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Abstract—From the perspective of physical system feedback
control, the cyber or computer system’s role has been to sample
and compute control inputs sufficiently fast to maintain accept-
able reference command tracking and disturbance rejection in
the physical system. This strategy has been successful given the
relatively low computational overhead for most control laws
compared to computational resource availability. However, in
many emerging applications this requirement may be insufficient,
not because the computer is incapable of high-speed compu-
tations but instead because either more complex computations
are required or because processor or network speed must be
minimized to conserve energy. We propose the augmentation of
traditional physical state models with a computational model
to enable a cyber-physical system to co-regulate physical and
computational actuation. Ultimately, our goal is to balance
resources of the cyber system with quality of control of the
physical system to provide a more energy-conscious CPS. As
a first step, we propose a continuous-time representation of
computational state and derive a continuous “dynamics” model
approximation.

Next, we propose the addition of a computational state into the
closed-loop control law for the physical system states. Finally, we
augment the derived cyber model with a second-order oscillator
and demonstrate control via a LQR controller. In our simulation
results, computational state and loop execution rate and oscillator
“force” are regulated closed-loop at each control cycle based both
on physical and computational state reference commands and
errors. Results show that both physical and cyber state can be
successfully regulated with the expected degradation in tracking
performance as reference computational state (control loop rate)
is slowed to values near the stability threshold.

Index Terms—Cyber Physical Systems; Real-time Systems;
CPS Foundations

I. INTRODUCTION

Cyber-physical systems (CPS) require the ability to man-
age both their computational and physical resources. In the
context of the feedback control system, this means the CPS
must achieve required tracking accuracy, disturbance rejection,
and robustness levels through synergistic regulation of its
physical effectors (e.g., propulsive, steering, switches) and
computational effectors (e.g., processing and communication
resources). Typically such analyses have been specific to one
of these effector classes. Control systems engineers focus on
regulating physical actuation but have developed techniques
to account for the effects of limited computational resources.
Conversely, real-time systems experts have focused on reg-

ulating computational resources but are still able to include
physical control system performance metrics in computational
resource scheduling.

Historically, from the perspective of feedback control sys-
tems, the energy required to actuate physical effectors has
dominated energy requirements of the cyber system. However,
in an era increasingly concerned with energy consumption,
form factor, and extended endurance, the physical system must
be made more aware of the cyber system and vice versa, a
synergy consistent with awareness in biologic entities. With
increasing demands placed on the cyber system for distributed
data processing, communication, and decision-making, it has
become imperative for any resource scheduler to be aware of
if, and when, it can scale back resources devoted to reasoning
about the physical system and still maintain good quality of
control. In terms of performance of the physical system, an
increase in resources allotted to the computation of control
inputs will result in better performance of the physical system.
This can occur either by scheduling additional CPU time for
the control task, or by increasing the CPU frequency.

We are pursuing a representation and corresponding the-
ory to unify these disparate notions of “effector regulation”
into a common framework. In this paper we propose an
incremental advancement toward physical-computational state
co-regulation. We first represent computational state in a
continuous-time state formulation and derive an approximate
continuous model. We then add a control variable representing
a single cyber-state to the physical state closed-loop control
law. We then combine our derived cyber model with a 2nd-
order oscillator and demonstrate enhanced performance given
a LQR control law under varying control loop execution
frequency. We apply this closed-loop control law in the
simulation of a weakly-coupled oscillator-computational state
system to demonstrate performance as both physical and
computational states are regulated.

In Section II we discuss background research in delayed
and digital systems, forming a solid theoretical underpinning
for sampled system analysis and representation. We begin with
background on models that account for the time delay associ-
ated with a digital controller. Recent advances in CPS are then
discussed, including related work in feedback scheduling and
networked control systems, and we describe why this work
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could be a nontrivial advance within the CPS community. In
Section III we review a simple spring-mass-damper system
then illustrate the problem of digital control of dynamic
systems. We then describe our model of computational state
as well as an approximate continuous cyber model. We then
propose a closed-loop control law that incorporates a single
cyber-state and demonstrate how better quality of control can
be achieved by utilizing cyber-state information. In Section IV
we combine the physical and cyber models and discuss closed-
loop controller implementation details in the simulated results
in Section V. Results compare ideal (continuous control)
responses with results from the simulated closed-loop CPS,
illustrating how regulation of the computational state impacts
the response of both the physical and cyber states over time.

II. BACKGROUND

The approaches for understanding and solving problems in
the area of CPS span a wide array of techniques from advance-
ments in modeling physical systems, to advanced scheduling
algorithms, to abstract mathematical formulations of hybrid
automata. Ultimately, the goal is to appropriately balance the
performance of the physical system and the performance of
the cyber system. In the first part of this section, we discuss
approaches for modeling delay in the physical system and why
they do not fully achieve this goal. We then touch on some of
the recent advances stemming from a cyber approach to the
problem.

A. Modeling Delay

The primary effect of the cyber system on the physical
system is the delay associated with a CPS. As a result, an
investigation of how to model delay, as part of the state of
the system, is important to our goals. Historically, three key
research tracks have sought to extend rigorous mathematical
formulations of physical systems to accommodate the effects
of these delays. These include time-delay systems, digital
control, and hybrid systems. Pertinent results from each area
of study are highlighted below.

1) Time-Delay Systems: Time-delay systems research has
played a prominent role in the definition, control, and stability
of systems with delay. The primary difficulty in the develop-
ment of appropriate tools for modeling these systems is a result
of the infinite-dimensional nature of the problems. Hence,
traditional dynamics (using ordinary differential equations)
and by extension traditional continuous control are inadequate.
Functional Differential Equations (FDE), with accompanying
analysis, however, have provided a rich framework for inves-
tigation of such infinite dimensional systems.

The primary result of delay in a physical system is desta-
bilization. Therefore, research into if, and when, a system be-
comes unstable has played a key role in this field. While some
physical systems are, in fact, S∞ stable (delay-independent
asymptotically stable), most physical systems of interest are
Sτ stable (delay-dependent asymptotically stable). In Sτ sta-
bility, we are interested in the τ∗ (i.e. delay) that results
in instability of the system, while values of τ < τ∗ are

stable. Lyapunov stability, and more specifically Lyapunov-
Krasovskii and Lyapunov-Razumikhin stability have motivated
much of the stability analysis in this field. If we think of a
FDE as an evolution in a Euclidean space, the application
of Lyapunov’s second method becomes more clear—namely,
Lyapunov-Krasovskii stability tells us that the derivative of the
candidate Lyapunov functional, V̇ must be negative along all
the system’s trajectories. As in traditional nonlinear control
theory, Lyapunov’s second method is often surprisingly dif-
ficult to demonstrate. Lyapunov-Razumikhin stability relaxes
the Lyapunov-Krasovskii stability theorem and seeks stability
on a subset of trajectories defined by the system evolution an
the interval [t− τ, t] [1]–[3].

There are at least two main obstacles in utilizing time-delay
system theory in a CPS system to provide a unified framework.
First, our purpose in modeling delay as a part of the CPS
is to allow us to choose the optimal delay under changing
conditions. While time-delay system analysis can help us
analyze the range of stable delays up to τ∗, it has relatively
few tools for handling time-varying delays and appropriately
choosing them amidst control objectives. Second, while the
delay is part of the system model, it does not function as one
of the control variables. This means we still cannot utilize the
rich theory and practical tools from the control community in
our design of an energy-conscious CPS.

2) Digital Control: Time-delay systems analysis primarily
considers a continuous delay term. In a CPS the delay induces
a zero-order hold effect on the physical system. This effect is
better suited to a purely discrete mathematical model than a
FDE model [4]. Digital control provides this discrete math-
ematical framework, as well as familiar control techniques
couched in a “digital” domain to design, simulate, and model
a system.

Two traditional techniques arise from this area of study.
The first is direct digital design. Assuming a fixed sampling
rate, the former provides tools to derive a digital model of
the system from which design, analysis, and simulation, can
be achieved. Utilizing the z-transform, the left half of the
s-plane is folded into the unit circle and we can conclude
asymptotic stability if the system’s eigenvalues (poles) reside
within the unit circle. Z-domain analysis, including root-locus,
Nyquist stability criterion, etc. are equally valid in the digital
domain. State space equations (though now using difference
equations rather than differential equations) can be formed,
and compensator design, LQ optimal controllers, Kalman
filters, etc. retain their familiar form and use.

The second method in digital control design is emulation
of the controller/compensator. In this method all design and
analysis is done in the continuous domain and the assumption
is made that the cyber system sampling rate and control
calculation is sufficiently fast to adequately control the system.
A transformation using a selected sampling rate is applied to
the controller to adapt it to the digital domain [5].

An important consideration in digital control is the selection
of the correct sampling rate. It is clear from an energy
usage standpoint that lower sampling rates require less energy.
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However, they also contribute to the deterioration of system
performance. The theoretical lower bound on sampling rate
is the familiar Nyquist rate, or ωs/ωb > 2 where ωs is the
sampling rate, and ωb is the bandwidth of the system. It is,
however, well understood that a real physical system will
perform poorly, won’t have a smooth response, and will be
highly sensitive to parameter variations at slow sampling rates.
There is relatively little theoretical basis for correctly choosing
the sampling rate, and primarily “rules of thumb” have been
the norm. Some use simple trial and error techniques. Some
have suggested a practical choice of the inverse of the largest
real pole (or real part of complex pole). Others suggest the safe
choice of ωs/ωb > 20 should suffice for most systems [6], [7].

No matter what sampling rate is chosen, a limiting factor
in these methods is that the sampling rate is fixed. Similar
to time-delay system analysis, digital control does not tell us
how to optimally choose (under changing conditions) a delay,
nor does it provide us with tools to treat the delay as a control
parameter.

Both the time-delay systems and digital control areas ap-
proach the problem of a CPS system from the perspective
of the physical system, but they do not address the need for
the cyber system to regulate itself in relation to the physical
system. That is, there is not a clear mechanism by which
the cyber system can measure the stability or accuracy of the
physical system as a function of its current control algorithm
including all delays.

3) Hybrid Systems: Finite state representations have been
employed in a variety of physics-based control systems, rang-
ing from timed automata formulations for embedded system
verification [8] to formal hybrid system models for dynamic
system specification and control [9], [10]. Hybrid systems
are capable of capturing discrete and continuous dynamics
in a single framework and have been applied to a variety of
applications. They provide the ability to model discontinuities
through “jumps” between system states during which system
state can undergo an instantaneous change in value without
capturing this change within any particular state.

Formally, a hybrid system, H , is defined by the tuple H =
{Q,Σ, Inv, J, Init}, where set Q is the discrete state set, Σ is
the collection of dynamical subsystems associated with states
Q, set Inv represents invariants that must be true to remain
in a particular state, mapping J represents state transition
behaviors, and Init represents the initial conditions, discrete
and continuous. For this work, we transcribe computational
state to a differentiable representation using a simple hybrid
systems formalism. We anticipate hybrid systems models will
continue to be of use as we further refine and integrate our
computational and physical models.

B. Recent Advances

A number of results emerging from the growing CPS
community have also had a large impact on our understanding
of coupled CPS. Anytime control, feedback scheduling, and
networked control systems are particularly relevant to our
work, covering a spectrum of topics related to the dynamic

optimal control of the holistic CPS. Contributions in each area
are highlighted below.

1) Anytime Control: Anytime control is an attempt to im-
prove control accuracy as CPU time becomes available. These
techniques are usually broken down into two improvement
strategies: model reduction and performance reduction. In
model reduction, the physical system is reduced by partial
fraction expansion, modal reduction, or by weakly observable
or controllable states. In this way, we can prioritize which
control inputs, or how much control input should be calculated
given the available resources. In performance reduction the
performance of the system is prioritized according to some
performance index and the corresponding controls to achieve
the performance indices are computed as resources become
available [11].

The seminal work by Bhattacharya et al. [12] adapted
anytime algorithm techniques to controller design using model
reduction and a smooth switching algorithm. Most recently this
type of control has been extended to utilize an optimal LQG
controller to meet performance criteria when the resources are
time-varying and not known a priori [13]. In this formulation
an unconstrained and constrained formulation are developed
and the latter is shown to be an adaptation of Receding
Horizon Control.

2) Feedback Scheduling: In contrast to anytime control,
wherein a control algorithm is designed to offer increased
control with increasing CPU time, feedback scheduling has
become popular as a way of adjusting cyber resources based
on the needs of the cyber system, including the control
algorithm [14]. It is an attempt to adapt traditional control
theory to the cyber system in order to regulate the CPS as a
whole.

The feedback scheduler determines the appropriate manage-
ment of resources and ideally allocates CPU utilization to the
control task as it needs it. In this scheme models are needed
that relate the sampling rate with the control performance [15].
Much work has been done by Cervin et al. in [16] to create a
sound framework for feedback scheduling of control systems.

Such algorithms are often computationally intense. A model
that directly incorporates the cost of control performance as
it relates to cyber system resources would provide an excel-
lent tool for feedback scheduling algorithms which can then
utilize such information in choosing appropriate scheduling
routines [17].

3) Networked Control Systems (NCS): In a Networked
Control System (NCS), feedback control loops are closed
across a real-time network [18], [19]. Network communication
is required to close a feedback loop whenever the sensor(s),
actuator(s), and/or software are not co-located at the same
physical processing unit. Typical NCS are faced with three
primary problems: delay introduced due to limited bandwidth
and competing control tasks, lack of synchronization between
data integrated into each controller, and packet loss that may
cause data to be unavailable for one or more control cycles.

Researchers have focused on a variety of issues associated
with NCS, with much work focused on maintaining controller
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stability. Techniques from feedback scheduling (cited above)
can be applied to assess the impact of delay on performance.
Control scheduling techniques specifically addressing NCS
issues have also been formulated. For example, [20] formally
analyzes stability of a control system in the presence of delays
and packet dropout, with a simulation also illustrating the
effectiveness of clock synchronization compensation.

Our work is complementary to efforts in feedback schedul-
ing and NCS. Research in feedback scheduling and NCS both
offer a foundation for formally analyzing controller stability
and in fact optimizing a real-time schedule over a set of
controllers. This research, however, has focused on computing
stability constraints through offline analyses, then capturing
these contraints in a real-time processor and/or network sched-
uler. We instead focus on a more tightly-coupled regulation
process, where the rate of control loop execution is in fact
regulated at each control cycle based on errors in physical
state as well as an ideal “reference” control loop rate that
might be computed a priori using methods from NCS and
feedback scheduling.

To this end, we directly augment our physical system state
vector with a new “control loop rate” state. As described
below, while the reference value for our new “cyber” (control
loop rate) state may be determined from offline stability and
performance analyses, the actual value of this state is regulated
at each control loop cycle. We introduce a controller rate
“knob” as a new forcing term augmenting physical force
vector, u, to provide this new regulation capability. The
most straightforward application of real-time control loop rate
regulation is perhaps for implementations on a processor with
variable-speed clock. By varying clock rate, the controller can
explicitly trade power consumed by the processor with the rate
at which the controller itself executes. Our control scheme
provides a direct clock speed regulation mechanism. While
our scheme could also be applied to NCS, additional work
beyond the scope of this paper would be required to ensure
our commanded control loop “rates” were actually respected
across all network elements.

III. PROBLEM FORMULATION AND SOLUTION

In this section we describe progress toward unifying cyber
and physical models into a single continuous-time framework
that supports co-regulation of both models. A straightforward
way of accomplishing this is to augment the physical system
state model with one or more “computational” states repre-
senting the cyber system. This allows us to analyze the system
using traditional feedback control system analysis and design
techniques from the control systems community. Moreover,
an optimal control formulation can be obtained that would
balance constraints on both the cyber and physical portions of
the system.

Thinking about the cyber system from the perspective of a
physical one provides insight into how we might adapt it to
a continuous model. For example, what is the “position” of
the cyber system? This could be instruction count within a
scheduled task, or perhaps progression in an anytime control

algorithm. The “velocity” state could be as simple as a
sampling rate, or it could correspond with the rate at which
we are currently making calculations that specify or contribute
toward an anytime or receding horizon control law.

In the following subsections we describe our initial work
in this area with application to a simple spring-mass-damper
oscillator system to illustrate how the regulated system is
modeled and behaves.

A. Spring-Mass-Damper System
We consider a simple spring-mass-damper system as our

initial application. A damped oscillator system may be repre-
sented as

Σp :

{[
ẋp1
ẋp2

]
=

[
0 1
− k
m − c

m

] [
xp1
xp2

]
+

[
0
1

]
up , (1)

where xp1 is the position and xp2 is the velocity of the physical
system. For this system, throughout this paper, we have chosen
k = 39.4784, m = 1, and c = 1.2566. The eigenvalues for
the system are

λ1 = −0.6283 + 6.2517j

λ2 = −0.6283− 6.2517j.

Note that since all the eigenvalues are in the Left-Half Plane
(LHP) the system is stable. We can also deduce that the
system has a fairly slow response (observing that Re (λi)
is fairly close to 0), and the system will have moderate to
large oscillations (observing that Im (λi) is significantly larger
than Re (λi)). Because the system is stable, our simulations
in this paper will consist of the system response to the initial
conditions

xp (0) = xp0 =

[
1
0

]
.

The plot of the open loop response is shown in Figure 1.

Fig. 1. Open Loop Response

1) Closed-loop Continuous Controller: Even an inherently
stable system can be augmented with a feedback controller
that provides a more desirable response (e.g., faster response
time and/or less overshoot). For simplicity, and because we
are only driving the system to its equilibrium in the simple
simulations presented in this paper (i.e. xp1 = 0, xp2 = 0) we
design a proportional-derivative feedback controller. Let

up = −kp1xp1 − kp2xp2
be the control, where kp1 = 3.5, kp2 = 2 are gains chosen
for a good response. Simulating the system we obtain the plot
in Figure 2. Note that the response has improved significantly
relative to open-loop.
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Fig. 2. Closed-loop Response

2) Closed-loop Digital Controller: The underlying assump-
tion for the above closed-loop response time history (simulated
in MATLAB) is that the controller samples at an infinitely
fast rate. Of course in a real CPS it does not, nor does it
need to. An appropriate sampling rate is typically chosen
such that requirements for smoothness, stability, and tracking
are met. It is often recommended that the sampling rate, ωs,
be chosen such that ωs/ωb > 20, where ωb is the desired
bandwidth [5]. If using digital control theory we transform our
previous control up into a digital equivalent using ωs = 62.83
(which corresponds with a sampling period Ts = 0.1). We
obtain

up (k) = −kp1xp1 (k)− kp2xp2 (k) , (2)

where kp1 = −0.5537, kp2 = 1.7897. The response is shown
in Figure 3.

Fig. 3. Closed-loop Response of Digital System with Ts = 0.1

If a constant gain is held as sampling rate decreases, general
response and stability decreases. Digital control theory allows
us to analyze and design the controller using a fixed sampling
rate Ts.

B. Cyber System Model

We now turn to the development of a cyber model that can
be integrated into the physical system model. This prompts us
to consider the cyber system from the perspective of a physical
one. We desire a state, xc, that represents the “position” of the
cyber system, and whose derivative, ẋc, is the frequency. A
natural choice for xc is to think of instructions within the
control task being executed as a linear function of time from
the beginning of the task to the end. In reality, instructions
are executed as a function of discrete time. We assume clock
frequency sufficiently fast that such effects are negligible.

Definition 1: Let xc,max be the total number of instructions
within the control task and let f be the frequency of executing
instructions. Then the period of computing a control input u,

is

Tc =
xc,max
f

.

To simplify, we only consider the cyber system model Σc
defined on the period Tc. Then

xc = {xc = ft|0 ≤ t ≤ Tc} .

This, then, clearly implies that ẋc = f which is, indeed, a
natural velocity of the cyber system. Our cyber model is then

Σc :
{
ẋc =

[
0
]
xc +

[
1
]
f .

In Figure 4 we show a plot of xc as a function of time as
it would appear in a cyber system. In this scenario we leave
f = 1 GHz fixed in time. We now show xc as function of

Fig. 4. xc as a Function of Time

time with varying f . This is shown in Figure 5.

Fig. 5. xc as a Function of Time with Varying f

Clearly this system is not realizable in continuous time.
At each period, Tc, however, it is closely approximated by
a double integrator. Let xc1 be the “position” of the cyber
system, and let xc2 be the “velocity” or frequency. Then we
can represent the cyber system as

Σc :

{[
ẋc1
ẋc2

]
=

[
0 1
0 0

] [
xc1
xc2

]
+

[
0
1

]
uc (3)
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1) Quality of Control of the Physical System: To effect how
quickly a control input, u, is computed, a real-time scheduler
can adjust the control task to receive a larger (or smaller)
fraction of available CPU time. In our continuous CPS model,
this corresponds to adjusting the frequency, f , of the control
loop, and with our model this rate can be updated as frequently
as physical force is regulated, once per control loop cycle.
In this manner, our controller directly influences the quality
of control of the physical and computational states through
closed-loop regulation.

In this section, we examine how the quality of control of
the physical system is affected by changing the frequency
of the cyber system. As an example, it is instructive to
observe the effects of changing the sampling rate in a digital
system. In Figure 6 we show the response of the spring-
mass system for several sampling rates. The sampling rate,
in part, determines the bandwidth of the system, and hence to
which disturbances, noise, and reference commands the system
can respond. Robustness of the specific control law aside, the
faster the sampling rate, the more robust the system will be
(in general). As sampling rate decreases the system suffers
from increasing overshoot, slower rise times, and otherwise
degrades in performance.

Fig. 6. Effects of Varying Sampling Rate on the Response of the Spring-mass
System

To measure the quality of control, ρ, of the digital system
we propose the average error of the response to some initial
conditions over a range of sampling rates. Let ni = the number
of samples for the simulation of the system with period Ts,i.
Also define ep,i = xp,r−xp, where xp,r is the reference input.
Then

ρp (Ts,i) =

(
1

ni

ni∑
k=1

‖ep,i‖2
)−1

where ρp is the quality of control of the system. For our system
above, using the gains kp1 = −0.5537, kp2 = 1.7897, we vary
Ts from 0.001s to 0.4s. The results are in Figure 7.

Fig. 7. Quality of Control with Changing Frequency

We note that this curve appears to coincide with results from
other researchers in this area [21].

C. Adding a Cyber Control to the Physical System

Above we have described the addition of a computational
state to the continuous-time state vector traditionally used for
physical system control. In this section, we introduce a new
“virtual” control effector to enable the physical system to
depend upon the cyber-state. In this simulation, the physical
system is controlled via a closed-loop control law that includes
a dependence upon the cyber-state, however, the cyber-state is
controlled open loop. Computational frequency is a natural
control choice for the cyber system. Let γ be the commanded
sampling frequency of the cyber system, and let γr be the de-
sired reference for the sampling frequency. When we designed
the digital controller in Subsection III-A2 we selected our
sampling frequency as γ = 1/Ts = 10. Therefore, from the
perspective of the physical system, we would ideally choose
γr = 10. Let ep = xp − xr be the error between desired and
actual physical states. We now write the control law as

u = Kpepkγ

√
γ

γr
, (4)

where Kp =
[
−0.5337 1.7897

]
from above and kγ = 1.73

is a tuning gain on the γ-term. Using the same mechanism as
in Subsection III-B1, we simulate the system over the same
range of frequencies. Figure 8 shows the results.

Fig. 8. Quality of Control with Changing Frequency

In this simulation the controller in (4) surpasses the quality
of the controller from (2). The largest improvement in quality
comes at the extremes of the frequency range, but in inter-
mediate frequencies the benefit is still apparent. The above
result illustrates how regulation of the control loop rate can in
fact improve performance of the physical system. However, we
note that the feedback law proposed above is nonlinear. Below
we propose an augmented model to which linear analysis and
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optimal control can be applied thus providing the coupling and
closed-loop regulation of both the cyber and physical states.

IV. COUPLED CPS MODEL

In this section we introduce a linear CPS system and
feedback control law, and show how it, together with a hybrid
automaton, can properly represent the system of interest. We
also describe a few details of our implementation in Matlab.

A. Continuous Dynamics

We can augment the physical model Σp in (1) with Σc in (3)
to obtain a new continuous model representing the dynamics
of both the cyber and physical portions of the system.

ẋp1
ẋp2
ẋc1
ẋc2

 =


0 1 0 0
− k
m − c

m 0 0
0 0 0 1
0 0 0 0



xp1
xp2
xc1
xc2

+


0 0
1 0
0 0
0 1

[upuc
]

where up and uc are the control inputs for the physical and cy-
ber systems respectively. This system is unstable as seen from
Σc already in Jordan form. However, it is controllable, and
therefore stabilizable. In this model, the xc1 state representing
the cyber “position” is not particularly meaningful outside of
the dynamics equations. The physical system is affected by
xc2 through the sample-hold mechanism inherent in a CPS.
As a result, the coupling between the two systems is critical
for proper co-regulation. We describe this coupling in part in
the implementation Subsection IV-C, and in part in the LQR
controller formulation in Subsection V-A.

B. Hybrid System Model

The system Σ = [ΣpΣc] can be modeled as a hybrid
automaton as shown in Figure 9.

Fig. 9. Hybrid System Model

During each cycle, input vector u = [up, uc]
T is constant

since the modeled computations are required before a new
update is available. At the end of each cycle, computational
state “jumps” to zero, and input vector u is updated to its
new value. The model shown here is preliminary but provides
insight into how cyber and physical states can be integrated
into a single continuous state-space representation that allows

both cyber and physical states to be regulated in the same
framework.

C. Implementation Details

The hybrid automaton in Figure 9 can be implemented to
provide a simulation of the CPS. In our implementation, at
each cycle, we use a 4th-order Runge-Kutta variable time
step ordinary differential equation solver. As xc2 (control loop
frequency) changes according to the CPS system dynamics and
desired reference frequency the length of a cycle, and hence
range of integration, varies and appropriately captures the
changing dynamics of the cyber system. The zero-order hold
nature of the CPS is captured by holding the input constant
until the next cycle. Additionally, a cyber system cannot have
negative state values, although this would be allowed by our
continuous state model. To address this, we set xc1 = 0 in our
simulation as it currently has no bearing on the CPS due to
the zero-order hold, and we artificially restrict xc2 to not fall
below some reasonable threshold. Although this lower limit on
xc2 introduces a nonlinearity into the system, it is analogous
to saturation in a linear system and can be analyzed in that
way. In our following simulation we limit xc2,min = 3.33 as
that is the frequency at which the spring-mass system response
approaches instability.

To summarize we present the following pseu-
docode:

while t < tmax do
u=-K*xprev
tspan=[tprev, tprev + xc2]
[t,x]=ode45(@CPSmodel,tspan,xprev)
tall=[tall;t]
xall=[xall;x]

end while

V. SIMULATIONS

In this section we present results from a coupled LQR
controller design for our linear CPS to demonstrate the ability
to apply traditional control techniques to the coupled system
model.

A. LQR Formulation

We designed a traditional infinite horizon LQR controller
which minimizes

J =

ˆ (
xTQx + uTRu

)
dt

We add an integrator state to the system and the LQR gain is
solved for the augmented system[

ė
ẋ

]
=

[
0 C
0 A

] [
e
x

]
+

[
0
B

] [
up
uc

]
C =

[
1 0 0 0
0 0 1 1

]

A =


0 1 0 0
− k
m − c

m 0 0
0 0 0 1
0 0 0 0
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Case Ts,0 Ts,r xc2,0 xc2,r

1 0.005s 0.0125s 200Hz 80Hz
2 0.3s 0.05s 3.33Hz 20Hz
3 0.02s 0.05s 50Hz 20Hz

4 0.025s 0.05s 40Hz 20Hz
0.1s @t=4.7s 10Hz @t=4.7s

TABLE I
TEST CASES

e =

[
xp1 − xp1,r
xc2 − xc2,r

]
where xp1,r and xc2,r are the reference inputs for the physical
and cyber system respectively. Additionally, while creating this
controller, we introduced a small amount of coupling between
the cyber and physical systems by forming

Q =

 q1,1 q1,2
q2,1 q2,2

0


In choosing appropriate Q and R matrices we faced a

tradeoff. The double-integrator representing the cyber system
can have fast rise time as would be expected in a cyber
system. That is, if we desire a different frequency we can
set it immediately (ignoring transmission and context switch-
ing/scheduling delays). This corresponds with a large Q and
small R. However, the double integrator will overshoot the
reference frequency, a condition that worsens as proportional
gains are increased. If we choose small Q and large R we can
make a smooth transition with little to no overshoot. This of
course is undesirable if the cyber system must rapidly respond
to stabilize the physical system. Our chosen values of Q and
R in the simulations shown below place higher importance on
response time since we artificially limit the lower bound on
xc2.

B. Results

We present plots and analysis of four test cases given in
Table I. Ts,0 is the initial sampling rate of the system and
corresponds to xc2,0. Similarly, Ts,r is the reference sampling
rate and corresponds to xc2,r. In all cases we drive the physical
system to zero. Each of the following test cases presents
a comparison of the same LQR controller, one simulated
continuously, and one simulated as a CPS. Note that in the
CPS system the control loop rate state is used in real-time by
the software to control the simulator’s control output update
rate as described above.

In the first case the initial frequency, xc2,0 is over twice
as high as xc2,r. However, both values are sufficiently fast
with respect to the destabilization frequency that the system
suffers no significant loss of quality of control due to the co-
regulation of physical force and control loop rate. Indeed, as
seen in Figure 10 the physical xp1, xp2 and cyber state xc2
very closely align.

In the next case, shown in Figure 11, the initial frequency
is at the lower stability threshold xc2,min value, a condition
that might occur in processing overload or critical energy

Fig. 10. Simulation for Case 1. xc2,0 = 200Hz, xc2,r = 80Hz

conservation situations. To accurately respond, the CPS will
push the cyber system faster to achieve higher quality of
control of the physical system. Early in the above simulation
xc2 is slow and the system does not have good quality of
control resulting in the high transients. However, by t = 2s the
system has sped up sufficiently and can provide high quality
of control to drive the physical states to zero as designed.
Additionally, xc2 approaches its nominal value xc2,r = 20Hz
once the system responds to this faster reference command. A
closer look at the xc2 plot reveals that xc2 actually takes two
cycles (at 0.3 s each) to respond. Due to the slow sampling
rate, the feedback controller integral error term needs both
cycles to obtain a control input uc that pushes xc2 higher.

In case three we approach xc2,r = 20Hz from a higher fre-
quency. The results, shown in Figure 12, show how the cyber
system, xc2, overshoots the target, approaching xc2,min which
starts to destabilize the system, due to our LQR preference for
fast response time with sacrifice in overshoot. Within a cycle
the controller drives xc2 higher, stabilizing the system, and
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Fig. 11. Simulation for Case 2. xc2,0 = 3.33Hz, xc2,r = 20Hz

ultimately driving the physical states to zero, their reference
values.

In the final case we illustrate the impact of a single step
disturbance (in physical velocity) followed by a changing
control loop rate reference command. First, at time t = 4.5s
we inject a nontrivial velocity impulse into the physical
system. This requires that the controller regulate the physical
states back to zero over time. Then, closely following at
t = 4.7s we command the cyber system to a lower frequency
xc2,r = 10Hz so that the system has to deal with the
disturbance while attempting to move to a lower frequency.
The plot is shown in Figure 13. While the CPS system is
not as fast to respond as the continuous controller due to
its low update frequency, it is still effective in regulating
the disturbance. Because xc2 is not near the threshold for
instability, the CPS is able to respond with sufficient speed.
Note that xc2 in the CPS simulation almost exactly tracks
the continuous controller. This example of disturbance-induced
co-regulation is promising and consistent with our expectations

Fig. 12. Simulation for Case 3. xc2,0 = 50Hz, xc2,r = 20Hz

that quality of control will be high so long as we do not
approach the destabilization control loop rate.

VI. CONCLUSIONS

We have presented a novel CPS representation in which
physical and computational systems are represented as a single
continuous multi-variable linear system. This representation
enables co-regulation of physical and computational state to
optimally balance computational load with physical system
stability and disturbance rejection at each control loop cycle. A
simple 2nd-order oscillator system is used to illustrate a “phys-
ical” model, while a single “control loop rate” computational
state and virtual control “knob” are used for the “cyber” model.
We have developed a simulation of our CPS and have shown
that our proposed model represents the expected behavior of
the corresponding CPS.

Much work remains before the proposed model will be of
practical use as a complement to existing feedback scheduling
and NCS strategies. First, although our CPS is “coupled” in
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Fig. 13. Simulation for Case 4. xc2,0 = 40Hz, xc2,r = 20Hz then xc2,r =
10Hz at t = 4.7s while responding to disturbance.

that physical state errors influence control loop rates, and con-
trol loop rate influences applied physical force, this coupling
is very weak in our current model, appearing only through
low-gain feedback in our LQR formulation. Exploration of
that coupling is needed to understand more precisely how
the effects of sampling can be effectively utilized by the
proposed continuous model. Further, LQR is only one of
several possibilities for a feedback controller. Other options
need to be explored. Finally, this work needs to be extended to
more complex as well as marginally-stable or unstable physical
systems.

Our long-term goal is to adapt these methods to challenges
in air transportation and unmanned aircraft surveillance ap-
plications. The proposed next-generation airspace architecture
encompassing air transportation and unmanned operations will
rely on decentralized decision-making. Decentralization in turn
implies increased demand for onboard computation. Partic-
ularly for surveillance operations in which high-bandwidth

sensor data factors into the mission, computational and com-
munication requirements will place ever-higher demands on
resources. The co-regulation of cyber and physical controls
will therefore be critical to overall system optimization.
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