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This paper addresses the design of reactive real-time embedded
systems. Such systems are often heterogeneous in implementa-
tion technologies and design styles, for example by combining
hardware application-specific integrated circuits (ASIC’s) with
embedded software. The concurrent design process for such em-
bedded systems involves solving the specification, validation, and
synthesis problems. We review the variety of approaches to these
problems that have been taken.

I. INTRODUCTION

Reactive real-time embedded systems are pervasive in
the electronics system industry. Applications include vehi-
cle control, consumer electronics, communication systems,
remote sensing, and household appliances. In such appli-
cations, specifications may change continuously and time-
to-market strongly affects success. This calls for the use
of software programmable components with behavior that
can be fairly easily changed. Such systems, which use a
computer to perform a specific function, but are neither
used nor perceived as a computer, are generically known
as embedded systems. More specifically, we are interested
in reactive embedded systems. Reactive systems are those
that react continuously to their environment at the speed of
the environment. They can be contrasted with interactive
systems, which react with the environment at their own
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speed and transformational systems, which take a body of
input data and transform it into a body of output data [1].

A large percentage of the worldwide market for
microprocessors is filled by microcontrollers that are the
programmable core of embedded systems. In addition
to microcontrollers, embedded systems may consist of
application-specific integrated circuits (ASIC’s) and/or
field programmable gate arrays (FPGA’s) as well as other
programmable computing units such as digital signal
processors (DSP’s). Since embedded systems interact
continuously with an environment that is analog in nature,
there must typically be components that perform A/D and
D/A conversions. A significant part of the design problem
consists of deciding the software and hardware architecture
for the system, as well as deciding which parts should
be implemented in software running on the programmable
components and which should be implemented in more
specialized hardware.

Embedded systems often are used in life critical sit-
uations, where reliability and safety are more important
criteria than performance. Today, embedded systems are
designed with anad hoc approach that is heavily based
on earlier experience with similar products and on manual
design. Use of higher-level languages such as C helps some-
what, but with increasing complexity, it is not sufficient.
Formal verification and automatic synthesis of implemen-
tations are the surest ways to guarantee safety. However,
both formal verification and synthesis from high levels
of abstraction have been demonstrated only for small,
specialized languages with restricted semantics. This is at
odds with the complexity and heterogeneity found in typical
embedded systems.

We believe that the design approach should be based
on the use of one or more formal models to describe
the behavior of the system at a high level of abstraction,
before a decision on its decomposition into hardware and
software components is taken. The final implementation
of the system should be made as much as possible using
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Fig. 1. A typical reactive real-time embedded system architec-
ture.

automatic synthesis from this high level of abstraction to
ensure implementations that are “correct by construction.”
Validation through simulation or verification should be done
as much as possible at the higher levels of abstraction.

A typical hardware architecture for an embedded system
is illustrated in Fig. 1. This type of architecture com-
bines custom hardware with embedded software, lending
a certain measure of complexity and heterogeneity to the
design. Even within the software or hardware portions
themselves, however, there is often heterogeneity. In soft-
ware, control-oriented processes might be mixed under the
supervision of a multitasking real-time kernel running on a
microcontroller. In addition, hard-real-time tasks may run
cooperatively on one or more programmable DSP’s. The
design styles used for these two software subsystems are
likely to be quite different from one another, and testing
the interaction between them is unlikely to be trivial.

The hardware side of the design will frequently contain
one or more ASIC’s, perhaps designed using logic or
behavioral synthesis tools. On the other hand, a significant
part of the hardware design most likely consists of inter-
connections of commodity components, such as processors
and memories. Again, this time on the hardware side, we
find heterogeneity. The design styles used to specify and
simulate the ASIC’s and the interconnected commodity
components are likely to be quite different. A typical
system, therefore, not only mixes hardware design with
software design, but also mixes design styles within each
of these categories.

Most often the set of tasks that the system implements
are not specified in a rigorous and unambiguous fashion,
so the design process requires several iterations to obtain
convergence. Moreover, during the design process, the level
of abstraction, detail, and specificity in different parts of the
design varies. To complicate matters further, the skill sets
and design styles used by different engineers on the project
are likely to be different. The net result is that during the
design process, many different specification and modeling
techniques will be used.

Managing the design complexity and heterogeneity is the
key problem. We believe that the use of formal models and
high-level synthesis for ensuring safe and correct designs
depends on understanding the interaction between diverse

formal models. Only then can the simplicity of modeling
required by verification and synthesis be reconciled with
the complexity and heterogeneity of real-world design.

The concurrent design process for mixed
hardware/software embedded systems involves solving
the following subproblems: specification, validation, and
synthesis. Although these problems cannot be entirely
separated, we deal with them below in three successive
sections.

II. SPECIFICATION AND MODELING

The design process is often viewed as a sequence of steps
that transforms a set of specifications described informally
into a detailed specification that can be used for manufac-
turing. All the intermediate steps are characterized by a
transformation from a more abstract description to a more
detailed one.

A designer can perform one or more steps in this process.
For the designer, the “input” description is aspecification,
the final description of the design is animplementation.
For example, a software designer may see a set of routines
written in C as an implementation of her/his design even
though several other steps may be taken before the design is
ready for manufacturing. During this process, verification of
the quality of the design with respect to the demands placed
on its performance and functionality has to be carried out.
Unfortunately, the descriptions of the design at its various
stages are often informal and not logically connected by a
set of precise relationships.

We advocate a design process that is based on repre-
sentations with precise mathematical meaning so that both
the verification and the map from the initial description
to the various intermediate steps can be carried out with
tools of guaranteed performance. Such an approach is
standard in certain communities, where languages with
strong formal properties are used to ensure robust design.
Examples include ML [2], dataflow languages (e.g., Lucid
[3] and Haskell [4]) and synchronous languages (e.g.,
Lustre, Signal, and Estrel [5]).

There is a broad range of potential formalizations of a
design, but most tools and designers describe the behavior
of a design as a relation between a set of inputs and a set
of outputs. This relation may be informal, even expressed
in natural language. It is easy to find examples where
informal specifications resulted in unnecessary redesigns.
In our opinion, aformal model of a designshould consist
of the following components.

1) A functional specification, given as a set of explicit or
implicit relations which involve inputs, outputs, and
possibly internal (state) information.1

2) A set of propertiesthat the design must satisfy,
given as a set of relations over inputs, outputs, and
states, that can be checked against the functional
specification.

1Later we will define inputs, outputs, and state information. For now,
consider them as sequences of values.
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3) A set of performance indexesthat evaluate the quality
of the design in terms of cost, reliability, speed, size,
etc., given as a set of equations involving, among
other things, inputs and outputs.

4) A set of constraintson performance indexes, specified
as a set of inequalities.

The functional specification fully characterizes the op-
eration of a system, while the performance constraints
bound the cost (in a broad sense). The set of properties
is redundant, in that in a properly constructed design, the
functional specification satisfies these properties. However,
the properties are listed separately because they are simpler
and more abstract (and also incomplete) compared to the
functional specification. A property is an assertion about
the behavior, rather than a description of the behavior. It
is an abstraction of the behavior along a particular axis.
For example, when designing a network protocol, we may
require that the design never deadlock (this is also called a
livenessproperty). Note that liveness does not completely
specify the behavior of the protocol; it is instead a property
we require our protocol to have. For the same protocol,
we may require that any request will eventually be satisfied
(this is also calledfairness). Again this does not completely
specify the behavior of the protocol but it is a required
property.

Given a formal model of the functional specifications and
of the properties, we can classify properties in three groups:

1) properties that areinherentin the model of computa-
tion (i.e., they can be shown formally to hold for all
specifications described using that model);

2) properties that can be verifiedsyntacticallyfor a given
specification (i.e., they can be shown to hold with
a simple—usually polynomial—time analysis of the
specification);

3) properties that must be verifiedsemanticallyfor a
given specification (i.e., they can be shown to hold
by executing, at least implicitly, the specification for
all inputs that can occur).

For example, consider the property ofdeterminate behav-
ior, i.e., the fact that the output of a system depends only
on its inputs and not on some internal, hidden choice. Any
design described by a dataflow network (a formal model to
be described later) is determinate, and hence this property
need not be checked. If the design is represented by a
network of finite-state machines (FSM’s), determinacy can
be assessed by inspection of the state transition function. In
some discrete event models (for example those embodied
in Verilog and VHDL) determinacy is difficult to prove: it
must be checked by exhaustive simulation.

The design process takes a model of the design at a
level of abstraction andrefinesit to a lower one. In doing
so, the designer must ensure that the properties at that
level of abstraction are verified, that the constraints are
satisfied, and that the performance indexes are satisfactory.
The refinement process involves also mapping constraints,

Fig. 2. An example of a design refinement stage, which uses
hardware and software synthesis to translate a functional speci-
fication into a model of hardware.

performance indexes, and properties to the lower level so
that they can be computed for the next level down.2 Fig. 2
shows a key refinement stage in embedded system design.
The more abstract specification in this case is an executable
functional model that is closer to the problem level. The
specification undergoes a synthesis process (which may be
partly manual) that generates a model of an implementation
in hardware. That model itself may still be fairly abstract,
capturing for example only timing properties. In this ex-
ample the model is presumably used for hardware/software
partitioning.

While Fig. 2 suggests a purely top-down process, any real
design needs more interaction between specification and
implementation. Nonetheless, when a design is complete,
the best way to present and document it is top down. This is
enough to require that the methodology support top-down
design.

A. Elements of a Model of Computation

A language is a set of symbols, rules for combining
them (its syntax), and rules for interpreting combinations
of symbols (itssemantics). Two approaches to semantics
have evolved:denotationaland operational. A language
can have both (ideally they are consistent with one another,
although in practice this can be difficult to achieve). Oper-
ational semantics, which dates back to Turing machines,
gives meaning of a language in terms of actions taken
by some abstract machine and is typically closer to the
implementation. Denotational semantics, first developed by
Scott and Strachey [7], gives the meaning of the language
in terms of relations.

How the abstract machine in an operational semantics can
behave is a feature of what we call themodel of computation
underlying the language. The kinds of relations that are
possible in a denotational semantics is also a feature of the
model of computation. Other features include communica-
tion style, how individual behavior is aggregated to make
more complex compositions, and how hierarchy abstracts
such compositions.

2The refinement process can be defined formally once the models of
the design are formally specified by McMillan [6].

368 PROCEEDINGS OF THE IEEE, VOL. 85, NO. 3, MARCH 1997



A design (at all levels of the abstraction hierarchy from
functional specification to final implementation) is gener-
ally represented as a set of components, which can be
considered as isolated monolithic blocks, interacting with
each other and with an environment that is not part of the
design. The model of computation defines the behavior and
interaction of these blocks.

In the sections that follow, we present a framework for
comparing elements of different models of computation,
called the tagged-signal model, and use it to contrast
different styles of sequential behavior, concurrency, and
communication. We will give precise definitions for a
number of terms, but these definitions will inevitably con-
flict with standard usage in some communities. We have
discovered that, short of abandoning the use of most
common terms, no terminology can be consistent with
standard usage in all related communities. Thus we attempt
to avoid confusion by being precise, even at the risk of
being pedantic.

1) The Tagged-Signal Model: Lee and Sangiovanni–
Vincentelli have proposed the tagged-signal model [8], a
formalism for describing aspects of models of computation
for embedded system specification. It is denotational in the
Scott and Strachey [7] sense, and it defines a semantic
framework (of signals and processes) within which models
of computation can be studied and compared. It is very
abstract—describing a particular model of computation
involves imposing further constraints that make it more
concrete.

The fundamental entity in the tagged-signal model is an
event—a value/tag pair. Tags are often used to denote tem-
poral behavior. A set of events (an abstract aggregation) is a
signal. Processes are relations on signals, expressed as sets
of -tuples of signals. A particular model of computation
is distinguished by the order it imposes on tags and the
character of processes in the model.

Given a set ofvalues and a set oftags , an eventis
a member of , i.e., an event has a tag and a value.
A signal is a set of events. A signal can be viewed as a
subset of . A functional signalis a (possibly partial)
function from to . The set of all signals is denoted.
A tuple of signals is denoted, and the set of all such
tuples is denoted .

The different models of time that have been used to model
embedded systems can be translated into different order
relations on the set of tags in the tagged-signal model.
In particular, in atimed system is totally ordered, i.e.,
there is a binary relation on members of such that if

, , and , then either or In an
untimed system, is only partially ordered.

A process with signals is a subset of the set of all
-tuples of signals, for some . A particular is

said to satisfy the process if . An that satisfies a
process is called abehaviorof the process. Thus aprocess
is a set of possiblebehaviors, or a relation between signals.

For many (but not all) applications, it is natural to
partition the signals associated with a process intoinputs
andoutputs. Intuitively, the process does not determine the

values of the inputs and does determine the values of the
outputs. If , then is a partition of A
process with inputs and outputs is a subset of
In other words, a process defines arelation between input
signals and output signals. A -tuple is
said tosatisfy if It can be written ,
where is an -tuple of input signalsfor process

and is an -tuple of output signalsfor process
. If the input signals are given by then the set

describes the inputs, and is
the set of behaviors consistent with the input.

A process is functional with respect to a partition if
it is a single-valued, possibly partial, mapping from to

. That is, if and , then .
In this case, we can write , where
is a (possibly partial) function. Given the input signals, the
output signals are determined (or there is unambiguously
no behavior).

Consider, as a motivating example introducing these
several mechanisms to denote temporal behavior, the prob-
lem of modeling a time-invariant dynamical system on a
computer. The underlying mathematical model, a set of
differential equations over continuous time, is not directly
implementable on a digital computer, due to the double
quantization of real numbers into finite bit strings, and of
time into clock cycles. Hence a first translation is required,
by means of anintegration rule, from the differential
equations to a set ofdifference equations, that are used to
compute the values of each signal with a given tag from the
values of some other signals with previous and/or current
tags.

If it is possible to identify several strongly connected
components in the dependency graph,3 then the system is
decoupled. It becomes then possible to go from the total
order of tags implicit in physical time to apartial order
imposed by the depth-first ordering of the components. This
partial ordering gives us some freedom in implementing
the integration rule on a computer. We could, for example,
play with scheduling by embedding the partial order into
the total order among clock cycles. It is often convenient,
for example, to evaluate a component completely, for all
tags, before evaluating components that depend on it. Or
it is possible to spread the computation among multiple
processors.

In the end, time comes back into the picture, but the
double mapping, from total to partial order, and back to
total order again, is essential to:

1) prove propertiesabout the implementation (e.g., sta-
bility of the integration method, a bound on the
maximum execution time, etc.);

2) optimizethe implementation with respect to a given
cost function (e.g., size of the buffers required to hold
intermediate signals versus execution time, satisfac-
tion of a constraint on the maximum execution time,
etc.).

3A directed graph with a node for each signal and an edge between two
signals whenever the equation for the latter depends on the former.
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2) State: Most models of computation include compo-
nents with state, where behavior is given as a sequence
of state transitions. In order to formalize this notion, let
us consider a process that is functional with respect to
partition . Let us assume for the moment that
belongs to a timed system, in which tags are totally ordered.
Then for any tuple of signals, we can define to be
a tuple of the (possibly empty) subset of the events in
with tags greater than.

Two input signal tuples , are in relation
(denoted if implies

. This definition intuitively means that process
cannot distinguish between the “histories” ofand prior
to time . Thus if the inputs are identical after time, then
the outputs will also be identical.

is an equivalence relation, partitioning the set of
input signal tuples into equivalence classes for each.
Following a long tradition, we call these equivalence classes
the statesof . In the hardware community, components
with only one state for each are calledcombinational,
while components with more than one state for someare
calledsequential. Note, however, that the term “sequential”
is used in very different ways in other communities.

3) Decidability: Components with afinite number of
states differ significantly from those with aninfinite number
of states. For certain infinite-state models (those that are
Turing-complete), many desirable properties are undecid-
able—they cannot be determined in a finite amount of time
for all systems. These properties include whether a system
will need more memory than is available, whether a system
will halt, and how fast a system will run [9].

Undecidability is not an insurmountable barrier and de-
cidability is not sufficient to answer all questions in practice
(e.g., because the required run-time may be prohibitive).
Many successful systems have been designed using unde-
cidable languages (i.e., those in which questions about some
programs are undecidable). Although no algorithm can
solve an undecidable problem forall systems, algorithms
exist that can solve them formostsystems. Buck’s Boolean
Dataflow scheduler [10], for example, can answer the
halting and bounded memory problems for many systems
specified in a Turing-complete dataflow model, although
it does, necessarily, fail to reach a conclusion for some
systems.

The nonterminating nature of embedded systems opens
the possibility of using infinite time to solve certain un-
decidable problems. Parks’ scheduler [11], for example,
will execute a potentially infinite-state system forever in
bounded memoryif it is possible to do so. However, it does
not answer the question of how much memory is needed
or whether the program will eventually halt.

The classical von Neumann model of computation4 is a
familiar model of sequential behavior. A memory stores the
state and a processor advances the state through a sequence
of memory operations. Most commonly-used programming
languages (e.g., C, C , Lisp, Pascal, andFORTRAN)

4It is formalized in the abstract model called random access machine
or random access stored program [12].

use this model of computation. Often, the memory is
viewed as having an unbounded number of finite-valued
words, which, when coupled with an appropriate choice of
processor instructions, makes the model Turing complete.5

Modern computer systems make this model practical by
simulating unbounded memory with an elaborate hierarchy
(registers, cache,RAM, and hard disk). Few embedded
systems, however, can currently afford such a scheme.

4) Concurrency and Communication:While sequential
or combinational behavior is related to individual processes,
embedded systems will typically contain several coordi-
nated concurrent processes. At the very least, such systems
interact with an environment that evolves independently,
at its own speed. But it is also common to partition the
overall model into tasks that also evolve more or less
independently, occasionally (or frequently) interacting with
one another.

Communication between processes can beexplicit or im-
plicit. In explicit communication, asenderprocess informs
one or morereceiverprocesses about some part of its state.
In implicit communication, two or more processes share a
common notion of state.

Time plays a larger role in embedded systems than in
classical computation. In classical transformational systems,
the correct result is the primary concern—when it arrives is
less important (althoughwhetherit arrives, the termination
question, is important). By contrast, embedded systems
are usually real-time systems, where the time at which a
computation takes place can be more important than the
computation itself.

As we discussed above, different models of time become
different order relations on the set of tagsin the tagged-
signal model. Recall that in atimed system is totally
ordered, while in anuntimed system is only partially
ordered. Implicit communication generally requires totally
ordered tags, usually identified with physical time.

The tags in ametric-time systemhave the notion of a “dis-
tance” between them, much like physical time. Formally,
there exists a partial function mapping pairs
of tags to real numbers such that

and
A discrete-event (DE) systemis a timed system where the

tags in each signal are order-isomorphic with the integers
(for a two-sidedsystem) or the natural numbers (for aone-
sidedsystem) [8]. Intuitively, this means that any pair of
ordered tags has a finite number of intervening tags.

Two events aresynchronousif they have the same tag.
Two signals are synchronous if each event in one signal
is synchronous with an event in the other signal and vice
versa. Asystemis synchronousif every signal in the system
is synchronous with every other signal in the system. A
discrete-time systemis a synchronous DE system.

Synchronous/reactive languages [5] are synchronous in
exactly this sense. The set of tags in a behavior of the
system denotes a global “clock” for the system. Every
signal conceptually has an event at every tag, although in

5Turing-completeness can be obtained also with a finite number of
infinite-valued words.
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some models this event could have a value denoting the
absence of an event (calledbottom). At each clock tick,
each process maps input values to output values. If cyclic
communication is allowed, then some mechanism must be
provided to resolve or prevent circular dependencies. One
possibility is to constrain the output values to have tags
corresponding to the next tick. Another possibility (all too
common) is to leave the result unspecified, resulting in
nondeterminacy (or worse, infinite computation within one
tick). A third possibility is to use fixed-point semantics,
where the behavior of the system is defined as a set of
events that satisfy all processes.

Concurrency in physical implementations of systems
occurs through some combination ofparallelism, having
physically distinct computational resources, andinterleav-
ing, sharing of a common physical resource. Mechanisms
for achieving interleaving vary widely, ranging from oper-
ating systems that manage context switches to fully static
interleaving in which concurrent processes are converted
(compiled) into a single nonconcurrent process. We focus
here on the mechanisms used to manage communication
between concurrent processes.

Parallel physical systems naturally share a common no-
tion of time, according to the laws of physics. The time
at which an event in one subsystem occurs has a natural
ordering relationship with the time at which an event occurs
in another subsystem. Physically interleaved systems also
share a natural common notion of time.

Logical systems, on the other hand, need a mechanism to
explicitly share a notion of time. Consider two imperative
programs interleaved on a single processor under the control
of time-sharing operating system. Interleaving creates a
natural ordering between events in the two processes, but
this ordering is generally unreliable because it heavily
depends on scheduling policy system load, and so on.
Some synchronization mechanism is required if those two
programs need to cooperate.

More generally, in logically concurrent systems, main-
taining a coherentglobal notion of time as a total order
on events, can be extremely expensive. Hence in practice
this is replaced whenever possible with anexplicit synchro-
nization, in which this total order is replaced by a partial
order. Returning to the example of two processes running
under a time-sharing operating system, we take precautions
to ensure an ordering of two events only if the ordering of
these two events matters.

A variety of mechanisms for managing the order of
events, and hence for communicating information between
processes, has arisen. Some of the most common ones are
listed below.

• Unsynchronized: In an unsynchronized communica-
tion, a producer of information and a consumer of the
information are not coordinated. There is no guarantee
that the consumer reads valid information produced
by the producer, and there is no guarantee that the
producer will not overwrite previously produced data
before the consumer reads the data. In the tagged-
signal model, the repository for the data is modeled

as a process, and the reading and writing events have
no enforced ordering relationship between their tags.

• Read-modify-write: Commonly used for accessing
shared data structures, this strategy locks a data
structure between a read and write from a process,
preventing any other accesses. In other words,
the actions of reading, modifying, and writing are
atomic (indivisible). In the tagged-signal model,
the repository for the data is modeled as a process
where events associated with this process are totally
ordered (resulting in a globally partially ordered
model). The read-modify-write is modeled as a single
event.

• Unbounded First-In First-Out (FIFO) buffered: This
is a point-to-point communication strategy, where a
producer generates a sequence of data tokens and
consumer consumes these tokens, but only after they
have been generated. In the tagged-signal model, this is
a simple connection where the signal on the connection
is constrained to have totally ordered tags. The tags
model the ordering imposed by the FIFO model. If the
consumer implements blocking reads, then it imposes a
total order on events at all its input signals. This model
captures essential properties of both Kahn process
networks and dataflow [13].

• Bounded FIFO buffered: In this case, the data repos-
itory is modeled as a process that imposes ordering
constraints on its inputs (which come from the pro-
ducer) and the outputs (which go to the consumer).
Each of the input and output signals are internally
totally ordered. The simplest case is where the size of
the buffer is one, in which case the input and output
events must be interleaved so that each output event
lies between two input events. Larger buffers impose a
maximum difference (often calledsynchronic distance)
between the number of input and output events.

Note that some implementations of this communi-
cation mechanism may not really block the writing
process when the buffer is full, thus requiring some
higher level of flow control to ensure that this never
happens, or that it does not cause any harm.

• Rendezvous: In the simplest form of rendezvous, im-
plemented, i.e., in Occam and Lotos, a single writing
process and a single reading process must simultane-
ously be at the point in their control flow where the
write and the read occur. It is a convenient commu-
nication mechanism, because it has the semantics of
a single assignment, in which the writer provides the
right-hand side, and the reader provides the left-hand
side. In the tagged-signal model, this is imposed by
events with identical tags [8]. Lotos offers, in addition,
multiple rendezvous, in which one among multiple
possible communications isnondeterministicallyse-
lected. Multiple rendezvous is more flexible than single
rendezvous, because it allows the designer to specify
more easily several “expected” communication ports
at any given time, but it is very difficult and expensive
to implement correctly.
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Table 1 A Comparison of Concurrency and Communication Schemes

Transmitters Receivers Buffer Size Blocking Reads Blocking Writes Single Reads
Unsynchronized many many one no no no
Read-Modify-Write many many one yes yes no
Unbounded FIFO one one unbounded yes no yes
Bounded FIFO one one bounded yes maybe yes
Single Rendezvous one one one yes yes yes
Multiple Rendezvous one one one no no yes

Of course, various combinations of the above models
are possible. For example, in a partially unsynchronized
model, a consumer of data may be required to wait until
the first time a producer produces data, after which the
communication is unsynchronized.

The essential features of the concurrency and commu-
nication styles described above are presented in Table 1.
These are distinguished by the number of transmitters and
receivers (e.g., broadcast versus point-to-point communica-
tion), the size of the communication buffer, whether the
transmitting or receiving process may continue after an
unsuccessful communication attempt (blocking reads and
writes), and whether the result of each write can be read at
most once (single reads).

B. Common Models of Computation

We are now ready to use the scheme developed in the
previous section to classify and analyze several models
of computation that have been used to describe embedded
systems. We will consider issues such as ease of modeling,
efficiency of analysis (simulation or formal verification),
automated synthesizability, optimization space versus over-
specification, and so on.

1) Discrete Event:Time is an integral part of a DE model
of computation. Events usually carry a totally ordered time
stamp indicating the time at which the event occurs. A DE
simulator usually maintains a global event queue that sorts
events by time stamp.

Digital hardware is often simulated using a DE approach.
The Verilog language, for example, was designed as an
input language for a DE simulator. The VHDL language
also has an underlying DE model of computation.

DE modeling can be expensive—sorting time stamps can
be time-consuming. Moreover, ironically, although DE is
ideally suited to modeling distributed systems, it is very
challenging to build a distributed DE simulator. The global
ordering of events requires tight coordination between parts
of the simulation, rendering distributed execution difficult.

Discrete-event simulation is most efficient for large sys-
tems with large, frequently idle or autonomously operating
sections. Under DE simulation, only the changes in the
system need to be processed, rather than the whole system.
As the activity of a system increases, the DE paradigm
becomes less efficient because of the overhead inherent in
processing time stamps.

Simultaneous events, especially those arising from zero-
delay feedback loops, present a challenge for DE models
of computation. In such a situation, events may need to be
ordered, but are not.

(a) (b)

(c) (d)

Fig. 3. Simultaneous events in a DE system. (a) Process A
produces events with the same time stamp. Should B or C be fired
next? (b) Zero-delay process B has fired. How many times should
C be fired? (c) Delta-delay process B has fired; C will consume
A’s output next. (d) C has fired once; it will fire again to consume
B’s output.

Consider the DE system shown in Fig. 3. Process B has
zero delay, meaning that its output has the same time stamp
as its input. If process A produces events with the same time
stamp on each output, there is ambiguity about whether B
or C should be invoked first, as shown in Fig. 3(a).

Suppose B is invoked first, as shown in Fig. 3(b). Now,
depending on the simulator, C might be invoked once,
observing both input events in one invocation, or it might
be invoked twice, processing the events one at a time. In
the latter case, there is no clear way to determine which
event should be processed first.

The addition of delta delay makes such nondeterminacy
easier to prevent, but does not avoid it completely. It
introduces a two-level model of time in which each instant
of time is broken into (a potentially infinite number of)
totally ordered delta steps. The simulated time reported to
the user, however, does not include delta information. A
“zero-delay” process in this model actually has delta delay.
For example, Process B would have delta delay, so firing
A followed by B would result in the situation in Fig. 3(c).
The next firing of C will see the event from A only; the
firing after that will see the (delay-delayed) event from B.

Other simulators, including the DE simulator in Ptolemy
[14], attempt to statically analyze data precedences within
a single time instant. Such precedence analysis is similar
to that done in synchronous languages (Esterel, Lustre, and
Signal) to ensure that simultaneous events are processed
deterministically. It determines a partial ordering of events
with the same time stamp by examining data precedences.

Adding a feedback loop from Process C to A in Fig. 3
would create a problem if events circulate through the loop
without any increment in time stamp. The same problem
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occurs in synchronous languages, where such loops are
called causality loops. No precedence analysis can resolve
the ambiguity. In synchronous languages, the compiler may
simply fail to compile such a program. Some DE simulators
will execute the program nondeterministically, while others
support tighter control over the sequencing through graph
annotations.

2) Communicating Finite State Machines:FSM’s are an
attractive model for embedded systems. The amount of
memory required by such a model is always decidable,
and is often an explicit part of its specification. Halting
and performance questions are always decidable since each
state can, in theory, be examined in finite time. In practice,
however, this may be prohibitively expensive.

A traditional FSM consists of:

• a set of input symbols (the Cartesian product of the
sets of values of the input signals);

• a set of output signals (the Cartesian product of the
sets of values of the output signals);

• a finite set of states with a distinguished initial state;
• an output function mapping inputs and states to out-

puts;
• a next-state function mapping inputs and states to

(next) states.

The input to such a machine is a sequence of input
symbols, and the output is a sequence of output symbols.

Traditional FSM’s are good for modeling sequential
behavior, but are impractical for modeling concurrency or
memory because of the so-called state explosion problem.
A single machine mimicking the concurrent execution of
a group of machines has a number of states equal to the
productof the number of states of each machine. A memory
has as many states as the number of values that can be
stored at each locationraised to the powerof the number
of locations. The number of states alone is not always a
good indication of complexity, but it often has a strong
correlation.

Harel advocated the use of three major mechanisms that
reduce the size (and hence the visual complexity) of finite
automata (FA) for modeling practical systems [15]. The
first one is hierarchy, in which a state can represent an
enclosed state machine. That is, being in a particular state

has the interpretation that the state machine enclosed by
is active. Equivalently, being in state means that the

machine is in one of the states enclosed by. Under the
latter interpretation, the states ofare called “or states.” Or
states can exponentially reduce the complexity (the number
of states) required to represent a system. They compactly
describe the notion ofpreemption(a high-priority event
suspending or “killing” a lower priority task), that is
fundamental in embedded control applications.

The second mechanism is concurrency. Two or more state
machines are viewed as being simultaneously active. Since
the system is in one state of each parallel state machine
simultaneously, these are sometimes called “and states.”
They also provide a potential exponential reduction in the
size of the system representation.

The third mechanism is nondeterminism. While often
nondeterminism is simply the result of an imprecise (maybe
erroneous) specification, it can be an extremely powerful
mechanism to reduce the complexity of a system model
by abstraction. This abstraction can either be due to the
fact that the exact functionality must still be defined, or
that it is irrelevant to the properties currently considered
of interest. For example, during verification of a given
system component, other components can be modeled as
nondeterministic entities to compactly constrain the overall
behavior. A system component can also be described non-
deterministically to permit some optimization during the
implementation phase. Non-determinism can also provide
an exponential reduction in complexity.

These three mechanisms have been shown in [16] to
cooperate synergistically and orthogonally, to provide a
potential triple exponential reduction in the size of the
representation with respect to a single, flat deterministic
FSM.6

Harel’s Statecharts model uses a synchronous concur-
rency model (also called synchronous composition). The
set of tags is a totally ordered countable set that denotes
a global “clock” for the system. The events on signals are
either produced by state transitions or inputs. Events at a
tick of the clock can trigger state transitions in other parallel
state machines at the same clock. Unfortunately, Harel left
open some questions about the semantics of causality loops
and chains of instantaneous (same tick) events, triggering
a flurry of activity in the community that has resulted in at
least 20 variants of Statecharts [17].

Most of these 20 variants use the synchronous concur-
rency model. However, for many applications, the tight
coordination implied by the synchronous model is inap-
propriate. In response to this, a number of more loosely
coupled asynchronous FSM models have evolved, including
behavioral FSM’s [18], SDL process networks [18], and
codesign FSM’s [19].

A model that is closely related to FSM’s is the FA, which
emphasize the acceptance or rejection of a sequence of
inputs rather than the sequence of output symbols produced
in response to a sequence of input symbols. Most notions,
such as composition and so on, can be naturally extended
from one model to the other.

In fact, any of the concurrency models described in
this paper can be usefully combined with FSM’s. In the
Ptolemy project [14], FSM’s are hierarchically nested with
dataflow, DE, or synchronous/reactive models [20]. The
nesting is arbitrarily deep and can mix concurrency models
at different levels of the hierarchy. This very flexible model
is called “*charts” (“star charts”), where the asterisk is
meant to suggest a wildcard.

Control flow expressions (CFE’s) [21] have been recently
proposed to represent the control flow of a set of operations

6The exact claim in [16] was that “and” type nondeterminism (in which
all nondeterministic choices must be successful), rather than hierarchical
states, was the third source of exponential reduction together with “or” type
nondeterminism and concurrency. Hierarchical states, on the other hand,
were shown in that paper to be able to simulate “and” nondeterminism
with only a polynomial increase in size.
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in a cycle-based specification language. CFE’s are an
algebraic model extending regular expressions [9] and can
be compiled into FSM’s that can be used in the synthesis
of a control unit.

3) Synchronous/Reactive:In a synchronous model of
computation, all events are synchronous, i.e., all signals
have events with identical tags. The tags are totally ordered
and globally available. Simultaneous events (those in the
same clock tick) may be totally ordered, partially ordered,
or unordered, depending on the model of computation.
Unlike the DE model, all signals have events at all
clock ticks, simplifying the simulator by requiring no
sorting. Simulators that exploit this simplification are
called cycle-based or cycle-driven simulators. Processing
all events at a given clock tick constitutes a cycle. Within
a cycle, the order in which events are processed may be
determined by data precedences, which define microsteps.
These precedences are not allowed to be cyclic, and
typically impose a partial order (leaving some arbitrary
ordering decisions to the scheduler). Cycle-based models
are excellent for clocked synchronous circuits and have
also been applied successfully at the system level in certain
signal processing applications.

A cycle-based model is inefficient for modeling systems
where events do not occur at the same rate in all signals.
While conceptually such systems can be modeled (using,
for example, special tokens to indicate the absence of an
event), the cost of processing such tokens is considerable.
Fortunately, the cycle-based model is easily generalized to
multirate systems. In this case, everyth event in one signal
aligns with the events in another.

A multirate cycle-based model is still somewhat limited.
It is an excellent model for synchronous signal processing
systems where sample rates are related by constant rational
multiples, but in situations where the alignment of events
in different signals is irregular, it can be inefficient.

The more general synchronous/reactive model is embod-
ied in the so-called synchronous languages [22]. Esterel
[23] is a textual imperative language with sequential and
concurrent statements that describe hierarchically arranged
processes. Lustre [24] is a textual declarative language with
a dataflow flavor and a mechanism for multirate clocking.
Signal [25] is a textual relational language, also with a
dataflow flavor and a more powerful clocking system.
Argos [26], a derivative of Harel’s Statecharts [27], is
a graphical language for describing hierarchical FSM’s.
Halbwachs [5] gives a good summary of this group of
languages.

The synchronous/reactive languages describe systems
as a set of concurrently-executing synchronized modules.
These modules communicate through signals that are either
present or absent in each clock tick. The presence of a
signal is called an event, and often carries a value, such
as an integer. The modules are reactive in the sense that
they only perform computation and produce output events
in instants with at least one input event.

Every signal in these languages is conceptually (or ex-
plicitly) accompanied by a clock signal, which has meaning

relative to other clock signals and defines the global or-
dering of events. Thus when comparing two signals, the
associated clock signals indicate which events are simulta-
neous and which precede or follow others. In the case of
Signal and Lustre, clocks have complex interrelationships,
and a clock calculus allows a compiler to reason about
these ordering relationships and to detect inconsistencies
in the definition. Esterel and Argos have simpler clocking
schemes and focus instead on finite-state control.

Most of these languages are static in the sense that
they cannot request additional storage nor create additional
processes while running. This makes them well-suited for
bounded and speed-critical embedded applications, since
their behavior can be extensively analyzed at compile time.
This static property makes a synchronous program finite-
state, greatly facilitating formal verification.

Verifying that a synchronous program is causal (non-
contradictory and deterministic) is a fundamental challenge
with these languages. Since computation in these languages
is delay-free and arbitrary interconnection of processes is
possible, it is possible to specify a program that has either
no interpretation (a contradiction where there is no consis-
tent value for some signal) or multiple interpretations (some
signal has more than one consistent value). Both situations
are undesirable, and usually indicate a design error. A
conservative approach that checks for causality problems
structurally flags an unacceptably large number of programs
as incorrect because most will manifest themselves only in
unreachable program states. The alternative, to check for a
causality problem in any reachable state, can be expensive
since it requires an exhaustive check of the state space of
the program.

In addition to the ability to translate these languages
into finite-state descriptions, it is possible to compile these
languages directly into hardware. Techniques for translating
both Esterel [28] and Lustre [29] into hardware have been
proposed. The result is a logic network consisting of gates
and flip-flops that can be optimized using traditional logic
synthesis tools. To execute such a system in software, the
resulting network is simply simulated. The technique is also
the basis to perform more efficiently causality checks, by
means of implicit state space traversal techniques [30].

4) Dataflow Process Networks:In dataflow, a program is
specified by a directed graph where the nodes (called
actors) represent computations and the arcs represent to-
tally ordered sequences (calledstreams) of events (called
tokens). In Fig. 4(a), the large circles represent actors, the
small circle represents a token, and the lines represent
streams. The graphs are often represented visually and
are typically hierarchical, in that an actor in a graph may
represent another directed graph. The nodes in the graph
can be either language primitives or subprograms specified
in another language, such as C orFORTRAN. In the latter
case, we are mixing two of the models of computation from
Fig. 2, where dataflow serves as the coordination language
for subprograms written in an imperative host language.

Dataflow is a special case of Kahn process networks
[13], [31]. In a Kahn process network, communication
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(a)

(b)

Fig. 4. (a) A dataflow process network and (b) a single-processor
static schedule for it.

is by unbounded FIFO buffering, and processes are con-
strained to be continuous mappings from input streams to
output streams. “Continuous” in this usage is a topological
property that ensures that the program is determinate [13].
Intuitively, it implies a form of causality without time;
specifically, a process can use partial information about its
input streams to produce partial information about its output
streams. Adding more tokens to the input stream will never
result in having to change or remove tokens on the output
stream that have already been produced. One way to ensure
continuity is with blocking reads, where any access to an
input stream results in suspension of the process if there
are no tokens. One consequence of blocking reads is that
a process cannot test an input channel for the availability
of data and then branch conditionally to a point where it
will read a different input.

In dataflow, each process is decomposed into a sequence
of firings, indivisible quanta of computation. Each firing
consumes and produces tokens. Dividing processes into
firings avoids the multitasking overhead of context switch-
ing in direct implementations of Kahn process networks.
In fact, in many of the signal processing environments, a
major objective is to statically (at compile time) schedule
the actor firings, achieving an interleaved implementation
of the concurrent model of computation. The firings are
organized into a list (for one processor) or set of lists
(for multiple processors). Fig. 4(a) shows a dataflow graph
(DFG), and Fig. 4(b) shows a single processor schedule for
it. This schedule is a list of firings that can be repeated
indefinitely. One cycle through the schedule should return
the graph to its original state (here, state is defined as
the number of tokens on each arc). This is not always
possible, but when it is, considerable simplification results
[32]. In many existing environments, what happens within
a firing can only be specified in a host language with
imperative semantics, such as C or C. In the Ptolemy
system [14], it can also consist of a quantum of computation
specified with any of several models of computation, such
as FSM’s, a synchronous/reactive subsystem, or a DE
subsystem [33].

A useful formal device is to constrain the operation of
a firing to be functional, i.e., a simple, stateless mapping
from input values to output values. Note, however, that this

does not constrain the process to be stateless, since it can
maintain state in a self-loop: an output that is connected
back to one of its inputs. An initial token on this self-loop
provides the initial value for the state.

Many possibilities have been explored for precise se-
mantics of dataflow coordination languages, including Karp
and Miller’s computation graphs [34], Lee and Messer-
schmitt’s synchronous DFG’s [35], Lauwereinset al.’s
cyclostatic dataflow model [36], [37], Kaplanet al.’s pro-
cessing graph method (PGM) [38], granular lucid [39], and
others [40]–[43]. Many of these limit expressiveness in
exchange for formal properties (e.g., provable liveness and
bounded memory).

Synchronous dataflow (SDF) and cyclo-static dataflow
require processes to consume and produce a fixed number
of tokens for each firing. Both have the useful property that
a finite static schedule can always be found that will return
the graph to its original state. This allows for extremely
efficient implementations [32]. For more general dataflow
models, it is undecidable whether such a schedule exists
[10].

A looser model of dataflow is the tagged-token model, in
which the partial order of tokens is explicitly carried with
the tokens [44]. A significant advantage of this model is
that while it logically preserves the FIFO semantics of the
channels, it permits out-of-order execution.

Some examples of graphical dataflow programming en-
vironments intended for signal processing (including image
processing) are Khoros [45] and Ptolemy [14].

5) Other Models: Another commonly used partially
ordered concurrency model is based on rendezvous.
Two or more concurrent sequential processes proceed
autonomously, but at certain points in their control flow,
coordinate so that they are simultaneously at specified
points. Rendezvous has been developed into elaborate
process calculi (e.g., Hoare’s CSP [46] and Milner’s CCS
[47]). It has also been implemented in the Occam and
Lotos programming languages. Ada also uses rendezvous,
although the implementation is stylistically quite different,
using remote procedure calls rather than more elementary
synchronization primitives.

Rendezvous-based models of computation are often
called synchronous. However, by the definition we have
given, they are not synchronous. Events are partially
ordered, not totally ordered, with rendezvous points
imposing the partial ordering constraints.

No discussing of concurrent models of computation
would be complete without mentioning Petri nets [48], [49].
Petri nets are, in their basic form, neither Turing complete
nor finite state. They are interesting as uninterpreted model
for several very different classes of problems, including
some relevant to embedded system design (e.g., process
control, asynchronous communication, scheduling, etc.).
Many questions about Petri nets can be answered in finite
time. Moreover, a large user community has developed a
large body of theoretical results and practical design aids
and methods based on them. In particular, partial order-
based verification methods [50], [51], [6] are one possible
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answer to the state explosion problem plaguing FSM-based
verification techniques.

C. Languages

The distinction between a language and its underlying
model of computation is important. The same model of
computation can give rise to fairly different languages (e.g.,
the imperative Algol-like languages C, C , Pascal, and
FORTRAN). Some languages, such as VHDL and Verilog,
support two or more models of computation.7

The model of computation affects theexpressiveness
of a language—which behaviors can be described in the
language, whereas the syntax affects compactness, modu-
larity, and reusability. Thus, for example, object-oriented
properties of imperative languages like C are more a
matter of syntax than a model of computation.

The expressiveness of a language is an important issue.
At one extreme, a language that is not expressive enough
to specify a particular behavior is clearly unsuitable, but
the other extreme also raises problems. A language that
is too expressive often raises the complexity of analysis
and synthesis. In fact, for very expressive languages, many
analysis and synthesis problems become undecidable: no
algorithm will solve all problem instances in finite time.

A language in which a desired behavior cannot be rep-
resented succinctly is also problematic. The difficulty of
solving analysis and synthesis problems is at least linear
in the size of the problem description, and can be as bad
as several times exponential, so choosing a language in
which the desired behavior of the system is compact can
be critical.

A language may be very incomplete and/or very abstract.
For example, it may specify only the interaction between
computational modules, and not the computation performed
by the modules. Instead, it provides an interface to a host
language that specifies the computation, and is called a
coordination language (i.e., Linda [41], Granular Lucid
[39], and Ptolemy domains [14]). Or the language may
specify only the causality constraints of the interactions
without detailing the interactions themselves nor providing
an interface to a host language. In this case, the language
is used as a tool to prove properties of systems, as done,
for example, in process calculi [46], [47] and Petri nets
[48], [49]. In still more abstract modeling, components in
the system are replaced with nondeterminate specifications
that give constraints on the behavior, but not the behavior
itself. Such abstraction provides useful simplifications that
help formal verification.

D. Heterogeneous Models of Computation

The variety of models of computation that have been
developed is only partially due to immaturity in the field. It
appears that different models fundamentally have different
strengths and weaknesses, and that attempts to find their

7They directly support the Imperative model within a process, and the
Discrete Event model among processes. They can also support Extended
FSM’s under suitable restrictions known as the “synthesizable subset.”

common features result in models that are very low level,
difficult to use. These low level models (such as Dijkstra’s
P/V systems [52]) provide a good theoretical foundation,
but not a good basis for design.

Thus we are faced with two alternatives in designing
complex, heterogeneous systems. We can either use a single
unified approach and suffer the consequences, or we can
mix approaches. To use the unified approach today we could
choose between VHDL and C for a mixed hardware and
software design, doing the entire design in one or the other
(i.e., specifying the software in VHDL or the hardware in
C). Or worse, we could further bloat the VHDL language
by including a subset designed for software specification
(e.g., by making Ada a subset of VHDL). In the alternative
that we advocate, we mix approaches while keeping them
conceptually distinct, for example by using both VHDLand
C in a mixed hardware/software design.

The key problem in the mixed approach, then, is to
define the semantics of the interaction of fundamentally
different models of computation. It is not simply a problem
of interfacing languages. It is easy, for example, to provide
a mechanism for calling C procedures from VHDL. But
what does it mean if two concurrent VHDL entities call C
procedures that interact? The problem is exacerbated by the
lack of agreed-upon semantics for C or VHDL.

Studying the interaction semantics of mixed models of
computation is the main objective of the Ptolemy project
[14]. There, a hierarchical framework is used, where a
specification in one model of computation can contain
a primitive that is internally implemented using another
model of computation. The object-oriented principle of
information hiding is used to isolate the models from one
another as much as possible.

III. V ALIDATION

Validation loosely refers to the process of determining
that a design is correct. Simulation remains the main tool to
validate a model, but the importance of formal verification
is growing, especially for safety-critical embedded systems.
Although still in its infancy, it shows more promise than
verification of arbitrary systems, such as generic software
programs, because embedded systems are often specified
in a more restricted way. For example, they are often
finite-state.

Many safety properties (including deadlock detection)
can be detected in a time-independent way using existing
model checking and language containment methods [53],
[54]. Unfortunately, verifying most temporal properties is
much more difficult [55]. Much more research is needed
before this is practical.

A. Simulation

Simulating embedded systems is challenging because
they are heterogeneous. In particular, most contain both
software and hardware components that must be simulated
at the same time. This is the co-simulation problem.
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Table 2 A Comparison of Co-Simulation Methods

Author Hardware Simulation Software Simulation Synchronization Mechanism
Gupta [56] logic custom bus-cycle custom single simulation
Rowson [57] logic commercial host-compiled handshake
Wilson [58] logic commercial host-compiled handshake
Thomas [59] logic commercial host-compiled handshake
ten Hagen (1) [60] logic commercial host-compiled handshake
ten Hagen (2) [60] cycle-based cycle-counting tagged messages
Kalavade (1) [61] logic custom host-compiled single simulation
Kalavade (2) [61] logic custom ISA single simulation
Lee [61] logic custom host-compiled single simulation
Suterwala [62] logic commercial ISA on HW simulation single simulation

The basic co-simulation problem is reconciling two ap-
parently conflicting requirements:

• to execute the software as fast as possible, often on
a host machine that may be faster than the final
embedded CPU and certainly is very different from
it; and

• to keep the hardware and software simulations syn-
chronized, so that they interact just as they will in the
target system.

One approach, often taken in practice, is to use a general-
purpose software simulator (e.g., based on VHDL or Ver-
ilog) to simulate a model of the target CPU, executing
the software program on this simulation model. Different
models can be employed, with a tradeoff between accuracy
and performance.

• Gate-level models. These are viable only for small
validation problems, where either the processor is a
simple one, or very little code needs to be run on it,
or both.

• Instruction-set architecture (ISA) models augmented
with hardware interfaces. An ISA model is a standard
processor simulator (often written in C) augmented
with hardware interface information for coupling to
a standard logic simulator.

• Bus-functional models.These are hardware models
only of the processor interface; they cannot run any
software. Instead, they are configured (programmed) to
make the interface appear as if software were running
on the processor. A stochastic model of the processor
and of the program can be used to determine the mix
of bus transactions.

• Translation-based models. These convert the code to
be executed on a processor into code that can be
executed natively on the computer doing the simula-
tion. Preserving timing information and coupling the
translated code to a hardware simulator are the major
challenges.

When more accuracy is required and acceptable simula-
tion performance is not achievable on standard computers,
designers sometimes resort toemulation. In this case,
configurable hardware emulates the behavior of the system
being designed.

Another problem is the accurate modeling of a controlled
electromechanical system, which is generally governed by a

set of differential equations. This often requires interfacing
to an entirely different kind of simulator.

1) Co-Simulation Methods:In this section, we present a
survey of some of the representative co-simulation methods,
summarized in Table 2. A unified approach, where the
entire system is translated into a form suitable for a single
simulator, is conceptually simple, but computationally inef-
ficient. Making better use of computational resources often
means distributing the simulation, but synchronization of
the processes becomes a challenge.

The method proposed by Guptaet al. [56] is typical of
the unified approach to co-simulation. It relies on a single
custom simulator for hardware and software that uses a
single event queue and a high-level, bus-cycle model of
the target CPU.

Rowson [57] takes a more distributed approach that
loosely links a hardware simulator with a software process,
synchronizing them with the standard interprocess com-
munication mechanisms offered by the host operating sys-
tem. One of the problems with this approach is that the
relative clocks of software and hardware simulation are
not synchronized. This requires the use of handshaking
protocols, which may impose an undue burden on the
implementation. This may happen, for example, because
hardware and software would not need such handshaking
since the hardware part runs in reality much faster than in
the simulation.

Wilson [58] describes the use of a commercial hardware
simulator. In this approach, the simulator and software
compiled on the host processor interact via a bus-cycle
emulator inside the hardware simulator. The software and
hardware simulator execute in separate processes and the
two communicate viaUNIX pipes. Thomaset al. [59] take
a similar approach.

Another approach keeps track of time in software and
hardware independently, using various mechanisms to syn-
chronize them periodically. For example, ten Hagenet al.
[60] describe a two-level co-simulation environment that
combines a timed and untimed level. The untimed level is
used to verify time-independent properties of the system,
such as functional correctness. At this level, software and
hardware run independent of each other, passing messages
whenever needed. This allows the simulation to run at
the maximum speed, while taking full advantage of the
native debugging environments both for software and for
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hardware. The timed level is used to verify time-dependent
properties, requiring the definition of time in hardware and
software. In hardware, time can be measured either on the
basis of clock cycles (cycle-based simulation, assuming
synchronous operation) for maximum performance, or on
the basis of estimated or extracted timing information for
maximum precision. In software, on the other hand, time
can be measured either by profiling or clock cycle counting
information for maximum performance, or by executing a
model of the CPU for maximum precision. The authors
propose two basic mechanisms for synchronizing time in
hardware and software.

1) Software is the master and hardware is the slave. In
this case, software decides when to send a message,
tagged with the current software clock cycle, to
the hardware simulator. Depending on the relation
between software and hardware time, the hardware
simulator can either continue simulation until soft-
ware time or back-up the simulation to software time
(this requires checkpointing capabilities, which few
hardware simulators currently have).

2) Hardware is the master and software is the slave.
In this case, the hardware simulator directly calls
communication procedures which, in turn, call user
software code.

Kalavade and Lee [61] and Lee and Rabaey [63] take a
similar approach. The simulation and design environment
Ptolemy [14] is used to provide an interfacing mechanism
between different domains. In Ptolemy, objects described at
different levels of abstraction and using different semantic
models are composed hierarchically. Each abstraction level,
with its own semantic model, is a “domain” (e.g., dataflow,
DE). Atomic objects (called “stars”) are the primitives of
the domain (e.g., dataflow operators, logic gates). They can
be used either in simulation mode (reacting to events by
producing events) or in synthesis mode (producing software
or a hardware description). “Galaxies” are collections of
instances of stars or other galaxies. An instantiated galaxy
can belong to a domain different than the instantiating do-
main. Each domain includes a scheduler, which decides the
order in which stars are executed, both in simulation and in
synthesis. For synthesis, it must be possible to construct the
schedule statically. Whenever a galaxy instantiates a galaxy
belonging to another domain (typical in co-simulation),
Ptolemy provides a mechanism called a “wormhole” for
the two schedulers to communicate. The simplest form of
communication is to pass time-stamped events across the
interface between domains, with the appropriate data-type
conversion.

Kalavade and Lee [61] perform co-simulation at the
specification level by using a dataflow model and at the
implementation level by using an ISA processor model
augmented with the interfaces within a hardware simulator,
both built within Ptolemy.

Lee and Rabaey [63] simulate the specification by using
concurrent processes communicating via queues within

a timed model (the Ptolemy communicating processes
domain). The same message exchanging mechanism
is retained in the implementation (using a mix of
microprocessor-based boards, DSP’s, and ASIC’s), thus
performing co-simulation of one part of the implementation
with a simulation model of the rest. For example, the
software running on the microprocessor can also be run
on a host computer, while the DSP software runs on the
DSP itself.

Sutarwala and Paulin [62] describe an environment cou-
pled with a retargetable compiler [64] for cycle-based
simulation of a user-definable DSP architecture. The user
only provides a description of the DSP structure and
functionality, while the environment generates a behavioral
bus-cycle VHDL model for it, which can then be used to
run the code on a standard hardware simulator.

B. Formal Verification

Formal verification is the process of mathematically
checking that the behavior of a system, described using
a formal model, satisfies a given property, also described
using a formal model. The two models may or may not be
the same, but must share a common semantic interpretation.
The ability to carry out formal verification is strongly
affected by the model of computation, which determines
decidability and complexity bounds. Two distinct types of
verification arise.

• Specification Verification: checking an abstract prop-
erty of a high-level model. An example: checking
whether a protocol modeled as a network of commu-
nicating FSM’s can ever deadlock.

• Implementation Verification: checking if a relatively
low-level model correctly implements a higher-level
model or satisfies some implementation-dependent
property. For example: checking whether a piece
of hardware correctly implements a given FSM, or
whether a given dataflow network implementation on
a given DSP completely processes an input sample
before the next one arrives.

Implementation verification for hardware is a relatively
well-developed area, with the first industrial-strength prod-
ucts beginning to appear. For example, most logic synthesis
systems have a mechanism to verify a gate-level implemen-
tation against a set of Boolean equations or an FSM, to
detect bugs in the synthesis software.8

While simulation could fall under these definitions (if
the property is “the behavior under this stimulus is as
expected”), the term formal verification is usually reserved
for checking properties of the system that must hold for all
or a broad class of inputs. The properties are traditionally
broken into two classes:

• safety properties, which state that no matter what
inputs are given, and no matter how nondetermin-
istic choices are resolved inside the system model,
the system will not get into a specific undesirable

8This shows that the need for implementation verification is not
eliminated by the introduction of automated synthesis techniques.
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configuration (e.g., deadlock, emission of undesired
outputs, etc.);

• liveness properties, which state that some desired con-
figuration will be visited eventually or infinitely often
(e.g., expected response to an input, etc.)

More complex checks, such as the correct implementation
of a specification, can usually be done in terms of those ba-
sic properties. For example, Dill [65] describes a method to
define and check correct implementation for asynchronous
logic circuits in an automata-theoretic framework.

In this section we only summarize the major approaches
that have been or can be applied to embedded system ver-
ification. These can be roughly divided into the following
classes.

• Theorem proving methods provide an environment that
assists the designer in carrying out a formal proof
of specification or implementation correctness. The
assistance can be either in the form of checking the
correctness of the proof, or in performing some steps
of the proof automatically (e.g., Gordon and Melham’s
HOL [66], the Boyer–Moore system [67], and PVS
[68]). The main problems with this approach are the
undecidability of some higher order logics and the
large size of the search space even for decidable logics.

• FA methods restrict the power of the model in order
to automate proofs. A finite automaton, in its simplest
form, consists of a set of states, connected by a set of
edges labeled with symbols from an alphabet. Various
criteria can be used to define which finite or infinite
sequences of symbols are “accepted” by the automaton.
The set of accepted sequences is generally called
the languageof the automaton. The main verification
methods used in this case are language containment
and model checking.

a) In language containment, both the system and
the property to be verified are described as
a synchronous composition of automata. The
proof is carried out by testing whether the
language of one is contained in the language of
the other (Kurshan’s approach is typical [53]).
One particularly simple case occurs when com-
paring a synchronous FSM with its hardware
implementation. Then both automata are on
finite strings, and the proof of equivalence can
be performed by traversing the state space of
their product [69].

b) Simulation relations are an efficientsufficient
(i.e., conservative) criterion to establish
language containment properties between au-
tomata, originating from the process algebraic
community [47], [46]. Informally, a simulation
relation is a relation between the states of
the two automata such that for each pair of
states in , for each symbol labeling an
edge from , the pair of next states under
that symbol is also in . This relation can
be computed much more quickly than the

exact language containment test (that in the
case of nondeterministic automata requires an
exponential determinization step), and hence
can be used as a fast heuristic check.

If the same simulation relation holds in both
directions (i.e., it is true also for each symbol
labeling an edge from ), then it is called
a bisimulation. Bisimulation can be used as
test for behavioral equivalence that directly
supports composition and abstraction (hiding
of edge labels). Moreover, self-bisimulation
is an equivalence relation among states of
an automaton, and hence it can be used to
minimize the automaton (the result is called
the “quotient” automaton).

c) In model checking [70], [71], [54], [6], the
system is modeled as a synchronous or asyn-
chronous composition of automata, and the
property is described as a formula in some
temporal logic [72], [73]. The proof is again
carried out by traversing the state space of the
automaton and marking the states that satisfy
the formula.

• Infinite automata methods can deal with infinite state
spaces when some minimization to a finite form is
possible. One example of this class are the so-called
timed automata [74], in which a set of real-valued
clocks is used to measure time. Severe restrictions
are applied, in order to make this model decidable.
Clocks can only be tested, started, and reset as part
of the edge labels of a finite automaton. Also, clocks
can only be compared against integer values and
initialized to integer values. In this case, it is possible
to show that only a finite set of equivalence class
representatives is sufficient to represent exactly the
behavior of the timed automaton [75], [74]. McManis
and Varaiya [76] introduced the notion of suspension,
which extends the class of systems that can be modeled
with variations of timed automata. It is then possible,
in principle, to verify timing constraint satisfaction
by using preemptive scheduling, which allows a low-
priority process to be stopped in the middle of a
computation by a high-priority one.

The main obstacles to the widespread application of FA-
based methods are the inherent complexity of the problem,
and the difficulty for designers, generally accustomed to
simulation-based models, to formally model the system or
its properties. The synchronous composition of automata,
which is the basis of all known automata-based methods,
is inherently sensitive to the number of states in the
component automata, since the size of the total state space
is the product of the sizes of the component state spaces.

Abstraction is the most promising technique to tackle
this problem, generally known as state-space explosion.
Abstraction replaces (generally requiring extensive user in-
tervention) some system components with simpler versions,
exhibiting nondeterministic behavior. Nondeterminism is
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used to reduce the size of the state space without losing
the possibility of verifying the desired property. The basic
idea is to build provably conservative approximations of
the exact behavior of the system model, such that the
complexity of the verification is lower, but no false positive
results are possible. For example, the verification system
may say that the approximate model does not satisfy
the property, while the original one did, thus requiring
a better approximation, but it will never say that the
approximate model satisfies the property, while the original
one did not [75], [77], [78]. The quotient with respect to
bisimulation can also be used in place of every component,
thus providing another mechanism (without false negative
results) to fight space explosion.

The systematic application of formal verification tech-
niques since the early stages of a design may lead to a
new definition of “optimal” size for a module (apart from
those currently in use, that are generally related to human
understanding, synthesis or compilation). A “good” leaf-
level module must be small enough to admit verification,
and large enough to possess interesting verifiable properties.
The possibility of meaningfully applying abstraction would
also determine the appropriate size and contents of modules
at the upper levels of the hierarchy.

Another interesting family of formal verification tech-
niques, useful for heterogeneous systems with multiple
concurrent agents, is based on the notion of partial ordering
between computations in an execution of a process network.
Direct use of available concurrency information can be
used during the verification process to reduce the number
of explicitly explored states [6], [51], [50]. Some such
methods are based on the so-called “Mazurkiewicz traces,”
in which a “trace” is an equivalence class of sequences of
state transitions where concurrent transitions are permuted
[79], [80].

Model checking and language containment have been
especially useful in verifying the correctness of protocols,
which are particularly well-suited to the finite automaton
model due to their relative data independence. One may
claim that these two (closely related) paradigms represent
about the only solutions to the specification verification
problem that are currently close to industrial applicability,
thanks to:

• The development of extremely efficientimplicit rep-
resentation methods for the state space, based on
Binary Decision Diagrams [81], [69], that do not need
to represent and store every reachable state of the
modeled system explicitly.

• The good degree of automation, at least of the property
satisfaction or language containment checks them-
selves (once a suitable abstraction has been found by
hand).

• The good match between the underlying semantics
(state-transition objects) and the finite-state behavior
of digital systems.

The verification problem becomes much more difficult
when one must take into account either the actual value of

data and the operations performed on them, or the timing
properties of the system. The first problem can be tackled by
first assuming equality of arithmetic functions with the same
name used at different levels of modeling (e.g., specification
and implementation [82]) and then separately verifying that
a given piece of hardware implements correctly a given
arithmetic function [83]. The timing verification problem
for sequential systems, on the other hand, still needs to be
formulated in a way that permits the solution of practical
problems in a reasonable amount of space and time. One
possibility, proposed almost simultaneously [84] and [85],
is to incrementally add timing constraints to an initially
untimed model, rather than immediately building the full-
blown timed automaton. This addition should be done
iteratively, to gradually eliminate all “false” violations of
the desired properties due to the fact that some timing
properties of the model have been ignored. The iteration
can be shown to converge, but the speed of convergence
still depends heavily on the ingenuity of the designer in
providing “hints” to the verification system about the next
timing information to consider.

As with many young technologies, optimism about ver-
ification techniques initially led to excessive claims about
their potential, particularly in the area of software verifi-
cation, where the term “proving programs” was broadly
touted. For many reasons, including the undecidability of
many verification problems and the fact that verification can
only be as good as the properties the designer specifies,
this optimism has been misplaced. Berry has suggested
using the term “automatic bug detection” in place of
“verification” to underscore that it is too much to hope
for a conclusive proof of any nontrivial design. Instead, the
goal of verification should be a technology that will help
designers preventing problems in deployed systems.

IV. SYNTHESIS

By “synthesis,” we mean broadly a stage in the design
refinement where a more abstract specification is translated
into a less abstract specification, as suggested in Fig. 2. For
embedded systems, synthesis is a combination of manual
and automatic processes, and is often divided into three
stages: mapping to architecture, in which the general struc-
ture of an implementation is chosen; partitioning, in which
the sections of a specification are bound to the architectural
units; and hardware and software synthesis, in which the
details of the units are filled out.

We informally distinguish betweensoftware synthesis
and software compilation, according to the type of input
specification. The term software compilation is generally
associated with an input specification using C- or Pascal-
like imperative, generally nonconcurrent, languages. These
languages have a syntax and semantics that is very close to
that of the implementation (assembly or executable code).
In some sense, they already describe, at a fairly detailed
level, the desiredimplementationof the software. We will
use the term software synthesis to denote an optimized
translation process from a high-level specification that
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describes thefunction that must be performed, rather than
the way in which it must be implemented. Examples of
software synthesis can be, for example, the C or assembly
code generation capabilities of digital signal processing
graphical programming environments such as Ptolemy [86],
of graphical FSM design environments such as StateCharts
[87], or of synchronous programming environments such
as Esterel, Lustre, and Signal [5].

Recently, higher and higher level synthesis approaches
have started to appear. One particularly promising tech-
nique for embedded systems issupervisory control, pio-
neered by Ramadge and Wonham [88]. While most syn-
thesis methods start from an explicit model ofhow the
system that is being designed must behave, supervisory
control describeswhat it must achieve. It cleverly combines
a classical control system view of the world with automata-
theoretic techniques, to synthesize a control algorithm that
is, in some sense, optimum.

Supervisory control distinguishes between the plant (an
abstraction of the physical system that must be controlled)
and the controller (the embedded system that must be
synthesized). Given a finite-automaton model of the plant
(possibly including limitations on what a controller can do)
and of the expected behavior of the complete system (plant
plus controller), it is possible to determine:

• if a finite-state controller satisfying that specification
exists, and

• a “best” finite-state controller, under some cost func-
tion (e.g., minimum estimated implementation cost).

Recent papers dealing with variations on this problem
are [89] and [90].

A. Mapping from Specification to Architecture

The problem of architecture selection and/or design is
one of the key aspects of the design of embedded systems.
Supporting the designer in choosing the right mix of
components and implementation technologies is essential to
the success of the final product, and hence of the method-
ology that was used to design it. Generally speaking, the
mapping problem takes as input a functional specification
and produces as output an architecture and an assignment
of functions to architectural units.

An architecture is generally composed of:

• hardware components (e.g., microprocessors, mi-
crocontrollers, memories, I/O devices, ASIC’s, and
FPGA’s),

• software components (e.g., an operating system, device
drivers, procedures, and concurrent programs), and

• interconnection media (e.g., abstract channels, busses,
and shared memories).

Partitioning determines which parts of the specification
will be implemented on these components, while their
actual implementation will be created by software and
hardware synthesis.

The cost function optimized by the mapping process
includes a mixture of time, area, component cost, and
power consumption, where the relative importance depends

heavily on the type of application. Time cost may be
measured either as execution time for an algorithm, or as
missed deadlines for a soft real-time system.9 Area cost
may be measured as chip, board, or memory size. The
components of the cost function may take the form of a
hard constraint or a quantity to be minimized.

Current synthesis-based methods almost invariably im-
pose some restrictions on the target architecture in order
to make the mapping problem manageable. For example,
the architecture may be limited to a library of pre-defined
components due to vendor restrictions or interfacing con-
straints. Few papers have been published on automating the
design of, say, a memory hierarchy or an I/O subsystem
based on standard components. Notable exceptions to this
rule are papers dealing with retargetable compilation [91],
or with a very abstract formulation of partitioning for co-
design [92]–[95]. The structure of the application-specific
hardware components, on the other hand, is generally much
less constrained.

Often, the communication mechanisms are also stan-
dardized for a given methodology. Few choices, often
closely tied to the communication mechanism used at the
specification level, are offered to the designer. Nonetheless,
some work has been done on the design of interfaces [96].

B. Partitioning

Partitioning is a problem with any design using more
than one component. It is a particularly interesting prob-
lem in embedded systems because of the heterogeneous
hardware/software mixture. Partitioning methods can be
classified, as shown in Table 3, according to four main
characteristics: 1) the specification model(s) supported, 2)
the granularity, 3) the cost function, and 4) the algorithm.

Explored algorithm classes include greedy heuristics,
clustering methods, iterative improvement, and mathemat-
ical programming.

So far, there seems to be no clear winner among parti-
tioning methods, partly due to the early stage of research
in this area, and partly due to the intrinsic complexity of
the problem, which seems to preclude an exact formulation
with a realistic cost function in the general case.

Ernst et al. [110], [111], [97] use a graph-based model,
with nodes corresponding to elementary operations (state-
ments in C, a C-like language extended with concurrency).
The cost is derived:

• by profiling, aimed at discovering the bottlenecks that
can be eliminated from the initial, all-software partition
by moving some operations to hardware;

• by estimating the closeness between operations, includ-
ing control locality (the distance in number of control
nodes between activations of the same operation in
the control flow graph), data locality (the number of
common variables among operations), and operator

9Real-time systems, and individual timing constraints within such
systems, are classified as soft or hard according to whether missing a
deadline just degrades the system performance or causes a catastrophic
failure.
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Table 3 A Comparison of Partitioning Methods

Author Model Granularity Cost Function Algorithm
Henkel [97] CDFG (C*) operation profiling (SW)

synthesis and similarity (HW)
communication cost

hand (outer)
simulated annealing (inner)

Olokutun [98] HDL task profiling (SW)
synthesis (HW)

Kernighan and Lin

Kumar [93] set-based task profiling mathematical programming
Hu [99] task list task profiling scheduling analysis branch and bound
Vahid [95] acyclic DFG operation profiling (SW)

processor cost (HW)
communication cost

mixed
integer-linear programming

Barros (1) [100] Unity (HDL) operation similarity
concurrent/sequence

clustering

Barros (2) [101] Occam operation
hierarchy

similarity
concurrence/sequence

clustering

Kalavade [102] acyclic DFG operation schedulability heuristic with look-ahead
Adams [103] HDL (?) task profiling (SW)

synthesis (HW)
hand

Eles [104] VHDL task profiling simulated annealing
Luk [105] Ruby (HDL) operation

hierarchy
rate matching hand

Steinhausen [106] CDFG (HDL, C) operation profiling hand
Ben Ismail [107] communicating processes task ? hand
Antoniazzi [108] FSM’s task ? hand
Chou [96] timing diagram operation time (SW)

area (HW)
min-cut

Gupta [56], [109] CDFG (HDL) operation time heuristic

closeness (the similarities, e.g., an add and a subtract
are close);

• by estimating the communication overhead incurred
when blocks are moved across partitions. This is
approximated by the (static) number of data items ex-
changed among partitions, assuming a simple memory-
mapped communication mechanism between hardware
and software.

Partitioning is done in two loops. The inner loop uses
simulated annealing, with a quick estimation of the gain
derived by moving an operation between hardware and
software, to improve an initial partition. The outer loop uses
synthesis to refine the estimates used in the inner loop.

Olokutun et al. [98] perform performance-driven parti-
tioning working on a block-by-block basis. The specifica-
tion model is a hardware description language. This allows
them to use synthesis for hardware cost estimation, and
profiling of a compiled-code simulator for software cost
estimation. Partitioning is done together with scheduling,
since the overall goal is to minimize response time in the
context of using emulation to speed up simulation. An
initial partition is obtained by classifying blocks according
to whether they are synthesizable, and whether the commu-
nication overhead justifies a hardware implementation. This
determines some blocks which must either go into software
or hardware. Uncommitted blocks are assigned to hardware
or software starting from the block which has most to gain
from a specific choice. The initial partition is then improved
by a Kernighan and Lin-like iterative swapping procedure.

Kumar et al. [92], [93], on the other hand, consider
partitioning in a very general and abstract form. They
use a complex, set-based representation of the system,
its various implementation choices and the various costs

associated with them. Cost attributes are determined mainly
by profiling. The system being designed is represented by
four sets: available software functions; hardware resources;
communications between the (software and/or hardware)
units; and functions to be implemented, each of which can
be assigned a set of software functions, hardware resources
and communications. This means that the given software
runs on the given hardware and uses the given communica-
tions to implement the function. The partitioning process is
followed by a decomposition of each function into virtual
instruction sets, followed by design of an implementation
for the set using the available resources, and followed again
by an evaluation phase.

D’Ambrosio et al. [112], [99] tackle the problem of
choosing a set of processors on which a set of cooperating
tasks can be executed while meeting real-time constraints.
They also use a mathematical formulation, but provide
an optimal solution procedure by using branch-and-bound.
The cost of a software partition is estimated as a lower
and an upper bound on processor utilization. The upper
bound is obtained by rate-monotonic analysis [113], while
the lower bound is obtained by various refinements of the
sum of task computation times divided by task periods.
The branch-and-bound procedure uses the bounds to prune
the search space, while looking for optimal assignments
of functions to components, and satisfying the timing
constraints. Other optimization criteria can be included
beside schedulability, such as response times to tasks with
soft deadlines, hardware costs, and expandability, which
favors software solutions.

Barroset al. [100] use a graph-based fine-grained repre-
sentation, with each unit corresponding to a simple state-
ment in the Unity specification language. They cluster units
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according to a variety of sometimes vague criteria: similar-
ity between units, based on concurrency (control and data
independence), sequencing (control or data dependence),
mutual exclusion, and vectorization of a sequence of related
assignments. They cluster the units to minimize the cost of
cuts in the clustering tree, and then improve the clustering
by considering pipelining opportunities, allocations done at
the previous stage, and cost savings due to resource sharing.

Kalavade and Lee [102] use an acyclic dependency graph
derived from a DFG to simultaneously map each node
(task) to software or hardware and schedule the execution
of the tasks. The approach is heuristic, and can give
an approximate solution to very large problem instances.
To guide the search process, it uses both critical path
information and the suitability of a node to hardware or
software. For example, bit manipulations are better suited
to hardware while random accesses to a data structure are
better suited to software.

Vahid, Gajskiet al. [95], [114] perform graph-based parti-
tioning of a variable-grained specification. The specification
language is SpecCharts, a hierarchical model in which the
leaves are “states” of a hierarchical Statecharts-like FSM.
These “states” can contain arbitrarily complex behavioral
VHDL processes, written in a high-level specification style.
Cost function estimation is done at the leaf level. Each
level is assigned an estimated number of I/O pins, an
estimated area (based on performing behavioral, RTL, and
logic synthesis in isolation), and an estimated execution
time (obtained by simulating that initial implementation,
and considering communication delay as well). The area
estimate can be changed if more leaves are mapped onto
the same physical entity, due to potential sharing. The cost
model is attached to a graph, in which nodes represent
leaves and edges represent control (activation/deactivation)
and data (communication) dependencies. Classical cluster-
ing and partitioning algorithms are then applied, followed
by a refinement phase. During refinement, each partition
is synthesized, to get better area and timing estimates,
and “peripheral” graph nodes are moved among partitions
greedily to reduce the overall cost. The cost of a given
partition is a simple weighted sum of area, pin, chip count,
and performance constraint satisfaction measures.

Steinhausenet al. [106], [91], [115] describe a complete
co-synthesis environment in which a control dataflow
graph (CDFG) representation is derived from an array
of specification formats, such as Verilog, VHDL, and C.
The CDFG is partitioned by hand, based on the results of
profiling, and then mapped onto an architecture that can in-
clude general-purpose microprocessors, application-specific
instruction processors (ASIP’s), software-programmable
components designedad hoc for an application, and
ASIC’s. An interesting aspect of this approach is that
the architecture itself is not fixed, but synthesis is driven
by a user-defined structural description. ASIC synthesis
is done with a commercial tool, while software synthesis,
both for general-purpose and specialized processors, is
done with an existing retargetable compiler developed by
Hoogerbruggeet al. [116].

Ben Ismailet al. [107] and Vosset al. [117] start from a
system specification described in SDL [118]. The specifica-
tion is then translated into the Solar internal representation,
based on a hierarchical interconnection of communicating
processes. Processes can be merged and split, and the hier-
archy can be changed by splitting, moving and clustering
of subunits. The sequencing of these operations is currently
done by the user.

Finally, Chou et al. [96] and Walkup and Borriello
[119] describe a specialized, scheduling-based algorithm for
interface partitioning. The algorithm is based on a graph
model derived from a formalized timing diagram. Nodes
represent low-level events in the interface specification.
Edges represent constraints, and can either be derived
from causality links in the specification, or be added
during the partitioning process (for example to represent
events that occur on the same wire, and hence should be
moved together). The cost function is time for software
and area for hardware. The algorithm is based on a min-
cut procedure applied to the graph, in order to reduce
congestion. Congestion in this case is defined as software
being required to produce events more rapidly than the
target processor can do, which implies the need for some
hardware assistance.

C. Hardware and Software Synthesis

After partitioning (and sometimes before partitioning, in
order to provide cost estimates) the hardware and software
components of the embedded system must be implemented.
The inputs to the problem are a specification, a set of
resources and possibly a mapping onto an architecture. The
objective is to realize the specification with the minimum
cost.

Generally speaking, the constraints and optimization cri-
teria for this step are the same as those used during
partitioning. Area and code size must be traded off against
performance, which often dominates due to the real-time
characteristics of many embedded systems. Cost consid-
erations generally suggest the use of software running on
off-the-shelf processors, whenever possible. This choice,
among other things, allows one to separate the software
from the hardware synthesis process, relying on some form
of pre-designed or customized interfacing mechanism.

One exception to this rule are authors who propose the
simultaneous design of a computer architecture and of the
program that must run on it [120], [121], [115]. Since the
designers of general-purpose CPU’s face different problems
than the designers of embedded systems, we will only con-
sider those authors who synthesize an ASIP [122], and the
microcode that runs on it. The designer of a general-purpose
CPU must worry about backward compatibility, compiler
support, and optimal performance for a wide variety of
applications, whereas the embedded system designer must
worry about addition of new functionality in the future,
user interaction, and satisfaction of a specific set of timing
constraints.

Note that by using an ASIP rather than a standard ASIC,
which generally has very limited programming capabili-
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Table 4 A Comparison of Software Scheduling Methods

Author Model Interface Constraint Granularity Scheduling Algorithm
Cochran [130] task list none task RMA (runtime)
Chou [96] task list synthesized task, operation heuristic (static)
Gupta [109] CDFG ? operation heuristic with look-ahead (static + runtime)
Chiodo [131] task list synthesized task RMA (runtime)
Menez [120] CDFG ? operation exhaustive

ties, the embedded system designer can couple some of
the advantages of hardware and software. For example,
performance and power consumption can be improved
with respect to a software implementation on a general-
purpose microcontroller or DSP, while flexibility can be im-
proved with respect to a hardware implementation. Another
method to achieve the same goal is to use reprogrammable
hardware, such as FPGA’s, which can be reprogrammed
either off-line (just like embedded software is upgraded
by changing a ROM), or even on-line (to speed up the
algorithm that is currently being executed).

The hardware synthesis task for ASIC’s used in embed-
ded systems (whether they are implemented on FPGA’s or
not) is generally performed according to the classical high-
level and logic synthesis methods. These techniques have
been worked on extensively; for example, recent books by
De Micheli [123], Devadaset al. [124], and Camposano and
Wolf [125] describe them in detail. Marwedel and Goossens
[126] present a good overview of code generation strategies
for DSP’s and ASIP’s.

The software synthesis task for embedded systems, on
the other hand, is a relatively new problem. Tradition-
ally, software synthesis has been regarded with suspicion,
mainly due to excessive claims made during its infancy.
In fact, the problem is much more constrained for em-
bedded systems compared to general-purpose computing.
For example, embedded software often cannot use virtual
memory, due to physical constraints (e.g., the absence
of a swapping device), to real-time constraints, and to
the need to partition the specification between software
and hardware. This severely limits the applicability of
dynamic task creation and memory allocation. For some
highly critical applications even the use of a stack may be
forbidden, and everything must be dealt with by polling
and static variables. Algorithms also tend to be simpler,
with a clear division into cooperating tasks, each solving
one specific problem (e.g., digital filtering of a given input
source, protocol handling over a channel, and so on). In
particular, the problem of translating cooperating finite-state
machines into software has been solved in a number of
ways.

Software synthesis methods proposed in the literature
can be classified, as shown in Table 4, according to the
following: 1) the specification formalism, 2) interfacing
mechanisms (at the specification and the implementation
levels), 3) when the scheduling is done, and 4) the sched-
uling method.

Almost all software synthesis methods perform some
sort of scheduling—sequencing the execution of a set of
originally concurrent tasks. Concurrent tasks are an excel-

lent specification mechanism, but cannot be implemented
as such on a standard CPU. The scheduling problem
(reviewed, e.g., by Halang and Stoyenko [127]) amounts
to finding a linear execution order for the elementary
operations composing the tasks, so that all the timing
constraints are satisfied. Depending on how and when this
linearization is performed, scheduling algorithms can be
classified as

• static, where all scheduling decisions are made at
design- or compile-time;

• quasistatic, where some scheduling decisions are made
at run-time, some at compile-time;

• dynamic, where all decision are made at run-time.

Dynamic schedulers take many forms, but in particular
they are distinguished as preemptive or nonpreemptive,
depending on whether a task can be interrupted at arbi-
trary points. For embedded systems, there are compelling
motivations for using static or quasistatic scheduling, or
at least for minimizing preemptive scheduling in order to
minimize scheduling overhead and to improve reliability
and predictability. There are, of course, cases in which
preemption cannot be avoided, because it is the only
feasible solution to the problem instance [127], but such
cases should be carefully analyzed to limit preemption to
a minimum.

Many static scheduling methods have been developed.
Most somehow construct a precedence graph and then
apply or adapt classical methods. See Bhattacharyyaet al.
[32] and Sih and Lee [128], [129] as a starting point for
scheduling of DFG’s.

Many approaches to software synthesis for embedded
systems divide the computation into cooperating tasks that
are scheduled at run time. This scheduling can be done
either by using classical scheduling algorithms, or by de-
veloping new techniques based on a better knowledge
of the domain. Embedded systems with fairly restricted
specification paradigms are an easier target for specialized
scheduling techniques than fully general algorithms written
in an arbitrary high-level language.

The former approach uses, for example, rate monotonic
analysis (RMA) [113] to perform schedulability analysis.
In the pure RMA model, tasks are invoked periodically,
can be preempted, have deadlines equal to their invocation
period, and system overhead (context switching, interrupt
response time, and so on) is negligible. The basic result
by Liu and Layland states that under these hypotheses, if a
given set of tasks can be successfully scheduled by a static
priority algorithm, then it can be successfully scheduled by
sorting tasks by invocation period, with the highest priority
given to the task with the shortest period.
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The basic RMA model must be augmented to be practical.
Several results from the real-time scheduling literature can
be used to develop a scheduling environment supporting
process synchronization, interrupt service routines, context
switching time, deadlines different from the task invocation
period, mode changes (which may cause a change in the
number and/or deadlines of tasks), and parallel processors.
Parallel processor support generally consists of analyzing
the schedulability of a given assignment of tasks to proces-
sors, providing the designer with feedback about potential
bottlenecks and sources of deadlocks.

Chou et al. [96] advocate developing new techniques
based on better knowledge of the domain. The problem
they consider is to find a valid schedule of processes
specified in Verilog under given timing constraints. This
approach, like that of Guptaet al. described below, and
unlike classical task-based scheduling methods, can take
into account both fine-grained and coarse-grained timing
constraints. The specification style chosen by the authors
uses Verilog constructs that provide structured concurrency
with watchdog-style preemption. In this style, multiple
computation branches are started in parallel, and some of
them (the watchdogs) can “kill” others upon occurrence of
a given condition. A set of “safe recovery points” is defined
for each branch, and preemption is allowed only at those
points. Timing constraints are specified by using modes,
which represent different “states” for the computation as
in SpecCharts, e.g., initialization, normal operation, and
error recovery. Constraints on the minimum and maximum
time separation between events (even of the same type, to
describe occurrence rates) can be defined either within a
mode or among events in different modes. Scheduling is
performed within each mode by finding a cyclic order of
operations which preserves I/O rates and timing constraints.
Each mode is transformed into an acyclic partial order
by unrolling, and possibly splitting (if it contains parallel
loops with harmonically unrelated repetition counts). Then
the partial order is linearized by using a longest-path
algorithm to check feasibility and assign start times to the
operations.

The same group [132] describes a technique for de-
vice driver synthesis, targeted toward microcontrollers with
specialized I/O ports. It takes as input a specification
of the system to be implemented, a description of the
function and structure of each I/O port (a list of bits and
directions), and a list of communication instructions. It
can also exploit specialized functions such as parallel/serial
and serial/parallel conversion capabilities. The algorithm
assigns communications in the specification to physical
entities in the microcontroller. It first tries to use spe-
cial functions, then assigns I/O ports, and finally resorts
to the more expensive memory-mapped I/O for overflow
communications. It takes into account resource conflicts
(e.g., among different bits of the same port), and allocates
hardware components to support memory-mapped I/O. The
output of the algorithm is a netlist of hardware components,
initialization routines and I/O driver routines that can be
called by the software generation procedure whenever a

communication between software and hardware must take
place.

Gupta et al. [56], [109] started their work on software
synthesis and scheduling by analyzing various implementa-
tion techniques for embedded software. Their specification
model is a set of threads, extracted from a CDFG de-
rived from a C-like HDL called Hardware-C. Threads are
concurrent loop-free routines, which invoke each other
as a basic synchronization mechanism. Statements within
a thread are scheduled statically, at compile-time, while
threads are scheduled dynamically, at run-time. By us-
ing a concurrent language rather than C, the translation
problem becomes easier, and the authors can concentrate
on the scheduling problem, to simulate the concurrency
of threads. The authors compare the inherent advantages
and disadvantages of two main techniques to implement
threads: coroutines and a single case statement (in which
each branch implements a thread). The coroutine-based
approach is more flexible (coroutines can be nested, e.g., to
respond to urgent interrupts), but more expensive (due to
the need to switch context) than the case-based approach.

The same group [133] developed a scheduling method
for reactive real-time systems. The cost model takes into
account the processor type, the memory model, and the
instruction execution time. The latter is derived bottom-up
from the CDFG by assigning a processor and memory-
dependent cost to each leaf operation in the CDFG. Some
operations have an unbounded execution time, because
they are either data-dependent loops or synchronization
(I/O) operations. Timing constraints are basically data rate
constraints on externally visible Input/Output operations.
Bounded-time operations within a process are linearized
by a heuristic method (the problem is known to be NP-
complete). The linearization procedure selects the next
operation to be executed among those whose predecessors
have all been scheduled, according to: whether or not
their immediate selection for scheduling can cause some
timing constraint to be missed, and a measure of “urgency”
that performs some limited timing constraint lookahead.
Unbounded-time operations, on the other hand, are imple-
mented by a call to the runtime scheduler, which may cause
a context switch in favor of another more urgent thread.

Chiodo et al. [134] also propose a software synthesis
method from extended asynchronous FSM’s, called co-
design finite state machines (CFSM’s). The method takes
advantage of optimization techniques from the hardware
synthesis domain. It uses a model based on multiple asyn-
chronously communicating CFSM’s, rather than a single
FSM, enabling it to handle systems with widely varying
data rates and response time requirements. Tasks are orga-
nized with different priority levels, and scheduled according
to classical run-time algorithms like RMA. The software
synthesis technique is based on a very simple CDFG,
representing the state transition and output functions of
the CFSM. The nodes of the CDFG can only be of two
types: TEST nodes, which evaluate an expression and
branch according to its result, and ASSIGN nodes, which
evaluate an expression and assign its result to a variable.
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The authors develop a mapping from a representations
of the state transition and output functions using Binary
Decision Diagrams [81] to the CDFG form, and can thus
use a body of well-developed optimization techniques to
minimize memory occupation and/or execution time. The
simple CDFG form permits also an easy and relatively
accurate prediction of software cost and performance, based
on cost assignment to each CDFG node [135]. The cost
(code and data memory occupation) and performance (clock
cycles) of each node type can be evaluated with a good
degree of accuracy, based on a handful of system-specific
parameters (e.g., the cost of a variable assignment, of
an addition, of a branch). These parameters can be de-
rived by compiling and running a few carefully designed
benchmarks on the target processor, or on a cycle-accurate
emulator or simulator.

Liem et al. [64] tackle a very different problem, that
of retargetable compilation for a generic processor archi-
tecture. They focus their optimization techniques toward
highly asymmetric processors, such as commercial DSP’s
(in which, for example, one register may only be used for
multiplication, another one only for memory addressing,
and so on). Their register assignment scheme is based on
the notion of classes of registers, describing which type of
operation can use which register. This information is used
during CDFG covering with processor instructions [136] to
minimize the number of moves required to save registers
into temporary locations.

Marwedel [121] also uses a similar CDFG covering
approach. The source specification can be written in VHDL
or in the Pascal-like language Mimola. The purpose is mi-
crocode generation for very long instruction word (VLIW)
processors, and in this case the instruction set has not been
defined yet. Rather, a minimum encoding of the control
word is generated for each control step. Control steps are
allocated using an “as soon as possible” (ASAP) policy,
meaning that each microoperation is scheduled to occur as
soon as its operands have been computed, compatibly with
resource utilization conflicts. The control word contains
all the bits necessary to steer the execution units in the
specified architecture to perform all the micro-operations in
each step. Register allocation is done in order to minimize
the number of temporary locations in memory due to
register spills.

Tiwari et al. [137] describe a software analysis (rather
than synthesis) method aimed at estimating the power
consumption of a program on a given processor. Their
power consumption model is based on the analysis of
single instructions, addressing modes, and instruction pairs
(a simple way of modeling the effect of the processor state).
The model is evaluated by running benchmark programs for
each of these characteristics and measuring the current flow
to and from the power and ground pins.

V. CONCLUSIONS

In this paper we outlined some important aspects of the
design process for embedded systems, including specifica-

tion models and languages, simulation, formal verification,
partitioning, and hardware and software synthesis.

The design process is iterative: a design is transformed
from an informal description into a detailed specification
usable for manufacturing. The specification problem is
concerned with the representation of the design at each
of these steps; the validation problem is to check that the
representation is consistent both within a step and between
steps; and the synthesis problem is to transform the design
between steps.

We argued that formal models are necessary at each step
of a design, and that there is a distinction between the
language in which the design is specified and its underlying
model of computation. Many models of computation have
been defined, due not just to the immaturity of the field
but also to fundamental differences: the best model is a
function of the design. The heterogeneous nature of most
embedded systems makes multiple models of computation
a necessity. Many models of computation are built by com-
bining three largely orthogonal aspects: sequential behavior,
concurrency, and communication.

We presented an outline of the tagged–signal model [8],
a framework developed by two of the authors to contrast
different models of computation. The fundamental entity in
the model is an event (a value/tag pair). Tags usually denote
temporal behavior, and different models of time appear as
structure imposed on the set of all possible tags. Processes
appear as relations between signals (sets of events). The
character of such a relation follows from the type of process
it describes.

Simulation and formal verification are two key validation
techniques. Most embedded systems contain both hardware
and software components, and it is a challenge to effi-
ciently simulate both components simultaneously. Using
separate simulators for each is often more efficient, but
synchronization becomes a challenge.

Formal verification can be roughly divided into theo-
rem proving methods, FA methods, and infinite automata
methods. Theorem provers generally assist designers in
constructing a proof, rather than being fully automatic,
but are able to deal with very powerful languages. Finite-
automata schemes represent (either explicitly or implicitly)
all states of the system and check properties on this rep-
resentation. Infinite-automata schemes usually build finite
partitions of the state space, often by severely restricting
the input language.

In this paper, synthesis refers to a step in the design
refinement process where the design representation is made
more detailed. This can be manual and/or automated, and
is often divided into mapping to architecture, partitioning,
and component synthesis. Automated architecture mapping,
where the overall system structure is defined, often restricts
the result to make the problem manageable. Partitioning,
where sections of the design are bound to different parts
of the system architecture, is particularly challenging for
embedded systems because of the elaborate cost functions
due to their heterogeneity. Assigning an execution order
to concurrent modules and finding a sequence of instruc-
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tions implementing a functional module are the primary
challenges in software synthesis for embedded systems.
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