
Exact Coloring of Real-Life Graphs is Easy

Olivier Coudert

Synopsys, Inc., 700 East Middle�eld Rd.

Mountain View, CA 94043

Abstract

Graph coloring has several important applications in
VLSI CAD. Since graph coloring is NP-complete, heuris-
tics are used to approximate the optimum solution. But
heuristic solutions are typically 10% o�, and as much as
100% o�, the minimum coloring. This paper shows that
since real-life graphs appear to be 1-perfect , one can in-
deed solve them exactly for a small overhead.

1 Introduction

Coloring a graph consists of assigning a color to ev-
ery vertex so that no two vertices linked by an edge
have the same color. The associated optimization
problem consists of minimizing the number of colors.
Graph coloring is used in microcode optimization [15,
pp. 168{169], scheduling [8, pp. 248{252], resource bind-
ing and sharing [8, pp. 277{294] [15, pp. 230{233],
(un)constrained state encoding of (a)synchronous �nite
state machines [15, pp. 323{327], and planar routing [6].
Other non-CAD applications include code compilation,
frequency assignment, and network optimization. Be-
cause graph coloring is NP-complete, heuristics are used
to produce an approximate solution.

This paper shows that since real-life coloring instances
appear to be 1-perfect , one can solve them exactly in no
more time than heuristics, while heuristics are on average
10% o�, and as much as 100% o�, from the optimum.

This paper is organized as follows. Section 2 gives
some de�nitions and notations. Section 3 presents the
well-known sequential coloring algorithm, and pinpoints
its main weakness. Based on experimental evidence, it
then explains why solving the maximumclique problem is
a decisive factor when coloring real-life graphs. Section 4
introduces original pruning techniques to solve maximum
clique. Section 5 gives experimental results. It shows
that all the real-life application instances we had access
to (> 600) are solved exactly in a few seconds.

Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided
that copies are not made or distributed for pro�t or commercial
advantage, the copyright notice, the title of the publication

and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 .. $3.50

Figure 1: Max. clique, max. independent set, min. col-
oring, and min. clique partition.

2 Notations

A simple (i.e., undirected and self-loop free) graph G
is denoted by (V (G); E(G)), where V (G) is its set of
vertices, and E(G) its set of edges. We denote by N (v)
the set of neighbors of a vertex v in a given graph G, i.e.,
N (v) = fv0 2 V (G) j fv; v0g 2 E(G)g. The degree of a
vertex is its number of neighbors, jN (v)j. Given a set of
vertices V , we will often use the notation G�V to denote
the subgraph induced by (V (G) � V;E(G)). When the
context is not ambiguous, we will denote a subgraph by
its set of vertices.

In the sequel, n is the number of vertices, and k the
number of colors used by a coloring. The saturation num-
ber of a vertex v is the number of colors used by its neigh-
bors (i.e., the number of forbidden colors for v). We say
that a color is saturated if it cannot be used anymore to
extend a partial coloring.

A clique is a set of vertices that are all linked to each
other by edges. An independent set is a set of vertices
that are not connected by any edge. Partitioning the set
of vertices into cliques is nothing but coloring the com-
plementary graph. Fig. 1 illustrates these NP-complete
problems [9]. An independent set is maximal i� it is not
a proper subset of another independent set.

Let (G) be the size of the maximum clique of G, and
�(G) be the chromatic number of G, i.e., the minimum
number of colors needed to color G. Since every vertex of
a clique must be assigned a di�erent color, (G) � �(G).
When (G) = �(G), we say that G is 1-perfect1.

3 Exact Coloring

Coloring a graph can be done in two ways. One can
determine a color class one at a time: this consists of enu-
meratingmaximal independent sets. Or one can color the
vertices one at a time: this is called sequential coloring.

1
G is perfect i� every subgraph of G is 1-perfect. Exact coloring

of perfect graphs is polynomial [10], but much too slow in practice.

1

function SC (G);
C a clique of G;
k 0;
foreach v 2 C f /* color the clique */
k k+ 1;
color v with k; /* a color is an integer � 1 */

g
return SCrec(G; k; jV (G)j+ 1; jCj);

/* G is a graph partially colored, using k colors, and */
/* best is the chromatic number found so far */
function SCrec(G;k; best; lb);
if G is entirely colored return k; /* new best coloring */
v an uncolored vertex of G;
for (c 1; c � min(k+ 1; best � 1); c c+ 1) f

/* for each potential color */
if (8v0 2 N(v); color(v0) 6= c) f /* c is non-conicting */

color v with c;
best SCrec(G;max(c; k); best; lb);
uncolor v;
if lb = best return best; /* (G) = �(G): abort */

g
g
return best;

Figure 2: SC , the exact sequential coloring.

Figure 3: Sequential coloring.

This section discusses the sequential coloring algo-
rithm. We pinpoint the main weakness of this algorithm,
and explain why the maximum clique problem is a key
player when coloring real-life graphs.

3.1 Sequential Coloring

Fig. 2 outlines the exact sequential coloring algorithm
SC [5]. It �rst generates a clique, which is used both as a
lower bound and as a starting point for the coloring, since
every vertex of the clique must be assigned a di�erent
color and does not need to be recolored afterwards. Then
uncolored vertices are picked one at a time, and each is
assigned a color (an integer � 1) non-conicting with its
neighbors' colors.

An e�cient heuristic, the well known DSATUR al-
gorithm [4], consists of picking the vertex that has the
largest saturation number, and in breaking ties with the
largest degree in the uncolored graph. The idea is to
choose the vertex that is the most \di�cult" to color, and
that propagates as many constraints as possible. Fig. 3
(from left to right) shows how a simple graph is sequen-
tially colored with this heuristic.

The reader is referred to [16] for an extensive descrip-
tion of some improvements and variations of sequential
coloring (e.g., non-sequential backtracking [4, 18]).

Figure 4: Three non 1-perfect graphs: (G) < �(G).

3.2 Why is Sequential Coloring Hard?

The way the lower bound is used in SC is largely inef-
fective. As a comparison, consider a branch-and-bound
algorithm that solves maximum clique (e.g., Fig. 5).
Based on the inequality (G) � �(G), a coloring is com-
puted at each recursion and is used as an upper bound
to prune the search tree of maximum clique. Conversely,
a clique is a lower bound on the chromatic number of
a graph. But the analogy ends here: a clique does not
give any valuable information on a graph partially col-
ored with unsaturated colors. Indeed, quickly estimat-
ing a lower bound on the number of colors necessary to
optimaly complete an unsaturated coloring is an open
problem.

SC uses several unsaturated colors at the same time
(e.g., the two gray colors used in the middle graph of
Fig. 3), and thus has only one static lower bound which
is not reevaluated at each recursion, unlike \standard"
branch-and-bound algorithms. We therefore have the fol-
lowing fact (e.g., [13, pp. 220]):

Fact 1 If (G) < �(G), then the lower bound does not
inuence the length of the computation at all, because the
search must exhaustively enumerate all potential (unsuc-
cessful) colorings that would improve on �(G), which can
take exponential time.

Let us face the second fact ([2, 3], [13, pp. 243{247]):

Fact 2 Almost all graphs G satisfy:

(G) < 4 logn <
n

3 logn
< �(G):

This shows an actual large gap between (G) and �(G).
Combined with Fact 1, this leaves little hope to address
exact coloring in general.

3.3 Why is Maximum Clique Important?

However, Fact 3 gives a di�erent perspective on exact
graph coloring from the practical point of view:

Fact 3 All the practical instances we found (more than
600 real-life examples in scheduling, register allocation,
planar routing, and frequency assignment) are 1-perfect
graphs, i.e., (G) = �(G).

For instance, the graph of Fig. 3 is 1-perfect. Fig. 4
shows non 1-perfect graphs (the one on the right is
myciel3, see Section 5).

2

functionMaxClique(G);
return MaxCliqueRec(G;�;�;+1);

/* G is the remaining graph, C is the clique under con- */
/* struction, and best is the largest clique found so far. */
functionMaxCliqueRec(G;C; best;ub);
if G is empty return C; /* new best solution */
fI1; : : : ; Ikg a coloring of G;
ub min(ub; jCj+ k); /* compute an upper bound */
if ub � jbestj return best; /* prune */
v a maximum degree vertex of G;
G1 graph induced by N(v); /* force v in the clique */
best MaxCliqueRec(G1; C [fvg; best;ub);
if ub = jbestj return best; /* prune */
G0 graph induced by V (G)� fvg; /* exclude v */
return MaxCliqueRec(G0; C; best;ub);

Figure 5: Maximum clique.

Finding a maximum clique is tremendously impor-
tant when coloring 1-perfect graphs, since the search is
aborted as soon as one �nds a coloring whose cardinality
is (G). If the clique is not maximum, then Fact 1 ap-
plies, and the algorithm will not �nd the optimum solu-
tion and/or will not terminate within a reasonable time.
Fact 3 makes maximum clique as important in practice
as coloring itself.

4 Maximum Clique

This section shows how to solve maximum clique, and
proposes an original pruning technique that drastically
reduces the search space.

Fig. 5 shows a simpli�ed branch-and-bound algorithm
for solving maximum clique. One can add the following
improvements:

(a) When jCj+ jV (G)j � jbestj, the recursion is pruned,
because it is impossible to �nd a larger clique.

(b) Every vertex v such that v:degree < jbest j�jCjmust
be removed from the graph, because it cannot be a
member of a larger clique.

(c) Every vertex v such that v:degree � jV (G)j�2 must
be put in the clique under construction, since exclud-
ing it cannot produce a larger clique.

(d) More generally, a vertex v such that V (G) � N (v)
is an independent set must be put in the clique un-
der construction, since excluding it cannot produce
a larger clique.

(e) One can force the choice of at least 2 non-neighbors
of v in G0. In other words, the maximum clique of
G is either

fvg [MaxClique(N (v));

or

fv1; v2g [MaxClique(N (v1) \N (v2));

where v1; v2 2 V (G)� N (v) � fvg; and v2 2 N (v1):

Iq

Iq+1 Iq+2 I

1I

k

2I

...

...
v

N(v)

Figure 6: q-colorable vertices can be removed.

Rules (a)-(c) are trivial to implement. Rule (d) is in
O(jV (G)j2), which introduces too large an overhead com-
pared to the practical gain. Rule (e) is not costly, but is
more delicate to implement.

The following result presents an original pruning
method which can be e�ciently implemented, and which
dramatically reduces the search space.

Theorem 1 (q-color pruning) Let G be the graph at
some point of the recursion, C the clique under construc-
tion, and best the current best solution. Let fI1; : : : ; Ikg
be a k-coloring obtained on G. Then every vertex v that
can be colored with q colors, where q > jCj � jbestj + k,
can be removed from the graph.

Proof. Fig. 6 shows the k-coloring of G, i.e., the parti-
tion of the vertices ofG into k independent sets I1; : : : ; Ik.
Assume that the vertex v can be colored with q colors.
Without loss of generality, this means that Ij [fvg is an
independent set for 1 � j � q. Let C1 be the largest
clique that can be obtained by forcing v in C. We then
obtain:

jC1j = jC [fvg [MaxClique(N (v))j (1)

= jCj+ 1 + (N (v)) (2)

� jCj+ 1 + �(N (v)) (3)

� jCj+ 1 + k � q (4)

� jbestj (5)

Inequality (4) holds because N (v) is necessarily a subset

of
Sk

j=q+1 Ij, and thus fIq+1; : : : ; Ikg is a valid (k � q)-

coloring of N (v). Inequality (5) holds because of the
assumption on q. Since one cannot �nd a larger clique
by selecting v, one can remove it from the graph.

Even if k is too large (i.e., jCj+ k > jbestj) to produce
a \normal" pruning, Theorem 1 shows that q-colorable
vertices yield unsuccessful branches, and can be removed.
This reduces the number of choice points, but the ef-
fectiveness of this pruning technique is its snowball ef-
fect. Removing vertices gives more opportunities to ap-
ply rules (a)-(d). Vertices that are removed are also un-
colored, which frees some colors for their neighbors, which
increases their own q's, which infers more removal. Re-
moving vertices can empty an independent set, which
decreases k, which loosens the constraint on q and pro-
duces more removal. Eventually k becomes small enough
to prune the recursion.

3

examples without with
name jVj jEj #back CPU #back CPU

school1 nsh 385 16710 14 2414 8:16 338 0:92

keller4 171 9435 11 30047 51:5 4964 4:87
sanr200 0.7 200 13868 18 206811 488:4 24780 23:0
brock200 1 200 14834 21 777895 2184:7 100900 112:9

san200 0.7 2 200 13930 18 12996 93:2 696 1:66
p hat300-2 300 21928 25 57761 481:0 1211 4:21
hamming8-4 256 20864 16 4147 26:3 1 0:18
san200 0.9 1 200 17910 70 11236823 17h 30mn 507 5:61
MANN a27 378 70551 126 � > 2 days 3451 98:4

For each graph, we give: its number of vertices (jVj), its number of edges (jEj), its clique number (), the number of backtracks
(#back) performedto solve maximumclique, and theCPU time in seconds on a 60 MHz SuperSparc (85.4 SpecInt). without
is the \standard" branch-and-bound algorithm shown in Fig. 5, and with is the improved version described in Section 4.

Table 1: Solving Maximum Clique.

A notable aspect of this pruning technique is its no
gain/no cost aspect. Using the SC algorithm without
backtrack to �nd the k-coloring, the number of colors
that can be used to color a vertex v is nothing but v's
number of unconstrained colors, i.e., k minus v's satura-
tion number, which is computed in O(1). Using a prior-
ity queue that keeps the vertices in decreasing saturation
number, one can test for the removal of the vertices from
the tail of the queue up to its head. The �rst failure of
the test indicates that one can stop the whole pruning
procedure. Thus if no pruning is possible, the overhead
is in O(1). If r vertices can be removed (the last r ver-
tices of the queue), the overhead is in O(r � jV (G)j) for
a potentially exponential bene�t.

Experience shows that thanks to this original pruning
technique, the search space is reduced by several orders
of magnitude, drastically speeding up maximum clique
(Table 1).

On real-life examples, this pruning technique quickly
leads the algorithm to a maximum clique. Where one
previously needed about 1000 backtracks, and up to
10000 backtracks, less than 10 backtracks are now neces-
sary to �nd (not necessarily prove) an optimum solution.

5 Experimental Results

This section presents experiments done with real-life
applications, combinatorics instances, and (arti�cial2)
hard examples. The planar routing instances come
from [6]. The other instances come from [7].

5.1 Heuristic Coloring

We compared three widely used coloring heuristics3,
H1 , H2 , and H3 . H3 consists of forbidding any back-
track in the sequential coloring SC .

2Mycielski graphs [17] are di�cult to color because their clique
number is 2, while their chromatic number increases in problem
size. Leighton graphs [14] are di�cult to color because their opti-
mum coloring is hidden among many suboptimal solutions.

3Graph coloring is not polynomially approximable within

n
1=7�� for any � > 0 [1]. The best known approximation ratio

is in O(n(log logn)2=(logn)3) [11].

function ColorWithIndSet(G);
I �;
while G is not empty f
I a maximal independent set of G;
I I [fIg;
G graph induced by V (G)� I;

g
return I;

Figure 7: Heuristic coloring with independent sets.

function FindIndSetH1(G);
I �;
while G is not empty f
v vertex of minimum degree;
I I [fvg;
G graph induced by V (G)� fvg �N(v);

g
return I;

function FindIndSetH2(G);
I �;
while G is not empty f
if I = �
v vertex of maximum degree;

else

v vertex of max. removed edges, then min. degree;
I I [fvg;
G graph induced by V (G)� fvg �N(v);

g
return I;

Figure 8: Color class for heuristics H1 and H2 .

Fig. 7 shows a heuristic coloring algorithm. It consists
of adding a maximal independent set I (i.e., a saturated
color class) to a coloring I under construction, removing
I from G, and iterating this process until G is empty.
Heuristic H1 consists of using a greedy algorithm de-
signed for maximum independent set (Fig. 8) to produce
the maximal independent sets. H1 is guaranteed to �nd
a coloring within O(n= logn) of the optimum [12].

Instead of looking for a large maximal independent
set, one can look for a maximal independent set that
minimizes the number of edges connected to uncolored

4

name jVj jEj � H1 H2 H3

DSJC125.1 125 736 4 5 8 7 6

DSJR500.1 500 3555 12 12 16 13 12

MANN a9 45 918 16 18 18 20 19
R1000.1 1000 14378 20 20 23 20 20

R125.5 250 3838 36 36 51 39 38

R250.1c 250 30227 64 64 72 68 65

c-fat200-1 200 1534 12 12 15 13 15
d2esp.i.1 319 8534 61 61 63 61 63
ex3a 44 176 10 10 11 11 10

ex3c 54 336 12 12 13 13 12

exam1 200 17124 126 126 137 127 126

exam2 250 26081 141 141 154 147 142

exam3 300 36801 162 162 177 164 162

at1000 50 0 1000 245000 14 50 104 110 113
at300 20 0 300 21375 11 20 40 41 42
fpsol2.i.2 451 8691 30 30 35 30 30

le450 15d 450 16750 15 15 31 25 25

le450 25a 450 8260 25 25 31 26 25

le450 25c 450 17343 25 25 38 30 28

le450 5c 450 9803 5 5 9 9 11

le450 5d 450 9757 5 5 8 10 11
queen6 6 36 290 6 7 8 9 9

queen7 7 49 476 7 7 10 10 10

queen8 8 64 728 8 9 12 11 13
queen9 9 81 2112 9 10 13 12 12

queen11 11 121 3960 10 11 16 16 14

queen13 13 169 6656 13 13 18 18 17

san200 0.7 2 200 13930 18 18 20 26 23
sgelq2.i.2 182 3254 26 26 29 26 28
school1 385 19095 14 14 36 30 17

school1 nsh 352 14612 14 14 32 25 26

average 313 16710 28:5 30:2 38:5 35:7 34:8

For each graph, we give: its number of vertices (jVj), its num-

ber of edges (jEj), its clique number (), its chromatic number
(�), and the number of colors obtainedwith heuristicsH1 , H2 ,

and H3 . Heuristics are 10% o�, and as much as 100% o�, the
optimum solution.

Table 2: Heuristic coloring.

vertices (Fig. 8) [14]. This heuristic, H2 , reduces the
number of conicts with the uncolored vertices so that
less color classes are needed to complete the coloring.

Table 2 compares these three heuristics. Clearly, H2
and H3 are better than H1 , but none of them wins con-
sistently. It happens that there is a large gap between the
heuristic colorings and the exact solution, even on real-
life examples, e.g., the scheduling problem school1 nsh.

5.2 Exact Coloring

Table 3 gives the performance of exact coloring on real-
life application instances (selected among more than 600
examples), and on combinatorics, hard, and random ex-
amples. The coloring algorithm is the sequential coloring
described in Section 3.1, using the clique produced by al-
gorithm of Section 4 in no more than 10 backtracks.

The combinatoric, arti�cial, and random examples are
more di�cult, especially when the graph is not 1-perfect:
in that case, the algorithm has to enumerate all the op-
timum colorings before terminating, which can be expo-

nential (Fact 1 of Section 3.2).

All the 600 real-life examples are solved exactly, even
the large graphs (> 6000 nodes, > 500000 edges). This
is because they are all 1-perfect, and because the clique
algorithm introduced in Section 4 quickly �nds the op-
timum lower bound. A way of comparing these results
with the state-of-the-art consists of assuming that one
�nds a suboptimum clique (which is often the case with
\standard" heuristics). Assuming that one only �nds a
clique of size (G) � 1, most of the examples cannot be
solved in less than one hour, and many of them remain
unsolved after 2 days (e.g., the scheduling examples and
most of the resource allocation problems).

6 Discussion & Conclusion

This paper has explained how to improve on graph col-
oring, which is a key application in scheduling, resource
allocation, constrained encoding, multi-layer topological
routing, etc. When a graph is 1-perfect, and providing
that one �nds a maximum clique, the coloring is easy.
Despite our e�ort, we did not �nd a real-life example
that is not 1-perfect. Based on this experimental fact,
and thanks to an improved maximum clique computa-
tion algorithm, a sequential coloring algorithm can solve
all our real-life instances exactly in a matter of seconds.

This tends to show that, in practice, and in particu-
lar for CAD applications, one can a�ord to solve graph
coloring exactly: for roughly the same CPU time, one is
rewarded with an optimum result, while heuristic solu-
tions are typically 10% o�, and as much as 100% o�, the
minimum coloring.

References

[1] M. Bellare, O. Goldreich, M. Sudan, \Free bits, PCPs
and non-approximability { towards tight results", Proc.
of 36th Ann. IEEE Symp. on Foundations of Comput.

Sci., pp. 422{431, 1995.

[2] B. Bollob�as, P. Erd�os, \Cliques in Random Graphs",
Math. Proc. Camb. Phil. Soc., 80, pp. 419{427, 1976.

[3] B. Bollob�as, \The Chromatic Number of Random
Graphs", Combinatorica, 8-1, pp. 49{55, 1988.

[4] D. Br�elaz, \New Methods to Color Vertices of a Graph",
Comm. of the ACM, 22-4, pp. 251{256, 1979.

[5] J. R. Brown, \Chromatic Scheduling and the Chromatic
Number Problem", Management Sci., 19, pp. 456{463,
1972.

[6] J. Cong, M. Hossain, N. A. Sherwani, \A Provably Good
Multilayer Topological Planar Routing Algorithm in IC
Layout Designs", IEEE Trans. on CAD, 12-1, pp. 70{78,
Jan. 1993.

[7] ftp://dimacs.rutgers.edu/pub/challenge/graph/bench-
mark/, benchmark for graph coloring and clique, 1993.

[8] D. Gajski, N. Dutt, A. Wu, S. Lin, High-Level Synthesis,
Kluwer Ac. Pub., 1992.

[9] M. R. Garey, D. S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP{Completeness, Free-
man, 1979.

5

name jVj jEj � #back CPU

scheduling

school1 nsh 352 14612 14 14 11 0:25
school1 385 19095 14 14 12 0:41

register allocation

mulsol.i.1 197 3925 49 49 2 0:10
interp.i.1 253 5039 39 39 3 0:15

d2esp.i.1 319 8534 61 61 1 0:16
sgemm.i.1 439 8458 55 55 0 0:17
fpsol2.i.1 496 11654 65 65 4 0:27
slahr2.i.2 557 11535 29 29 7 0:39
spbtrf.i.2 823 16250 30 30 4 0:67
conduct.i.1 1185 27013 54 54 7 1:33
slasbr.i.1 1752 72265 87 87 2 3:70

slaein.i.1 2337 71600 73 73 2 4:93
inidat.i.1 2408 114388 136 136 4 15:4
deseco.i.1 2826 86688 117 117 3 12:4

h2d.i.1 3072 228151 171 171 3 19:8
twldrv.i.1 4905 338709 227 227 3 37:5
fpppp.i.1 5439 543223 212 212 1 45:5
wanal1.i.1 6760 190975 71 71 2 39:6

planar routing

burs 24 133 9 9 1 0:01

ex1 21 77 7 7 1 0:01
ex3a 44 176 10 10 1 0:01
ex3b 47 283 9 9 1 0:01
ex3c 54 336 12 12 0 0:02

ex4b 54 298 11 11 0 0:02
ex5 64 405 9 9 1 0:01
ex5b 64 427 10 10 0 0:02
deut 72 763 16 16 1 0:02
exam1 200 17124 126 126 2 0:46

exam2 250 26081 141 141 10 0:96
exam3 300 36801 162 162 6 1:45

frequency assignment

man7 548 3250 10 10 0 0:11
man8 858 4023 10 10 0 0:30

name jVj jEj � #back CPU

queen graphs

queen5 5 25 160 5 5 4 0:01
queen6 6 36 290 6 7 897 0:03
queen7 7 49 476 7 7 1852 0:07
queen8 8 64 728 8 9 1824457 38:69
queen9 9 81 2112 9 10 561222078 5h 12mn

Mycielski transformation based graphs

myciel3 11 20 2 4 23 0:01
myciel4 23 71 2 5 539 0:02
myciel5 47 236 2 6 191488 4:17
myciel6 95 755 2 7 3287401951 35h 22mn

Leighton graphs

le450 25a 450 8260 25 25 0 0:13
le450 25b 450 8263 25 25 0 0:11
le450 5c 450 9803 5 5 232 3:04
le450 5d 450 9757 5 5 171271 31:40

misc: graphs

MANN a9 45 918 16 18 60 0:08
hamming6-4 64 704 4 7 1517 0:20

c-fat200-1 200 1534 12 12 325 0:43
c-fat200-2 200 3235 24 24 0 0:41

c-fat500-1 500 4459 14 14 1 1:72
san200 0.7 2 200 13930 18 18 42377 16:52

c-fat500-2 500 9139 26 26 1 2:63
c-fat500-5 500 23191 64 64 1 5:46
c-fat500-10 500 46627 126 126 2 4:35

random graphs

DSJC125.1 125 736 4 5 2512 0:16
DSJR500.1 500 3555 12 12 0 0:12
R125.1 125 209 5 5 0 0:02

R125.5 250 3838 36 36 41167 2:60
R125.1c 125 7501 46 46 0 0:13

R250.1 250 867 8 8 0 0:05
R250.1c 250 30227 64 64 15 2:13

R1000.1 1000 14378 20 20 0 0:54

For each graph, we give: its number of vertices (jVj), its number of edges (jEj), its clique number (), and its chromatic
number (�). Note that all the real-life examples are 1-perfect. We give the number of backtracks (#back) performed to solve

the minimum coloring. The CPU time is given in seconds on a 60 MHz SuperSparc (85.4 SpecInt), and includes: reading the
graph description, building the internal data structure, solving the minimum coloring problem, and �nally freeing the memory.

Table 3: Coloring of real-life application graphs (left), and of hard arti�cial graphs (right).

[10] M. Gr�oetschel, L. Lov�asz, A. Schrijver, \The Ellipsoid
Method and its Consequences in Combinatorial Opti-
mization", Combinatorica, 1, pp. 169{197, 1981.

[11] M. M. Halld�orsson, \A still better performance guar-
antee for approximate graph coloring", Inform. Process.
Lett., 45, pp. 19{23, 1993.

[12] D. S. Johnson, \Worst-Case Behavior of Graph-Coloring
Algorithms", Proc. 5th Southeastern Conf. on Combi-
natorics, Graph Theory, and Computing, pp. 513{528,
Winnipeg, 1974.

[13] L. Ku�cera, Combinatorial Algorithms, Adam Hilger,
1990.

[14] F. T. Leighton, \A Graph Coloring Algorithm for Large
Scheduling Problems", J. Res. Nat. Bur. Standards, 84,
pp. 489{506, 1979.

[15] G. D. Micheli, Synthesis and Optimization of Digital Cir-
cuits, McGraw-Hill, 1994.

[16] C. A. Morgenstern, Algorithms for General Graph Col-

oring, Ph.D. thesis, Department of Computing Science,
University of New Mexico, Albuquerque NM, 1990.

[17] J. Mycielski, \Sur le Coloriage des Graphes", Colloq.
Math., 3, 1955

[18] J. Peem�oller, \A Correction to Br�elaz's Modi�cation of
Brown's Coloring Algorithm", Comm. of the ACM, 26,
pp. 595{597, 1983.

6

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

