - Dynamic power

0.18 distribution
eon mesa Static power
bzip2 equake 0.16 distribution
twolf ammp 0.14

0.12-

Table 2: SPEC CPU2000 Benchmarks Used In This Work
0.o.

FPMap IntReg Coe 0.08-
lntMap JntQ L2 Cache L2 Cache

FPMul IntExec 0.06

FPReg LdStQ 0.04-
FPQ Core2

FPAdd 0.02
ITB

Bpred DTB Interconnection Network .0 1.5 -----

Normalized Chip Dynamic and Static Power
Core 3

Icache Dcache
L2 Cache L2 Cache

(way 1) (way 2) (way 1) (way 2) Core 4 Figure 9: Normalized Chip Dynamic and Static Power Distribution

(a) (b) Floating Point Normalized Leakage Power
Resources Rank (Decreasing Power)

1 2 3 4
Figure 8: Floorplan of Simulated Processor FPMap mean 1.160 1.088 1.036 1.000

Figure 8 (a) shows the floorplan of a single core used stdev/mean 0.1116 0.0733 0.0548 0.0467
** n 1 * 1 r * r ~~~~~~~FPMulmean 1.160 1.088 1.037 1.000in these case studies. The floorplan itself is borrowed from stdev/mean 0.1105 0.0729 0.0552 0.0467

Skadron et al ( [31]) and is a rough approximantion of an Al- FPReg mean 1.154 1.079 1.032 1.000
pha 21264 processor core. We also base our floorplan for our stdev/mean 0.1258 0.0708 0.0497 0.0412
four-core CMP on work by Kumar ([22]) as shown in Figure FPAdd mean 1.161 1.088 1.037 1.000
8(b). stdev/mean 0.113 0.072 0.0548 0.0469

In VariPower, Monte Carlo analysis is used to simulate the
variations of five process parameters: gate width, gate length, Table 3: The power distribution of the same microarchitectural struc-
wire length, wire height and inter-wire distance. In this study, tures in different cores.
we focus on within-die variation, and we include no addi-
tional die-to-die variation. For the 65nm predictive technol- leaky FPUs because any reasonable leakage power manage-
ogy model [13] used in our SPICE simulations, we assume ment strategy would transition the FPUs into a low-power
a 3(7 variation of 9% deviation of nominal values for gate state. Note: This assumes that there is little or no difference
width and gate length, and a 3cr variation of 15% deviation in maximum operating frequency for the chosen core. Based
of nominal values for the remaining process parameters. The on the effects that a large number of critical paths have circuit
whole chip is divided into a 1024 x 1024 grid. The devices delay [8], this is a reasonable assumption. This assumption is
in the same grid region are assumed to have perfect correla- confirmed by other high-level models [17].
tion. Furthermore, correlation between devices in different
grid sections linearly drops as the separation increases as il-
lustrated in Figure 7. The Monte Carlo simulations produce Table 3 presents the normalized mean leakage for floating
10,000 samples. point resources across all the cores in our CMP design. For

each resource, we rank the structures by decreasing leakage
6.1 Case Study 1: Core-To-Core Power power. We can see overall, that for a given resource type, the

Variations leakiest structure is considerably leakier than the least leaky.
On average the most power-hungry resource uses 16% more

As an example of how variability affects microarchitec- power than the corresponding least power-hungry resource of
tural structures within a core, we compare the static power of the same type. This suggests that their might be some op-
floating point resources in each core of our CMP. We choose portunity for assigning application threads to cores based on
floating-point resources because they are not used by integer their resource usage and the chip leakage profile. We also
applications and hence are a likely candidate for leakage man- note that in general, the ratio of leakage power for cores de-
agement techniques such as standby power modes or power- creases in the same fashion for the all the functional resource
gating [16, 20]. The insight is that if there is significant vari- types that we study. What is not evident in the table, is that
ation in power across cores for a given functional unit, we when a given structure suffered from a higher leakage factor,
may benefit from selecting specific applications to run on ap- other structures in the same core did as well. This can be ex-
propriate cores. For example, an application that does not pected due to the strong spatial correlation factors discussed
utillize floating point resources could be run on a core with in Section 3.
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minimal power of a program. Clearly, different applications
can have widely different results. Over all the benchmarks,

General purpose applications normally have different uti- the minimal assignment saves 6% to 19% over the average
lization requirements on macro blocks. For example, some (random) assignment. The minimal assignment saves from
threads have larger memory footprints and require most of the 13% to 41% over the worst case. The applications in Fig-
available cache capacity. As mentioned in the previous case ure 10 are listed from left and right in increasing order of the
study, some applications may not require all of the available static power percentage of the total power. With longer mem-
execution resources. Typically, these applications are candi- ory stall times, benchmarks like almmp and equake which
dates for power reduction strategies that may effectively re- have lower IPC have lower dynamic power when compared to
size processor components such as caches and queues [12, 3]. other programs. As stated in Section 6.1, static power of a mi-
Under power variability, each core may have its own leakage croarchitecture structure normally has much larger variation,
profile for a given resource. Consequently, different assign- and it is actually expected that a program using less dynamic
ments of threads to cores may yield different power savings power has a better chance to achieve arger power savings, as
when leakage management is applied. This constitutes an op- illustrated in Figure 10.
portunity for core-to-core savings under leakage asymmetry.

For a given core, there are typically functionally identical When combined with other power management mecha-
structures that may be available to a thread. If the current ap- nisms, in-core power variations also provide power saving
plication does not require all of those resources, there may opportunities if proper assignment can be made. A focused
be a choice of which resources to use and which to transition power control strategy would choose to power-gate the right
into a low power standby mode. Selective cache ways is an microarchitectural units to minimize performance loss, ob-
example of a power saving strategy to which this may apply tamning a better power-performance balance. We study such
[3]. Traditionally, structures are considered equivalent from an example using the benchmark twolf in the remaining part
a power savings standpoint. However, under parameter varia- of case study 2.
tion, there may be a considerable difference in leakage power
for two structures that provide identical functionality. For ex- Detailed simulation shows that closing 2 of 16 ways of L2
ample, one cache sub-array may be leakier than a neighboring Cache and half of the Li Dcache would only cause a 2% per-
sub-array. This is an example of a within core savings under formance loss for twolf. In Figure 11 the three color bars
leakage asymmetry. show the achieved power savings under three scenarios: (1)
We used VaniPower to model the impact that within-core selecting the most power-efficient, (2) random and (3) most

and core-to-core resource selection can have on power. Fig- power-hungry blocks to close when resizing the caches. The
ure 10 shows the core leakage power for eight SPEC 2000 three groups from left to right in the Figure correspond to
benchmarks under different application to core bindings. For the scenarios in which twolf runs on the most power-efficient
each benchmark, the left bar corresponds to the best situation core, a randomly selected core and the most power-hungry
in which the application is assigned to the core that consumes core. On average, the best selection achieves 12% more
minimal power and the right bar is the opposite scenario power savings over a random selection and 23% over the
which exhibits the worst result. The central bar shows the av- worst choice. Additionally, we see that the benefit is larger
erage power usage when the application is randomly assigned when the within core resource selection is used on a cores
to a core. All the results are normalized with respect to the that have higher overall power.
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6.3 Case Study 3: Automatic Clustering also represents the smallest fraction of the population just as
and Binning of Samples before. But in this case, the representative 4.25% of the sam-

ple population are probably outliers that may be disregarded
As the impact of manufacturing variability increases, we in analysis. Clusters 3 and 4 offer a particularly interesting

expect that Monte Carlo simulation methods like VariPower, view of the sample space. These two clusters have similar to-
will become more common in architectural studies. Typically tal leakage power values, but there is a noticeable difference
these types of simulations produce large amounts of data in in the way this power is divided. This highlights an advan-
the form of samples. While it is typically straightforward to tage of clustering that could not be identified if we had opted
collect important summary statistics for an individual variable to just characterize with respect to total leakage.
(e.g. mean and standard deviation of leakage power) from the Finally, for N=7, the smallest bin, which again has the
data, it can be considerably more difficult to perform multidi- largest power total, only represents 1.75% of the population.
mensional data analysis. Rather than organizing the data with The six remaining graphs show considerable absolute range
respect to a single metric, it becomes necessary to simultane- (12.8W - 24.8W) and have very different core power distribu-
ously arrange the data with respect to many metrics. This is tions.
particularly true in the power variability analysis of a CMP We can see from this small example, that clustering has
because each core or processor component can essentially be the potential to help architects group multidimensional data.
thought of as its own dimension. As part of our future work, we plan to investigate clustering

One likely application of multidimensional analysis is mul- techniques to further analyze data collected from architectural
ticore binning, which can be thought of as a multicore ex- simulations.
tension of traditional uniprocessor binning. Under multicore
binning, our goal is to identify a set of chip instances that 7 Discussion and Related Work
have similar core-level profiles. In the case of power variabil-
ity studies that we explore in this paper, we want to identify Process variations and its impact on system performance
groups of chips that appear the same with respect to their core and reliability have gained much attention in the research
power consumption under variation. This knowledge could be community in recent years. Borkar et al. in [7] discuss com-
used to partition a sample space for further study. In essence, mon parameter variations observed in today's industry and
multicore binning can be thought of as a way to apply some their impact on circuit and microarchitecture. This work also
order to the mountain of data that emerges from Monte Carlo describes current challenges at the circuit level and offers op-
simulation. portunities for architects to help.

In this case study, we explore the use of clustering a sta- In an effort to better understand and describe the underly-
tistical data mining approach that groups and organizes mul- ing physical mechanisms behind parameter variation, recent
tidimensional data. In particular, we apply the k-means al- work has examined use of statistical models. These repre-
gorithm to analyze the leakage profile of our four core CMP sentations capture observable circuit characteristics (such as
sample space. Previous work has examined clustering tech- leakage power and maximum clock frequency) given the vari-
niques to identify program phases [30]. To our knowledge, ation of the underlying technology parameters ( such as tran-
we are the first to propose a machine learning algorithm to sistor channel length and oxide thickness). In [28], Rao et
analyze hardware projections. al. developed a model to estimate the variation of chip leak-

For a given N, the k-means algorithm groups the given age current due to gate length process variation. In [14], the
multidimensional data into N clusters. Each cluster contains authors established a similar model with additional consider-
a collection of data items that share some similarity, usually ations on oxide thickness variability and process parameter
measured by a distance function (e.g. Manhattan distance or correlations. In [1], random dopant fluctuation is further in-
Euclidean distance). We applied k-means clustering to iden- cluded in estimating the leakage variation. Bowman et al. [8]
tify chips that have similar core leakage profiles, using Eu- developed a model describing the maximum clock frequency
clidean distance as a similarity criteria. For each chip in our distribution of processors. This model was demonstrated to
sample population, we first sort the core leakage values in as- be extremely accurate when compared with wafer sort data.
cending order. This allows us to compare the cores from dif- Recent research [18, 34] has taken a closer look at the cal-
ferent chips using a consistent rank. We explored the benefit ibrating models against real, fabricated chips. The authors in
of clustering for three values of N: 3, 5, and 7. [18] physically measured the critical dimensions on an indus-

Figure 12 summarizes the clustering results by presenting trial processed wafer using ELM and successfully observed
a centroid for each cluster. For N=3, there are two large clus- the strong correlation of gate lengths. In [34] the authors im-
ters which comprise almost 90% of the population. The third plemented special testing structures and electronically mea-
cluster which represents 9.95% of the population is distin- sured leakage currents. As work in this area continues, we
guished by a much higher overall leakage Figure (reaching will benefit from higher fidelity parameter variation models.
22W), and features a very large leakage value for one of its While much progress has been made on modeling and ad-
cores. dressing variation problems at both the device and circuit 1ev-

For N=5, the centroid with the largest total leakage values els, microarchitects are only begining to examine the prob-
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Figure 12: Core leakage power binning using k-means clustering. N denotes the number of clusters. Bars represent core and chip leakage
power for the centroid of each cluster. Percentages represent the size of the cluster relative to the entire sample population (10,000 chips).

lem. Humenay et al. develop a model for power and perfor- partial validation of our model against published results. Fi-
mance variability for mulitcore chips [17]. The major differ- nally, we provide a series of case studies that explore the po-
ences between their power model and ours is that we build on tential for power variability analysis at the microarchitecture
SPICE level macro blocks, and we also model interconnect level.
related variations and dynamic power. In addition, we have
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