The VLg

1erische Mathe

’ol. 5, No. 6, p.
.9 No. 1, pp. i
aterpreted Ele;
ia, January 199

/8

Embedded Computing
Systems and
Hardware/Software
Co-Design

7 June 2003,
asized, Digitall
Conference, 2005

olf CONTENTS
miversity 78.1 INtrOdUCHON cuucrverresevssisssmsssssssansmmsssssssssssnssnssessess 78-1
78.2 Uses Of MICTOPIOCESSOTS covuusrussemnsssumssensssnssssssseess 78-1
78.3 Embedded System ArchiteCtures.....oooeeuseeueseeeen: 78-3
78.4 Hardware/Software Co-Design 78-6

78.4.1 MOMEIS ..courunrrinnnrrerennsnssssinssasnennss
78.4.2 Co-Simulation
78.4.3 Performance Analysis
78.4.4 Hardware/Software CO-Synthesisceueussemssseenseees 78-9
78.4.5 Design Methodologies ..c....rewwusssscennenees 78-10

Introduction

ter describes embedded computing systems that make use of microprocessors to implement
he system’s function. It also describes hardware/software co-design, which is the process of
embedded systems while simultaneously considering the design of its hardware and software

Uses of Microprocessors

e s e e

edded computing system (or more simply an embedded system) is any system which uses a
mable processor but itself is not a general purpose computer. Thus, a personal computer is not an
ed computing system (though PCs are often used as platforms for building embedded systems),
phone or automobile which includes a CPU is an embedded system. Embedded systems may offer
ount of user programmability———3C0m’s PalmPilot, for example, allows users to write and download
s even though it is not a general-purpose computer—but embedded systems generally run limited
rograms. The fact that we know the software that we will run on the hardware allows us to optimize
software and hardware in ways that are not possible in general-purpose computing systems.

processors are generally categorized by their word size, since word size is associated both with
m program size and data resolution. Commercial microprocessors come in many sizes; the term
ntroller is used to denote a mMicroprocessor which comes with some basic on-chip peripheral

CRC Press LLC 78-1

78-2 The VLg

devices, such as serial input/output (I/O) ports. Four-bit microcontrollers are extreme]
capable of some basic functions. Eight-bit microcontrollers are workhorse low-end mjc
Sixteen- and 32-bit microprocessors provide significantly more functionality. A 16/32-bit
may be in the same architectural family as the CPUs used in computer workstations, but mjc
destined for embedded computing often do not provide memory management hardware, A
processor (DSP) is a microprocessor tuned for signal processing applications. DSPs are ¢
architectures, meaning that they provide separate data and program memories; Harvard
provide higher performance for DSP applications. DSPs may provide integer or floating-poing

Microprocessors are used in an incredible variety of products. Furthermore, many prod
multiple microprocessors. Four- and eight-bit microprocessors are often used in appliances:
a thermostat may use a microcontroller to provide timed control of room temperature.
cameras often use several eight-bit microprocessors, each responsible for a different asp
camera’s functionality: exposure, shutter control, etc. High-end microprocessors are used j
ink-jet printers to control the rendering of the page. Many printers use two or three micrg
to handle generation of pixels, control of the print engine, and so forth. Modern automobji,
close to 100 microprocessors, and even inexpensive automobiles generally contain several,
microprocessors are used to control the engine’s ignition system—automobiles use sophistica
algorithms to simultaneously achieve low emissions, high fuel economy, and good perform
end microcontrollers are used in a number of places in the automobile to increase functio
example, four-bit microcontrollers are often used to sense whether seat belts are fastened an
the seat belt light when necessary. :

Microprocessors may replace analog components to provide similar functions, or they may
new functionality to a system. They are used in several different ways in embedded systems. O;
application category is signal conditioning, in which the microprocessor or DSP performs som
or control function on a digitized input. The conditioned signal may be sent to some other micr
for final use. Signal conditioning allows systems to use less-expensive sensors with the applicat
relatively inexpensive microprocessor. Beyond signal conditioning, microprocessors may be used
sophisticated control applications. For example, microprocessors are often used in telephone s
control signaling functions, such as determining what action to take based on the reception of di
etc. Microprocessors may implement user interfaces; this requires sensing when buttons, knob
used, taking appropriate actions, and updating displays. Finally, microprocessors may perfo:
processing, such as managing the calendar in a personal digital assistant.

There are several reasons why microprocessors make good design components in such a wide s
application areas. First, digital systems often provide more complex functionality than can be creat
analog components. A good example is the user interface of a home audio/video system, which
more information and is easier use than older, non-microprocessor-controlled systems. Micropr
also allow related products much more cost-effectively. An entire product family, including
various price and feature points, can be built around a single microprocessor-based platform. Th
includes both hardware components common to all the family members and software runni
microprocessor to provide functionality. Software elements can easily be turned on or off in vari
members. Economies of scale often mean that it is cheaper to put the same hardware in both exp
cheap models and to turn off features in the inexpensive models rather than to try to optimize the hg
and software configurations of each model separately. Microprocessors also allow design
be made much more quickly. Many changes may be possible simply by reprogramming; othe
may be made possible by adding memory or other simple hardware changes along with some
programming. Finally, microprocessors aid in concurrent engineering. After some initial design
have been made, hardware and software can be designed in parallel, reducing total design time.

While embedded computing systems traditionally have been fabricated at the board lei
multiple chips, embedded computing systems will play an increasing role in integrated circ
as well. As VLSI technology moves toward the ability to fabricate chips with billions of ti

© 2006 by CRC Press LLC

The VLS] Computing Systems and Hardware/Software Co-Design 78-3

 circuits will increasingly incorporate one or several microprocessors executing embedded
Jsing microprocessors as components in integrated circuits increases design productivity,
s can be used as large components which implement a significant part of the system function-
e-chip embedded systems can provide much higher performance than board-level equivalents,
-to-chip delays are eliminated. £

llers are extremely
orse low-end micropy
lity. A 16/32-bit microy
rkstations, but microp
ment hardware. A dig;
itions. DSPs are often
emories; Harvard arg
ser or floating-point a
Tmore, many products;
used in appliances: for exqy
room temperature. Ay
: for a different aspect

rocessors are used in lase
> two or three micropr
. Modern automobiles
-ally contain several. H
wobiles use sophisticated
s, and good performance,
le to increase functionali
- belts are fastened and t

Embedded System Architectures

embedded computing spans a wide range of application areas, from automotive to medical,
ome common principles of design for embedded systems. The application-specific embedded
uns on a hardware platform. An example hardware platform is shown in Figure 78.1. It contains
cessor, memory, and I/O devices. When designing on a general-purpose system such as a PC,
are platform would be predetermined, but in hardware/software co-design the software and
an be designed together to better meet cost and performance requirements.

ing on the application, various combinations of criteria may be important goals for the system
0 typical criteria are speed and manufacturing cost. The speed at which computations are made
tributes to the general usability of the system, just as in general-purpose computing. However,
nce is also often associated with the satisfaction of deadlines—times at which computations
completed to ensure the proper operation of the system. If failure to meet a deadline causes a
ror, it is termed a hard deadline. And missed deadlines, which result in tolerable but unsatisfactory
ons are called soft deadlines. Hard deadlines are often (though not always) associated with safety-
tems. Designing for deadlines is one of the most challenging tasks in embedded system design.
ring cost is often an important criteria for embedded systems. Although the hardware com-
ultimately determine manufacturing cost, software plays an important role as well. First, the size
gram determines the amount of memory required, and memory is often a significant component
tal component cost. Furthermore, the improper design of software can cause one to require
rformance, more-expensive hardware components than are really necessary. Efficient utilization
are resources requires careful software design. Power consumption is becoming an increasingly
it design metric. Power is certainly important in battery-operated devices, but it can be important
cket-powered systems as well—lower power consumption means smaller, less-expensive power
and cooling and may result in environmental ratings that are advantageous in the marketplace.
in, power consumption is ultimately determined by the hardware, but software plays a significant
wer characteristics. For example, more efficient use of on-chip caches can reduce the need for
memory access, which consumes much more power than on-chip cache references.

nctions, or they may add
embedded systems. One
or DSP performs some fil
nt to some other micropro
:nsors with the applicatio
processors may be used fo
en used in telephone syst
d on the reception of dial
1g when buttons, knobs,
‘oprocessors may perform |

>onents in such a wide var
onality than can be created
lio/video system, which p;
trolled systems. Microproces
uct family, including mode

sor-based platform. The platf bus

rs and software running of . ¥
urned on or off in various s Shs
> hardware in both expens g .

1 to try to optimize the ha

s also allow design cha

 reprogramming; other f& 10
nges along with some ad¢ CPU de\élce
fter some initial design dé

cing total design time.

cated at the board level
role in integrated circu
ips with billions of tran

\

FIGURE 78.1 Hardware structure of a microprocessor system.

&

78-4

Figure 78.1 shows the hardware architecture of a basic Microprocessor system, T:
the CPU, memory, and some I/O devices, all connected by a bus. This system may
chips for high-end microprocessors or a single-chip microcontroller. Typical I/
analog/digital (ADC) and digital/analog (DAC) converters, serial and parallel compy,
network and bus interfaces, buttons and switches, and various types of display de
ration is a complete, basic, embedded computing hardware platform on which ap
can execute.

The embedded application software includes components for managing I/O devices 3
the core computational tasks. The basic software techniques for communicating with
polling and interrupt-driven. In a polled system, the program checks each device’s
determine if it is ready to perform I/O. Polling allows the CPU to determine the o
operations are completed, which may be important for ensuring that certain device req
at the proper rate. However, polling also means that a device may not be serviced in
program does not check it frequently enough. Interrupt-driven I/O allows a device to ¢
control on the CPU and call a device driver to handle the pending I/O operation. An i
may provide both prioritized interrupts to allow some devices to take precedence over o
interrupts to allow devices to specify which driver should handle their request.

Device drivers, whether polled or interrupt-driven, will typically perform basic devie
tions and hand-off data to the core routines for processing. Those routines may perform
tasks, such as transducing data from one device to another, or may perform more sophisticaf ¢
such as control. Those core routines often will initiate output operations based on their ¢
on the input operations. ’

Input and output may occur either periodically or aperiodically. Sampled data is a com
of periodic I/O, while user interfaces provide a common source of aperiodic I/O events
the I/O transactions affects both the device drivers and the core computational code. Code
on periodic data is generally driven by a timer which initiates the code at the start of the perie
operations are often characterized by their periods and the deadline for each period. Aperiod
be detected either by an interrupt or by polling the devices. Aperiodic operations may ha

which are generally measured from the initiating I/O event. Periodic operations can often b
as being executed within an infinite loop. Aperiodic operations tend to use more event-dri
which various sections of the program are exercised by different aperiodic events, since fi
more than one aperiodic event which can occur.

Embedded computing systems exhibit a great deal of parallelism which can be used
computation. As a result, they often use multiple microprocessors which communicate wi
to perform the required function. In addition to microprocessors, application-specific ICs
be added to accelerate certain critical functions. CPUs and ASICs in general are called process
(PEs). An example multiprocessor system built from several PEs along with I/O devices an
shown in Figure 78.2.

The choice of several small microprocessors or ASICs rather than one large CPU is pri
mined by cost. Microprocessor cost is a nonlinear function of performance, even within a mi
family. Vendors generally supply several versions of a microprocessor which run at differen
chips which run at varying speeds are a natural consequence of the variations in the VLSI m
process. The slowest microprocessors are significantly less expensive than the fastest ones,
increment is larger at the high end of the speed range than at the low end. As a result, it is o
to use several smaller microprocessors to implement a function.

When several microprocessors work together in a system, they may communicate with e
several different ways. If slow data rates are sufficient, serial data links are commonly used 6
hardware cost. The IC bus is a well-known example of a serial bus used to build multi-mic
embedded systems; the CAN bus is widely used in automobiles. High-speed serial links
moderately high performance and are often used to link multiple DSPs in high-speed signa

© 2006 by CRC Press LLC

The v, omputing Systems and Hardware/Software Co-Design 78-5

n. The
1ay con A
il I/0 g
mmupnj g
evidg ot B o i
h applica
ices and fq ASIC 1
g with I/ CPU 1f——— cPU2 [—
7ice’s stat serial ASIC 2 | to
he order link device
e request v bus
d in time if
eto !
Change FIGURE 78.2 A heterogeneous embedded multiprocessor.
1. An intery
rer others ag arallel data links provide the highest performance thanks to their sheer data width. High-speed

h as PCI can be used to link several processors.

fiware for an embedded multiprocessing system is often built around processes. A process, as
rform relati al-purpose computing system, is an instantiation of a program with its own state. Since problems
phisticated ough to require multiprocessors often run sophisticated algorithms and I/O systems, dividing
n their comp into processes helps manage design complexity. A real-time operating system (RTOS) is an -
u system specifically designed for embedded, and specifically real-time applications. The RTOS
he processes and device drivers in the system, determining when each executes on the CPU.
jon is termed scheduling. The partitioning of the software between application code which

(g}

o
5

S.
=)
o
o
~

is a common
events. The

. Code which ore algorithms and an RTOS which schedules the times to which those core algorithms are
f the period. s a fundamental design principle in computing systems in general and is especially important
'd. Aperiodic e operation.

re a number of techniques which can be used to schedule processes in an embedded system—
determine which process runs next on a particular CPU. Most RTOSs use process priorities in
to determine the schedule. A process may be in any one of three states: currently executing
obviously be only one executing process on each CPU); ready to execute; or waiting. A process
e able to execute until, for example, its data has arrived. Once its data arrives, it moves from
ready. The scheduler chooses among the ready processes to determine which process runs
eneral, the RTOS’s scheduler chooses the highest-priority ready process to run next; variations
cheduling methods depend in large part on the ways in which priorities are determined. Unlike

s may have d
n often be th
event-driven
s, since there

be used to s
licate with ea
zific ICs (ASI

d processing e urpose operating systems, RTOSs generally allow a process to run until it is preempted by a
>vices and me jority process. General-purpose operating systems often perform time-slicing operations to

. fair access of all the users on the system, but time-slicing does not allow the control required
U is primaril g deadlines.

amental result in real-time scheduling is known as rate-monotonic scheduling. This technique
a set of processes which run independently on a single CPU. Each process has its own period,
eadline happening at the end of each period. There can be arbitrary relationships between the
of the processes. It is assumed that data does not in general arrive at the beginning of the period,
re no assumptions about when a process goes from waiting to ready within a period. This
g policy uses static priorities—the priorities for the processes are assigned before execution
and do not change. It can be shown that the optimal priority assignment is based on period—
r the period, the higher the priority. This priority assignment ensures that all processes will
deadlines on every period. It can also be shown that at most, 69% of the CPU is used by this
g policy. The remaining cycles are spent waiting for activities to happen—since data arrival
e not known, it is not possible to utilize 100% of the CPU cycles.

‘hin a microp
different clo
VLSI manufa

st ones, and

ilt, it is often

te with each
ly used for th
1ulti-microp;
al links can
sed signal pro

RC Press LLC

78-6 The V.

task 1 task 2

FIGURE 78.3 A task graph with two tasks and data dependencies between processes,

Another well-known, real-time scheduling technique is earliest deadline first (EDF). Thj
priority scheme—process priorities change during execution. EDF sets priorities based on
deadlines, with the process whose deadline is closest in the future having the highest pri
the rate of change of process priorities depends on the periods and deadlines. EDF can
be able to utilize 100% of the CPU, but it does not guarantee that all deadlines will b
priorities are dynamic, it is not possible in general to analyze whether the system will
at some point.

Processes may be specified with data dependencies, as shown in Figure 78.3, to create a
An arc in the data dependency graph specifies that one process feeds data to another. The
cannot become ready until all the source processes have delivered their data. Processes wh
data dependency path between them are in separate tasks. Each task can run at its own
dependencies allow schedulers to make more efficient use of CPU resources. Since the sour
processes of a data dependency cannot execute simultaneously, we can use that information
some combinations of processes which may want to run at the same time. Narrowing the scop
conflicts allows us to more accurately predict how the CPU will be used.

A real-time operating system is often designed to have a small memory footprint, since
systems are more cost-sensitive than general-purpose computers. RTOSs are also designed to
responsive in two different ways. First, they allow greater control over the order of execution of}
which is critical for ensuring that deadlines are met. Second, they are designed to have lowet
switching overhead, since that overhead eats into the time available for meeting deadlines. ’
of an RTOS is the basic set of functions that is always resident in memory. A basic RTOS ma
extremely small kernel of only a few hundred instructions. Such microkernels often provide o
context-switching and scheduling facilities. More complex RTOSs may provide high-end:
system functions such as file systems and network support; many high-end RTOSs are POSL
standard) compliant. While running such a high-end operating system requires more hardwarer
the extra features are useful in a number of situations. For example, a controller for a machis
manufacturing line may use a network interface to talk to other machines on the factory floog
factory coordination unit; it may also use the file system to access a database for the man
process.

78.4 Hardware/Software Co-Design

Hardware/software co-design refers to any methodology which takes into account both hards
software during the design of an embedded computing system. When the hardware and §
designed together, the designer has more opportunities to optimize the system by maki
between the hardware and software components. Good system designers intuitively perform €
but co-design methods are increasingly being embodied in computer-aided design (CAD) tools
discuss several aspects of co-design and co-design tools, including models of the design, co-
performance analysis, and various methods for architectural co-synthesis. We will conclude meeting
at design methodologies that make use of these phases of co-design.

‘ ulatic
nts of

Peri

orma:

© 2006 by CRC Press LLC

The VLSI Computing Systems and Hardware/Software Co-Design 78-7

odels

g embedded computing systems, we make use of several different types of models at different
e design process. We need to model basic functionality. We must also capture nonfunctional
ts: speed, weight, power consumption, manufacturing cost, etc.

rliest stages of design, the task graph is an important modeling tool. The task graph does
e all aspects of functionality, but it does describe the various rates at which computations
erformed and the expected degrees of parallelism available. This level of detail is often
make some important architectural decisions. A useful adjunct to the task graph are the
description tables, which describe how processes can be implemented on the available
ts. One of the technology description tables describes basic properties of the processing
. such as cost and basic power dissipation. A separate table describes how the processes may
ented on the components, giving execution time (and perhaps other function-specific
like precise power consumption) on a processing element of that type. The technology
is more complex when ASICs can be used as processing elements, since many different
differing price/performance points can be designed for a given functionality, but the basic
applies.

e detailed description is given by either high-level language code (C, etc.) for software or
description language code (VHDL, Verilog, etc.) for software components. These should not
as specifications—they are, in fact, quite detailed implementations. However, they do provide
abstraction above assembly language and gates and so can be valuable for analyzing perfor-
ze, etc. The control-data flow graph (CDFG) is a typical representation of a high-level language:
rt-like structure describes the program’s control, while data flow graphs describe the behavior

=)

cies between processes.

lline first (EDF). This is a
priorities based on the imp
wing the highest priority,
deadlines. EDF can be §
t all deadlines will be met
1er the system will be ovey

igure 78.3, to create a task g
data to another. The sink pi
ieir data. Processes which ha
sk can run at its own rate, P
sources. Since the source and
1 use that information to eli
ne. Narrowing the scope of p
sed.
emory footprint, since emb
'0Ss are also designed to be m
‘e order of execution of proces
e designed to have lower cont
for meeting deadlines. The
>mory. A basic RTOS may ha
rokernels often provide only b
may provide high-end opera
gh-end RTOSs are POSIX (a
requires more hardware reso
e, a controller for a machine
ichines on the factory floor or
a database for the manufactu

pressions and basic blocks.

Co-Simulation

jon is an important tool for design verification. The simulation of a complete embedded system
5 modeling both the underlying hardware platform and the software executing on the CPUs. Some
ardware must be simulated at a very fine level of detail—for example, buses and I/O devices may
e gate-level simulation. On the other hand, the software can and should be executed at a higher
abstraction. While it would be possible to simulate software execution by running a gate-level
on of the CPU and modeling the program as residing in the memory of the simulated CPU, this
unacceptably slow.
an gain significant performance advantages by running different parts of the simulation at
t levels of detail: elements of the hardware can be simulated in great detail, while software
n can be modeled much more directly. Basic functionality aspects of a high-level language
n can be simulated by compiling the software on the computer on which the simulation executes,
g those parts of the program to run at the native computer speed. Aspects of the program which
the hardware platform must interface to the section of the simulator which deals with the
re. Those sections of the program are replaced by stubs which interface to the simulator. This
simulation is a multi-rate simulation system, since the hardware and software simulation sections
ifferent rates: a single instruction in the software simulation will correspond to several clock
the hardware simulation. The main jobs of the simulator are to keep the various sections
imulation synchronized and to manage communication between the hardware and software
onents of the simulation.

s into account both hardware
ien the hardware and softw I
e the system by making trade
ners intuitively perform co-
-aided design (CAD) tools.
odels of the design, co-sim
sesis. We will conclude with

Performance Analysis

tformance is an important design goal in most embedded systems, both for overall throughput
meeting deadlines, the analysis of the system to determine its speed of operation is an important
of any co-design methodology. System performance—the time it takes to execute a particular

RC Press LLC

78-8 The VL§

aspect of the system’s functionality—clearly depends both on the software being exec
underlying hardware platform. While simulation is an important tool for performance angj
sufficient, since simulation does not determine the worst-case delays. Since the execution
programs are data-dependent, it is necessary to give the simulation of the program the prope
to observe worst-case delay. The number of possible input combinations makes it unlikely
find those worst-case inputs without the sort of analysis that is at the heart of performance

In general, performance analysis must be done at several different levels of abstraction,
program, one can place an upper bound on the worst-case execution time of the progra
since many embedded systems consist of multiple processes and device drivers, it is necessary
how these programs interact with each other, a phase which makes use of the results of sing
performance analysis. -

Determining the worst-case execution time of a single program can be broken into two su]
determining the longest execution path through the program and determining the executio
program. Since there is at least a rough correlation between the number of operations and
execution time, we can determine the longest execution path without detailed knowledge of
tions being executed—the longest path depends primarily on the structure of conditionals 4
One way to find the longest path through the program is to model the program as a control-
and use network flow algorithms to solve the resulting system.

Once the longest path has been found, we need to look at the instructions executed alon
to determine the actual execution time. A simple model of the processor would assume
instruction has a fixed execution time, independent of other factors such as the data values beingj
on, surrounding instructions, or the path of execution. In fact, such simple models do not give
results for modern high-speed microprocessors. One problem is that in pipelined processors, tl
tion time of an instruction may depend on the sequence of instructions executed before it.
greater cause of performance variations is caching, since the same instruction sequence can have
execution times, depending on whether the code is in the cache. Since cache miss penalties are
or 10X, the cost of mischaracterizing cache performance is significant. Assuming that the cach;
present gives a conservative estimate of worst-case execution time, but one that is so over-co
that it distorts the entire design. Since the performance penalty for ignoring the cache is so large,
in using a much faster, more expensive processor than is really necessary. The effects of cachi
taken into account during the path analysis of the program—path analysis can determine be
often an instruction present in the cache.

There are two major effects which must be taken into account when analyzing multiple-process
The first is the effect of scheduling multiple processes and device drivers on a single CPU. Thi
is performed by a scheduling algorithm, which determines bounds on when programs can
Ratemonotonic analysis is the simplest form of scheduling analysis—the utilization factor
ratemonotonic analysis tells one an upper limit on the amount of active CPU time. Howevel
dependencies between processes are known, or some knowledge of the arrival times of data i
then a more accurate performance estimate can be computed. If the system includes multiple p
elements, more sophisticated scheduling algorithms must be used, since the data arrival time for
on one processing element may be determined by the time at which that datum is computed o
processing element.

The second effect which must be taken into account is interactions between processes in t
When several programs on a CPU share a cache, or when several processing elements share a
level cache, the cache state depends on the behavior of all the programs. For example, when 0
is suspended by the operating system and another process starts running, that process may &
first program out of the cache. When the first process resumes execution, it will initially run mo
an effect which cannot be taken into account by analyzing the programs independently. Th
clearly depends in part on the system schedule, since the interactions between processes d
the order in which the processes execute. But the system scheduling analysis must also keep tr:

© 2006 by CRC Press LLC

The vy, omputing Systems and Hardware/Software Co-Design 78-9

which parts of which programs are in the cache at the start of execution of each process.
can be obtained with a simple model which assumes that a program is either in the cache

eing exq
nance g

xecution ithout considering individual instructions; higher accuracy comes from breaking a process
the prope b-processes for analysis, each of which can have its own cache state.
t unlike]y

‘ormance
traction,

ardware/Software Co-Synthesis

oftware co-synthesis tries to simultaneously design the hardware and software for an embed-
ing system, given design requirements such as performance as well as a description of the
. Co-synthesis generally concentrates on architectural design rather than detailed component
oncentrates on determining such major factors as the number and types of processing
quired and the ways in which software processes interact.

t basic style of co-synthesis is known as hardware/software partitioning. As shown in
this algorithm maps the given functionality onto a template architecture consisting of a CPU
nore ASICs communicating via the microprocessor bus. The functionality is usually specified
program. The partitioning algorithm breaks that program into pieces and allocates pieces
e CPU or ASICs for execution. Hardware/software partitioning assumes that total system ~
¢ is dominated by a relatively small part of the application, so that implementing a small
he application in the ASIC leads to large performance gains. Less performance-critical sections ;s
lication are relegated to the CPU.

t problem to be solved is how to break the application program into pieces; common techniques
termining where I/O operations occur and concentrating on the basic blocks of inner loops.
application code is partitioned, various allocations of those components must be evaluated.
allocation of program components to the CPU or ASICs, performance analysis techniques can
etermine the total system performance; performance analysis should take into account the
red to transfer necessary data into the ASIC and to extract the results of the computation from
Since the total number of allocations is large, heuristics must be used to search the design
ddition, the cost of the implementation must be determined. Since the CPU’s cost is known
, that cost is determined by the ASIC cost, which varies as to the amount of hardware required
ment the desired function. High-level synthesis can be used to estimate both the performance
are cost of an ASIC which will be synthesized from a portion of the application program.
co-synthesis heuristics start from extreme initial solutions: We can either put all program compo-
the CPU, creating an implementation which is minimal cost but probably does not meet

A

ecuted along

| processors, th
ited before it
1ence can have
5 penalties are 0
that the cache is
is SO over-cons
che is so large,
fects of cachin
determine bou

ultiple-process syt
1gle CPU. This a
programs can ex
zation factor giv
time. However, i
imes of data is ki
1es multiple pro
rrival time forap
3 computed on @

110
device

memory

CPU ASIC

processes in the

aple, when one
orocess may kno

$F N

(P2}

Sevuet”

endently. This 5 software hardware
' implementation implementation

t also keep tra FIGURE 78.4 Hardware/software partitioning.

RC Press LLC

78-10 The Vi

performance requirements, or put all program elements in the ASIC, which gives a maximy]
maximal-expense implementation. Given this initial solution, heuristics select which progr,
to move to the other side of the partition to either reduce hardware cost or increase performa
More sophisticated heuristics try to construct a solution by estimating how critical a compg
overall system performance and choosing a CPU or ASIC implementation accordingly. Iter;
ment strategies may move components across the partition boundary to improve the design;:
However, many embedded systems do not strictly follow the one CPU, one bus, n ASIC ap
template. These more general architectures are known as distributed embedded systems, Te
designing distributed embedded systems rest on the foundations of hardware/software part;
they are generally more complicated, since there are more free variables. For example, since
and types of CPUs is not known in advance, the co-synthesis algorithm must select them., If ¢
of busses or other communication links is not known in advance, those must be selected as
nately, these decisions are all closely related. For example, the number of CPUs and ASICs req; :
on the system schedule. The system schedule, in turn, depends on the execution time of Col
components on the available hardware elements. But those execution times depend on th tion |
elements available, which is what we are trying to determine in the first place. Co-synthesi
generally try to fix several designs and vary only one or a few, then check the results of a desig
on the other parameters. For example, the algorithm may fix the hardware architecture and {
processes to other processing elements to make more efficient use of the available hardware. Give
configuration of processes, it may then try to reduce the cost of the hardware by eliminati
processing elements or replacing a faster, more expensive processing element with a slower, che
Since the memory hierarchy is a significant contributor to overall system performance, the desi
caching system is an important aspect of distributed system co-synthesis. In a board-level syst
existing microprocessors, the sizes of second-level caches is under designer control, even if the |
cache is incorporated on the microprocessor and therefore fixed in size. In a single-chip embedd
the designer has control over the sizes of all the caches. Co-synthesis can determine hardware ele
as the placement of caches in the hardware architecture and the size of each cache. It can also d
software attributes such as the placement of each program in the cache. The placement of a progran
cache is determined by the addresses used by the program—by relocating the program, the cache
of the program can be changed. Memory system design requires calculating the cache state when ¢
ing the system schedule and using the cache state as one of the factors to determine how to modify th

. . t to it
78.4.5 Design Methodologies Boc0’s be
A co-design methodology tries to take into account aspects of hardware and software during. er that
of design. At some point in the design process, the hardware and software components are well- ment, |

and can be designed relatively independently. But it is important to consider the characteristics 6 time,

the hardware and software components early in design. It is also important to properly test the that
once the hardware and software components are assembled into a complete system. 0 icondu

Co-synthesis can be used as a design planning tool, even if it is not used to generate a complete from
architectural design. Because co-synthesis can evaluate a large number of designs very quickly Acro:

determine the feasibility of a proposed system much faster than a human designer. This allows the d¢ S, M

to experiment with what-if scenarios, such as adding new features or speculating on the effects o

component costs in the future. Many co-synthesis algorithms can be applied without having a ¢o ctron
program to use as a specification. If the system can be specified to the level of processes W ‘emen
estimate of the computation time required for each process, then useful information about arc n ha

feasibility can be generated by co-synthesis. mbe

Co-simulation plays a major role once subsystem designs are available. It does not have to
all components are complete, since stubs may be created to provide minimal functionality for in ough
components. The ability to simulate the software before completing the hardware is a major
software development and can substantially reduce development time.

© 2006 by CRC Press LLC

