
Synthesis of Application-Specific Multiprocessor Architectures *

Shiv Prakashand AliceC. Parker

Electrical Engineering –Systems

University of Southern California

Los Angeles, CA 90089-0781

Abstract

This paper describes a formal technique for automated syn-

thesis of multiprocessor systems for given applications. The

application task is specified in terms of a graph, and the ar-

chitecture synthesized includes a set of processing elements

and the interconnection architecture between them. The

technique generates a task execution schedule along with

the architecture. The technique involves creation of a Mixed

Integer-Linear Programming (MILP)model and solution of

the model. Synthesis of a few example architectures is re-

ported.

1 Introduction
This paper addresses atechrrique for design of multiproces-

sor systems for given applications. Our focus is on the de-

sign of the system architecture, which is the first step in

the design of an application-specific multiprocessor system.

We assume the application domain is specified in terms of a

task data flow graph (Figure 1). The goal is to synthesize

a multiprocessor architecture which meets various cost and

performance constraints. Synthesizing an architecture in-

volves making decisions about the number and types of pro-

cessing elements, the overall interconnection between these

elements, and the scheduling of subtasks on the processing

elements. Example application tasks where synthesis of mul-

tiprocessor systems will be desirable can be found in several

domains; e.g., DSP, robotics, and control of power systems.

The paper describes a new synthesis technique which pro-

duces a custom multiprocessor architecture, maps the sub-

tasks onto the architecture and provides a schedule for the

task execution. Our approach involves creation of a for-

mal model of the multiprocessor synthesis problem using

*This work was supported in part by the Department of Air
Force, the Department of Arxny and the Department of N..y,

Contract No. NOO039-87-C-0194 and in part by the Defense Ad-
vanced Research Projects Agency and monitored by the Federal

Bureau of Investigation under contract No. JFB190092. The

views and conclusions considered in this document are those of

authors and should not be interpreted as necessarily representing

the official policies, either expressed or implied, of Defense Ad-

vanced Research Projects Agency or the U.S. Government.

Permmlon to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial

advantage, the ACM copyright notice and the title of the publication and
Its date appear. and nohce is given that copying IS by permission of the
Association for Computing Machinery. To copy otherwise, or to repubhsh.
reqrures a fee and/or specific permission.

\

01,1

i3,1

/

A
22,1

S2

‘i4,2

1
02,2

~R(21,1) = 0.25 fA(ol,l) = 0.50
~R(i2,1) = 0.25 fA(ol,2) = 0.75

fR(~3,1) = O.zs fA(02,1) = 0.50

fR(i3,2) = 0.50 fA(@,2) = 0.75

jR(z4,1) = 0.25 ~A(03,,) = 0.75

~R(i,,,) = 0.50 fA(04,1) = 0.75

Figure 1: Example 1 Task Graph

mathematical programming and the solution of this model.

This research focuses on the automatic design of the multi-

processor architecture itself, not merely the mapping of tasks

onto a given architecture. A distinguishing feature of the

research is the fact that we are designing a truly heteroge-

neous system, in terms of the functionalist y and the cost-

speed characteristics of the processing elements, which al-

lows a more precise tailoring of the synthesized architecture

to a specific application. Also, our approach can be used

to explore different interconnection styles; e.g., bus, point-

to-point, ring, or a mixture of these. We assume there is

no global clock and communications between subtasks are

asynchronous. Clearly, the problem addressed by this re-

search must be distinguished from the data path synthesis

problem (e.g., [6]). Most of the data path synthesis work

is directed towards synchronous designs, and the intercon-

nection delay/cost is not a primary design consideration in

these efforts. With the exception of some early work [7], we

believe this is the first publication to describe a solution to

the multiprocessor synthesis problem.

28th ACM/l EEE Design AutomatIon Conference@

Paper 1.2
8 01991 ACM 0-89791-395-7/91/0006/0008 $1.50

2 Previous Related Research
Most of the previous related work on multiprocessors is di-

rected at the problem of task allocation for a given archi-

tecture. The assignment of tasks to a fixed multiprocessor

system was inspired by Stone’s work [8]. Chu et. al. [I] de-

scribed an integer O-1 programming approach to the problem

of task allocation in distributed data processing. The prob-

lem they have considered involves the allocation of a set of

m subtasks to a set of p (fixed) processors already inter-

connected in some fashion, but ignores the data precedence

reli~tions among subtasks. Houstis [5] describes task alloca-

tion for real-time applications with concurrent selection of

the optimal number of processing elements. She does con-

sider data precedence, but assumes identical processing ele-

ments and does not consider timing constraints. Haddad[2]

de~,cribed a load ~location problem solved with continuous

partition sizes to minimize total execution time. Talukdar

and Mehrotra [7] describe a simplified and similar version

of four problem. They also model the problem using math-

ematical programming, though they use heuristics to solve

it. Mathematical programming has also been applied to the

data path synthesis problem [4, 6].

3 The Problem Definition
We are addressing the problem of multiprocessor architec-

ture synthesis for a given application task. The task consists

of a set of subtasks. Each subtask requires certain input

data and produces certain output data. Inputs to a subtask

may come from other subtasks and outputs from a subtask

may go to other subtasks. The set of subtasks and the input-

output relationships among them can be expressed by a task

data flow graph as shown in Figure 1. The subtaak nodes

are labelled S1, SZ, etc. (S. in general). The input end of a

data arc is Iabelled i@. if it provides the b‘h input to subtask

S., and the output end is labelled oa,c if it transmits the Cth

output from the subtask S.. Although we represent our task

by a data flow graph, there is a subtle distinction between

our model and the traditional model. With the traditional

meaning, a subtask would require all the inputs before start-

ing its execution and none of the outputs would be available

until after its execution is over. However, in our model sub-

tasks do not require all the inputs before starting their exe-

cution and they may produce some outputs even before their

completion. To express this possibility, each input i.,b has a

palameter ~R(ia,6) associated with it which specifies that up

to ~~(i=,b) fraction of the subtask S. can proceed without

requiring the input ia,~. Similarly, each output oa,c has a pa-

rameter f,4(0.,c) associated with it which specifies that the

output o.,= becomes available when fA (O.,C) fraction of the

subtask S. is completed. Although our synthesis technique

requires specification of the input task graph, the original

specification of the task may be in a HDL and partitioning

into the subtasks may be performed by another program.

The resulting multiprocessor architecture is specified in

terms of the processors selected and the interconnection ar-

chitecture between them. A simple example multiprocessor

system is shown in Figure 2. The specific model described

in this paper assumes point-to-point interconnection; i.e., if

a processor pdl needs to send data to another processor pdz,

then there must be a direct communication link from pdl
to Pdz. However, the approach is capable of handling other

styles of interconnection. In fact, the model has already been

To”(o,,,) TSE(S,)
p,. : 0 .75

.> 1 et

T&l) TO!(OI,J

ToA(q,,) T~E(S2) ToA(04,i)

pl:o .75 1.5 2.5 ~

T&2)
5

To!(qJ
1

T&S,)
L5

Ts!(SJ

To (q,,)

p&: 1.5 2.5 ~

T&
2.25

Ts!(S3)

Tcs(i4,1) TcE(i4,])

l,.,h :
7s 1.7s

-t

Tcs(i3,j) TcE(i3,1)

l,a,h .
5 1.5 -t

Tcdi3,2) Tc.g(:s,z)

lh.J,# :
1 1 *t

Figure 2: Design I and Schedule for Example 1

extended to bus-style interconnection and some example bus

architectures have also been synthesized.

For each subtaak S., a set Pa represents the set of pro-

cessors capable of executing it. However, only one processor

actually performs the subtask in the synthesized architec-

ture, and the execution time for the subta.sk depends on the

processor type on whicl. it is performed. A parameter, de-

noted as DP.s(P~, S.), specifies the execution time for the

subt ask So if the processor type Pt is selected to perform it.

A data arc from node Sal to node Sa2 implies that some

data is transferred from the subtaak Sal to the subtask S.2.

The volume of data transferred varies from arc to arc, and

a parameter Val ,Qz specifying the volume is associated with

each arc. The data transfer maybe a remote transfer (if

the two subtasks are mapped to different processors in the

synthesized system); or it maybe a local transfer within the

same processor (if the two subtasks are mapped to the same

processor). Delay associated with a data transfer depends

on whether it is a remote transfer or a local transfer. Local

transfer delay could be negligible compared to the remote

transfer delay. In any case, the local transfer delay is repre-

sented by the parameter DCL which specifies the time taken

in transferring a unit volume of data locally. The remote

transfer delay is represented by the parameter DCR which

specifies the time taken in transferring a unit volume of data

remotely. In practice, the time spent in performing a remote

data transfer depends on the amount of traffic in the inter-

connection network; if two data transfers are supposed to

take place over the same communication link at the same

time, then the second can only start after the first is com-

pleted. Essentially, the time spent in remote transfer consists

of the waiting time and the actual transfer time. The param-

eter DCR only captures the actual transfer time component.

The waiting time component is captured in the model by

Paper 1.2

9

enforcing exclusion in the usage of the communication links.

A set P represents the set of all the processors available

for selection as part of the synthesized architecture, where

P = Ua Pa. Associated with each processor pd G P is a

parameter cd which specifies the cost of the processor. CL

specifies the cost of creating a communication link between

two processors.

Certain constraints related to the cost of the system as

well as timing of arbitrary events may also be specified.

4 Approach: Formal Model
Our approach is a natural outgrowth of the work described

by Chu [I], Talukdar [7], and Hafer [4]. Hafer’s model is anal-

ogous, but does not consider interconnection. Our mathe-

matical model allows us a deep understanding of the prob-

lem and supports verification of our software, even if future

run-time problems with larger examples force us to resort

to heuristics. Such an approach allows us to modify, extend

and enhance the model to include more design possibilities

and variations without significant reconstruction of existing

code.

The complete mathematical programming model of

the problem requires specification of an objective function

that has to be optimized and a set of constraints that have

to be satisfied. The objective function can be whatever the

designer wishes; e.g., the total system cost, or the overall

system performance. The set of constraints consists of the

constraints that must be satisfied for the overall task to be

performed correctly as well as the arbitrary timing and cost

constraints imposed by the designer. The constraints that

must be satisfied for the overall task to be performed cor-

rectly consist primarily of the relations that ensure proper

ordering of the subtasks and the data transfers, taking into

accouut the timing involved and the relations that express

the conditions for complete and correct system configura-

tion. The necessary variables fall into two basic categories:

timing variables and binary variables.

Timing variables are real variables which represent tim-

ings of various critical events in the operation of the system,

of which there are three classes:

● Data availability timing variables:

– Input data availabditg, TIA(ia,b): Time when the

data required by input Z’a,b of subtask S. is avail-

able for use.

– Output data availability, ToA(o.,.): Time when

the output data value o.,= computed by subtask

S. has become available.

● Subtask execution timing variables:

– Subtad ezecution start, Ts.q(S.); Time when the

execution of subtask S~ actually begins.

– Subtask ezecution end, TSE (S.): Time when the

execution of subtask S. is completed.

● Data transfer timing variables:

– Data transfer start, Tcs(i+): Time when the

transfer of the data required by input ia,b of sub-

task S. actually begins.

– Data transfer end, TCE (ia,b): Time when the

transfer of the data required by input ia,b of sub-

task S. ends.

Binary variables are O-1 variables which represent the

implementation decisions regarding the system configura-

tion, of which there are two types:

●

●

Subtask-to-pvocess ow-napping variable, Ud,a: The vari-

ables of this type specify the mapping between the sub-

tasks and the processors. ad,a = 1 indicates processor

pd will implement subtask S..

Data- transfer-tgpe variable, 7aI ,.2: The variables of

this type specify the data transfer type for the various

data arcs. 7.1,.2 = 1(O) indicates that data transfer
from subtask Sal to subtask Saz is a remote (local)
transfer.

The necessary constraints have been classified into ten

categories as follows.

Processor-selection constraint: For each subtask S~, a set

of processors PO is available to implement it. In order for

the implementation to be correct, one and only one processor

should be selected to implement the subtask. Thus, for each

subtask S., the following must be satisfied:

x
@d)a = 1

dlpd G P.

Data-transfer-type constraint: yal ,.2 is a variable which

indicates whether the data transfer from the subtask S.l to

the subtask S.2 is a local transfer or a remote transfer. Now,

if the subt asks Sal and Sa2 are mapped to the same processor

(say pd, where pd e Pal and pd E Pa2), then we know that

it is a local transfer, and thus YOI ,~z = O. However, if they

are mapped to different processors, then the data transfer is

remote, and thus -yO1,CZ = 1. Thus, the defining equation for

7aI ,a2 is:

7’.1,.2 = 1 –
z

Ud,al gd,a2

dlpd GP. I ApdcPa2

We will have such an equation for each pair of subtasks com-

municating with each other.

Input-availability constraint: TIA (ia,E,) k the time the data

required at input 2a,b will be available, which will be the

time TCE (Z.,b) when the data transfer has ended. So, for

each input i+, we have:

TIA(iz,b) = TcE(ia,b)

Output-availability constraint: Once execution of the sub-

task S. begins, a certain time elapses before an output data

value oa,c produced by the subtask becomes available. The

time elapsed would be the time taken in executing -fA(oa,.)

fraction of the subtask; and so the time TOA(O.,C) must sat-

isfy the following relation:

TOA(o.,c) = Tss(.%) + fA(O.,c)(TsE(&) – Tss(L%))

We will have such a relation for each output.

Subtask-execution-start constraint: Tss(S~) is the time

the subtask S. begins execution. There must be a certain

relationship between the time a given subtask begins its ex-

ecution and the times at which its various inputs become

available. Since ~A (ia,~) fraction of the subt ask S. can pro-

ceed without requiring the input &,b, the following relation

must be satisfied for all the inputs Za,b to the subtask:

TrA(i~,b) < Tss(S.) + fA(ia,b)(Ts~(.%) – Tss(SL))

Paper 1.2

10

Subtask-execution-end constraint: Once execution of a

subtask begins, a time equal to the execution time of the

subt ask must elapse before the subt ask is completed. Ex-

ecution time of the subtask depends on the processor type

being used for it. A priori we do not know which proces-

sor type a given subtask S. is going to be mapped to. Any

prc)cessor from the set Pa could be selected to execute the

subtask S.. The uncertainty can be expressed by the fol-

lowing relation (where TVP(IM) represents the type of the

processor Pd). The summation acts as a selection since only

one IY&a = 1 for each a:

Z’SE(S.)=T,,S(S.)+ ~ ad,aDPS(T1/p(pd), Sa)

dlpdcP.

For each subt ask S., we need such a relation.

Data-transfer-start constraint: The time at which transfer

of data begins must be after the output data is produced.

FOI: each input data (except for external inputs) iaz,bz (to the

subtask S.2) being supplied by another subtask’s output, if

the output supplying the data is o. I ,.1, the following relation

must be satisfied by TCS (2.2 ,b2):

TCS(~a2j52) > ~OA(o.l,cl)

Data-transfer-end constraint: The time at which transfer

of data ends depends on whether the transfer is remote or

local. A priori we do not know which case will occur. How-

ever, the two possibilities can be combined into one single

relation using the variable -yOl ,@2. Thus, for each input data

i&?,ti2 being supplied by another subtask S.1, we have:

TCE(&2,b2) = Tcs(za2,b2) + 7.1,02 DCRV.1,.2

+(1 – 7.1,.2).DCLV.1,.2

The next two categories of constraints ensure that the

hardware resources (processors, communication links) are

shared correctly. These constraints ensure that the same

hardware resource is not scheduled to perform more than

one function during any given time interval. In order to ex-

press these constraints concisely, we need to define a special

function called an overlap function L (as defined in [4]). The

function is defined on two closed intervals of time, [t1,t2] and

[t3, t4] (where tl < t2 and t3 < t4), as:

{
.L([tl, t2], [t3, t4]) = $ ~t;::::rv~s Overlap

Processor-usage-exclusion constraint: If two subtasks S.l

and ,Sa2 are being executed by the same processor pd, then

the two subtasks must not be scheduled to be executed at the

same time. The situation that two subtasks S. I and S~Z are
being implemented by the same processor pd implies fYd,al =

ad,az = 1. For each processor Pd and each pair of subtasks
S. ~ and Saz such that the sets of processors Pal and Pa2

available to implement the subtasks contain t-he processor

pd, the following relation ensures that the overlap in the

usage of the processor by the two subtasks is prevented:

ad,dad,a2L([Tss(sd), TSE(.%1)],

[T5-.S(S.2),T,,E(sa2)]) = o

Communication-link-usage-exclusion constraint: If the

data required by two inputs ial,bl and iaZ,52 are being trans-

mitted over the same communication link, then the two data

transfers must not be scheduled at the same time. Let us say

the input data ial ,61 is supplied by the subtask S.S and the

input data iaz,bz is supplied by the subtask Sal. The two in-

puts ial,bl and i&)bz will be transmitted over the same com-

munication link if the two subtasks Sal and Saz are mapped

to the same processor, say pdz, and also the subt asks Sa3

and sal are mapped to the same processor, say pdl (in that

case, both the inputs will be transmitted over the commu-

nication link from processor pd] to processor p&). So, for

each processor pair (pall, p&) and each pair of inputs ial,bl

and i~’2,bz, if the input ial ,bl is being supplied from Sas to

Sal and the input iaz ,b’2 from S’al to saz then the following

relation ensures that the overlap in the usage of the commu-

nication link from processor pdl to processor pdz by the two

data transfers is prevented:

ud2, al nd2, a2 cdl ,a3 Udl ,a4 ~([Tcs(ial,bl), TCE(&l,bl)],

[TCS(~a2,b2), TcE(za2,b2)]) = O

The above constraint also captures the waiting times asso-

ciated with the remote data transfers.

The set of constraints described here should be treated as

an example set. The exact form of constraints used can be

tailored to meet the characteristics of the design problem at

hand. Our approach offers a great degree of flexibility in this

regard.

Two of the most important objective functions that

the designer may wish to optimize are the overall system

performance and the total system cost.

The overall system performance is usuallv measured

by how fast the ~ystem c& perform the task. S;, it can be

represented by the time at which the task is com~leted (or.
all the subtasks are completed). If TF k a real variable rep-

resenting the time at which the task is completed, then the

objective is to minimize TF. To ensure that TF represents

the time at which all the subtasks are completed, we need

to introduce the following constraint in the model (for each

subtask S.):

TF ~ TsE(Sa)

The total system cost can be expressed as the sum of

the costs of the processors selected and the costs of the links

created. In order to do so, we need to define two types of

binary variables as follows.

%ocessor=selection variable, fid: The variables of this type

specify which processors have been selected in the synthe-

sized architecture. ,B~ = 1 indicates the processor pd is being

included in the system.

Communication- link-creation vartable, Xd],&: The vari-

ables of this type specify what communication links are

present in the synthesized architecture. X,ll,& = 1 indicates

there exists a communication link from the processor pdl to

the processor p& in the designed system.

Using the variables defined above, the objective is to:

MINIMIZE ~ ,8dCd +
x

xdl,d2CL

dlpdep dl, d21p.i~EPApm EP

where cd is the cost of a processor pd and CL is the cost of

building a communication link between two processors, as

defined in Section 3. The variables of type ~d are related to

Paper 1.2

11

Execution Time
n

Proc. cost s] S2 S3 S4

PI 4 1 1 - 3

P2 5 3 1 2 1

P3 2 - 3 1 -

Table 1: Processor Characteristics - Example 1

the variables of type Ud,a. A processor pd will be included in

the system if and only if at least one of the subtasks S. (Pd c

Pa) is mapped to it, which implies that the variable ~d is the

logical OR of all the Ud,a variables. This can be expressed

by introducing the following constraint in the model (for all

a such that pd C ~a):

The variables of type Xdl ,&2 are also related to the variables

of type Ud,a. A communication link is created from processor

pdl to processor pdz if and only if at least one of the subtasks

Sal (pall c Pal) mapped to the processor Pdl needs to send

data to at least one of the subtasks S’.2 (pdzE P.2) mapped

to the processor p&. So, the variable Xdl,dz is the logical OR

of all the product terms of the form (fYdl ,.l fY& ,az), where

the subtask Sal supplies some data to the subtask SaZ. This

condition leads to the introduction of following constraint in

the model (for all al, a2 such that pdl ● Pal and p& c Paz

and subtask Sal sends data to subt ask S.2):

Xdl,d2 ? Udl,al Ud2,a2

The essence of the model has been presented. It is easy

to see that arbitrary constraints imposed by the designer can

be expressed using the timing and binary variables defined

in the model. Several constraints comprising the model are

non-linear relations. These relations were linearized and the

model was converted into a MILP (Mixed Integer-Linear

Programming) formulation. The MILP model is solved us-

ing Bozo [3], a branch-and-bound program to solve an MILP

problem which invokes a commercial linear programming

package, XLP, developed by XMP Software, Inc.

5 Experiments and Results
We have considered two example task graphs modified from

[7]. The first example consists of four subtask nodes, while

the second consists of nine.

Example 1 (Four-Node Graph) is shown in Figure 1.

Associated -fR and -fA parameters are also given in the fig-

ure, constraining input/output timing for the subtasks. We

assume we have available three types of processors: PI, PZ,

pa. The costs of these processors and the execution times

of various subtasks on the processors are given in Table 1.

An entry of ‘-’ “m the table implies that the particular pro-

cessor is functionally not capable of performing the partic-

ular subtask. Different processors have different cost-speed-

functionality characteristics. The volume of data that needs

to be communicated is one unit for each arc in the graph.

Local transfer delay is given to be negligible; i.e., DcL = 0,

We are also given the communication link characteristics.

The cost of a link, CL, is one unit; and the remote transfer

delay for a unit volume of data over a link, DCR, is also one

unit.

The MILP model for the example consists of 93 variables,

21 timing and 72 binary, and 174 constraints. Bozo was

Design Runtime (see) cost Performance

1 11 14 2.5

2 24 13 3,, ,3 1

3 28 7 4 nI

4 37 5 7 n

Table 2: Example 1 Architectures

used to generate 4 non-inferior architectures. These differ-

ent architectures were generated by changing the constraint

value for the total cost of the system, and optimizing the

overall performance of the system. Bozo’s runtime to gen-

erate each of these designs is of the order of a few seconds.

These runtimes are on a system with CPU type Solbourne

Series5e/900 (similar to Sun SPARCsystem 4/490) with 128

MB of memory. Cost, performance and runtime for the four

designs are given in Table 2. A brief discussion of these

designs follows.

Design 1 consists of 3 processors: pla - a processor of

type P1, P2. - a processor of type PZ, and psa - a processor of

type ps. Processor pla performs subtask S1, processor pz.

performs subtasks Sz and SA in that order, and processor

PSM performs subtask S3. There are three communication

links: 11a,2a, 11a,3~, and 12a,3~. Data i4,1 gets transmitted

on link tla,z~, data 2s,1 gets transmitted on link ll~,s~, and

data is,z gets transmitted on link ~ZQ,3a. As an illustration,

this architecture is shown in Figure 2. A detailed schedule

for the various events is also shown in the figure. Design

2 is similar to design 1, and also consists of 3 processors:

pla, Pzaj and PSG. However, it has only two links: Ila,za,

and 11~,sa. Presence of fewer links forces a change in the

mapping between the resources and the events. Processor

Pla performs subtasks Si and S2 in that order, processor pz~
performs subtaak SA, and processor p3a performs subtask S3.

Data 24,1 gets transmitted on link ila,za, data 23,1 and data

is,z get transmitted on link 11~,3~ in that order. Design 3

consists of 2 processors: pl ~ - a processor of type pi, and p~a

- a processor of type p~. Processor pl. performs subt asks S1

and SA in that order, and processor p3a performs subtasks

S2 and S3 in that order. There is a communication link:

l]a,s~. Data isll gets transmitted on link 11.,3.. Design 4

consists of just 1 processor: p2a - a processor of type pz. The

processor performs the subtasks Sz, S1, Ss, and SA in that

order.

Example 2 (Nine-Node Graph) is shown in Figure 3.

For this example, we assumed that a subtask requires all

the inputs before it can start and that none of the outputs

from a subtask become available until its execution is over.

Again, there are three types of processors, with the costs and

the execution times given in Table 3. The volume of data is

one unit for each arc. We are given: DCL = O, DCR = 1.

For this graph, we synthesized architectures for two different

styles of interconnection.

For point-to-point interconnection style, as before, if

two processors need to communicate, then there must be a

direct link between them; and the cost of building a link

CL = 1. The MILP model consists of 272 variables, 47 tim-

ing and 225 binary, and 1081 constraints. We generated 5

non-inferior architectures by changing the constraint value

for the tot al system cost, and optimizing the system perfor-

mance. Bozo’s runtime for each of these designs is of the

order of a few hours, except for design 5. Cost, performance

and runtime for the five designs are given in Table 4.

Paper 1.2

12

01,1 02,1 03,1

i4.1 i5.1 i&l

r’ r“ r“I
Figure 3: Example 2 Task Graph

I 1 Execution Time

Proc. ~cost ~SI S2 S3 S4 S5 s.s ST sa S9

PI 14
Y

2 2 1 1 1 1 3 – 1

P2 15 3 1 1 3 1 2 1 2 1

P3 12 1 1 2 – 3 1 4 1 3

Table 3: Processor Characteristics - Example 2

II 11 #

5 6416.87 5 15 H

Table 4: Example 2 Architectures (Point-to-Point)

Design Runtime (rein) cost Performance

1 107.3 10 6

2 89.53 6 7

3 61.52 5 15

Table 5: Example 2 Architectures (Bus-Style)

For bus-style interconnection, the system consists of a

set of processors and a bus connecting all the processors to

each other. So, the cost of the system is dominated by the

costs of the processors selected. Our approach is capable of

modeling such a system. The MILP bus-architecture model

consists of 200 variables, 47 timing and 153 binary, and 416

constraints. Three non-inferior architectures were generated

by changing the constraint value for the total system cost,

and optimizing the system performance. Runtime for each

of these designs averages a few hours. Table 5 gives the

statistics for the three designs.

6 Conclusion
In this paper, we have presented a formal model for the

multiprocessor synthesis problem. The model can be solved

fairly quickly for small size problems. However, there is

much room for runtime improvement. Incorporation of some

heuristics for performing the branch-and-bound search seems

to be a promising direction of research. Also, the approach

described can be applied to model more genersJized mul-

tiprocessor design problems. Enhancement of the model

to handle some of the other aspects (e.g.; memory design,

mixed-style interconnect design) related to the multiproces-

sor synthesis problem is another research direction. Shared-

memory multiprocessor systems must aLso be considered.

Work is in progress at USC in both the directions. Also, ef-

forts are underway to automate the production of the model

(constraints and objective function) from a high-level speci-

fication of the problem.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

W. Chu, L. Hollaway, M. Lan, and K. Efe. Task Al-

location in Distributed Data Processing. Computer,

13(11):57-69, November 1980.

E. K. Haddad. Optimal Load Allocation for Parallel

and Distributed Processing. Technical Report TR 89-12,

Department of Computer Science, Virginia Polytechnic

Institute and State University, April 1989.

L. Hafer and E. Hutchings. Bringing up Bozo. Technical

Report CMPT TR 90-2, School of Computing Science,

Simon Fraser University, March 1990.

L. Hafer and A. Parker. A Formal Method for the Speci-

fication, Analysis, and Design of Register-Transfer Level

Digital Logic. IEEE Transactions on Computer-Aided

Design, CAD-2(l), January 1983.

C. E. Houstis. Module Allocation of Real-Time Appli-

cations to Distributed Systems. IEEE Transactions on

Software Engineering, 16(7):699-709, July 1990.

C. Hwang, Y. Hsu, and Y. Lin. Optimum and Heuristic

Data Path Scheduling Under Resource Constraints. In

Proceedings 27th Design Automation Conference, pages

65-70. ACM/IEEE, June 1990.

R. Mehrotra and S. Talukdar. Task Scheduling on Mul-

tiprocessors. Technical Report DRC-18-55-82, Depart-

ment of Electrical Engineering, Carnegie-Mellon Univer-

sity, December 1982.

H. S. Stone. Critical Load Factors in Two-processor Dis-

tributed Systems. IEEE Transactions on Software Engi-

neering, SE-4:254-258, May 1978.

Paper 1.2

13

