
Towards the Web of Things:
Web Mashups for Embedded Devices

Dominique Guinard
Institute for Pervasive Computing

ETH Zurich, Switzerland
and SAP Research Zurich
dguinard@inf.ethz.ch

Vlad Trifa
Institute for Pervasive Computing

ETH Zurich, Switzerland
and SAP Research Zurich

vlad.trifa@ieee.org

ABSTRACT
In the “Internet of Things” vision, the physical world be-
comes integrable with computer networks. Embedded com-
puters or visual markers on everyday objects allow things
and information about them to be accessible in the digi-
tal world. However, this integration is based on competing
standards and requires custom solutions, thus requires ex-
tensive time and technical expertise. Based on the success
of Web 2.0 mashup applications, we propose a similar ap-
proach for integrating real-world devices to the Web, allow-
ing for them to be easily combined with other virtual and
physical resources. In this paper we discuss possible inte-
gration method, in particular how the REST principles can
be applied to embedded devices. Then we illustrate these
principles with two concrete implementations: on the Sun
SPOT platform and on the Ploggs wireless energy monitors.
Finally, we show how RESTful interactions can be leveraged
to quickly create new prototypes and mashups that combine
the physical and virtual world.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous

Keywords
Web of Things, REST, embedded devices, real-world mashups,
Web, Internet of Things

1. INTRODUCTION
In the last decade, a tremendous progress in the field of

embedded systems has given birth to a myriad of tiny com-
puters, where virtually any type of sensors/actuators can be
attached. By inter-connecting these devices using low-power
wireless communication, a brand new world of possible ap-
plications is unveiled. Networks of physically distributed
computers, usually called wireless sensor networks (WSN),
would be invaluable tools for monitoring the physical world.
Unfortunately, due to the lack of standards most projects in
this field are based on different - and usually incompatible
- software and hardware platforms. Within such an hetero-
geneous ecosystem of devices, development of simple appli-
cations still requires extensive skills and time. Moreover,
for each new deployment a large amount of work must be
devoted to reimplement basic functions and application spe-
cific user interfaces, which is a waste of resources that could

Copyright is held by the author/owner(s).
WWW2009, April 20-24, 2009, Madrid, Spain.
.

be used by developers to focus on the application logic. Ide-
ally, developers should be able to quickly build applications
only by recombining ready-made building blocks, just like
with LEGO bricks.

In spite of the increasing popularity of open source com-
munities, progress in networked objects is still being limited
by the lack of clear, standardized, and interoperable commu-
nication protocols. For the realm of the “Internet of Things”
to materialize (and be scalable), there is an unmet need for
a common language that can be understood by my fridge,
your TV set, and her car. The Internet is a stunning ex-
ample of a global network of computers that interoperate
smoothly together in spite of the large amount of different
software and hardware platforms available, and there is a
growing number of embedded devices that can connect di-
rectly to the Internet. Based on these observations, we pro-
pose to leverage the existing and ubiquitous Web protocols
as common ground where real objects could interact with
each other. One of the advantages of using Web standards
is that devices will be able to finally “speak” the same lan-
guage as other resources on the Internet, therefore making
it very easy to integrate physical devices with any content
on the Web. The mashup paradigm has been successfully
applied to fast prototype valuable applications, however, a
similar model is missing for physical computing.

Our contribution in this article is to propose two ways to
integrate real-world things into the existing Web by turning
real objects into RESTful resources that can be used directly
over HTTP. First, we describe how an actual Web server can
be implemented on tiny embedded devices to turn them into
RESTful resources. Second, when computational resources
are too limited or devices do not offer a RESTful interface,
we propose to use an intermediate gateway that can offer
a unified REST API to access these devices, by hiding the
actual communication protocols used to interact with them.
Finally, we illustrate our approach with real prototypes we
have built on top of this ecosystem of RESTful devices.

Our main aim is to lay the basis of the future Web of
Things. By providing practical guidelines on how to blend
real-world devices into the existing Web, devices and their
properties become browsable with any Web browser, with no
need to install any additional software or driver. Moreover,
simple mashups that combine real-time data from physi-
cal devices and other Web content can be built with much
less effort than required by existing approaches. Just like
mashups have significantly contributed to the “democrati-
zation” of the Web, we hope that physical mashups will
drastically lower the entry barrier for developing home-made

applications with devices, thus accelerating the acceptance
of the Web of Things.

2. RELATED WORK
With advances in computing technology, tiny Web servers

can be embedded in most embedded devices [4]. The idea
of each thing having its own Web page is appealing because
Web pages could be indexed by search engines, then searched
and accessed directly from a Web browser. In the Cooltown
project [6], each thing, place, and person have an associated
Web page with information about them. JXTA is an open
network computing platform designed for peer-to-peer com-
puting that can be implemented on all kinds of devices [15],
but is more an overlay network which is not related to the
Web in particular. More recently, Web services have also
been used to interconnect devices on top of standard Web
protocols [11].

The SenseWeb project [5] is a platform for people to share
their sensor readings using Web services to transmit the data
to a central server. Pachube1 offers a similar community
Web site for people to share their sensors and uses more
open data formats. These approaches are based on a cen-
tralized repository and devices need to be registered before
they can publish data, thus are not sufficiently scalable and
are more concerned with data storage and retrieval. Pre-
hofer et al. [10] recently proposed a Web-based middleware
that is similar to our approach, however Internet is used
only as a transport protocol.

In most early Web-based approaches, HTTP is used only
to transport data between devices, while in fact HTTP is an
application protocol. Projects that specifically focus on re-
using the founding principles of the Web as an application
protocol are still not common. Creation of devices that are
Web-enabled by design, would facilitate the integration of
physical devices with other content on the Web. As pointed
out in [17], REST-enabled devices would not require any
additional API or descriptions of resources/functions. An
early gateway system similar to ours has been proposed in
[13], but was very limited in terms of functionality. The
approach found in [14] is the first to our knowledge to take
a very similar approach to ours, but mainly focuses on the
discovery of devices rather than the functionalities offered
by these real-world devices.

3. WEB-ORIENTED ARCHITECTURE
Realization of the Web of Things requires to extend the

existing Web so that real-world objects and embedded de-
vices can blend seamlessly into it. Instead of using the Web
protocols merely as a transport protocol – as done when
using WS-* Web services –, we would like to make devices
an integral part of the Web by using HTTP as application
layer. For this purpose, we make the functionalities of real-
world embedded devices available through a RESTful API
over HTTP, as described in Section 3.1. In this paper we
propose two alternative methods to enable REST based in-
teraction with embedded devices. First, devices are directly
made part of the Web, by implementing a web server on
them directly (Section 3.2). In the second, devices are con-
nected through a Smart Gateway which translates requests
across protocols (Section 3.3).

1http://www.pachube.com

3.1 Sensor Nodes as RESTful Resources
The architectural principle that lies at the heart of the

Web, namely Representational State Transfer (REST) as
defined by Roy Fielding [2], shares a similar goal with more
well known integration techniques such as WS-* Web ser-
vices (SOAP, WSDL, etc), which is to increase interoper-
ability for a looser coupling between the parts of distributed
applications. However, the goal of REST is to achieve this
in a more lightweight and simpler manner, and focuses on
resources, and not functions as is the case with WS -* Web
services. In particular, REST uses the Web as an applica-
tion platform and fully leverages all the features inherent
to HTTP such as authentication, authorization, encryption,
compression, and caching. This way, REST brings services
“into the browser”: resources can be linked and bookmarked
and the results are visible with any Web browser, with no
need to generate complex source code out of WSDL files to
be able to interact with the service.

To achieve this, REST proposes two basic rules2:

1. The application model is transformed from operation-
centric into a data-centric one. This means “every-
thing” that offers services becomes a resource (e.g. a
temperature sensor is a resource of a the sensor node
resource) that can be identified unambiguously using
URIs.

2. The four main operations provided by HTTP (GET,
POST, PUT, DELETE) are the only available opera-
tions on resources, they define a uniform interface with
well-known and shared semantics.

The simplicity of REST and its seamless integration into
global networks makes it an ideal candidate for creating
“tactical, ad-hoc integration over the Web” [9]. These ad-
vantages mainly explain why REST services are the techno-
logical basis for an increasing number of Web 2.0 services
as those offered by Flickr, Twitter, Facebook, Del.icio.us,
Google and Amazon. Traditionally, REST has been used
to integrate websites together. However, the lightweight
aspect of REST makes it an ideal candidate for resource-
constrained embedded devices to offer services to the world
[7, 8]. Since many such devices usually offer rather simple
and atomic functionalities (for example reading sensor val-
ues), modeling them using REST is often straightforward.

3.2 Integration Through Direct API Access
Although REST seems suited for embedded devices, these

do not always have an IP (Internet Protocol) address and
are thus not directly addressable on the Internet. However,
it is very likely that more and more real-world devices will
become IP-enabled and have embedded HTTP servers (in
particular with 6LowPAN), making them able to understand
the Web languages and protocols [4, 1]. Such Web-enabled
devices can be directly integrated and make their RESTful
APIs directly accessible on the Web. This integration pro-
cess is shown on Figure 1. Each device has an IP address
and runs a Web Server on top of which it offers a RESTful
API to the mashup developer.

2A comprehensive description of the REST principles and on
the creation of Resource Oriented Architectures is provided
in [12]

Figure 1: Direct integration of IP real-world de-
vices. Each device embeds a Web Server and offers
its functionality through a RESTful API.

Figure 2: Integration architecture with Smart Gate-
ways making the functionalities of real-world devices
available on the Web through a RESTful API.

3.3 Integration Through API Access on Smart
Gateways

While such Web-enabled devices are likely to be widely
spread in the near future, direct integration of real-world
devices into the Web is still a rather cumbersome task. In
particular, when devices do not support IP or HTTP as is
usually the case with wireless sensor networks (WSN), a dif-
ferent integration pattern is needed. As shown on Figure 2,
we propose to use the concept of Smart Gateways as inter-
mediate element that bridges the Web with devices that do
not talk IP [16]. Smart Gateways have one main goal: they
abstract the proprietary communication protocols or APIs
of embedded devices and offer their functionalities accessible
via a RESTful API. Each gateway has an IP address and
runs a Web server, and understands the proprietary pro-
tocols of different devices that are connected to it through
the use of dedicated drivers. As an example, consider a re-
quest to a sensor node coming from the Web trough the
RESTful API. The gateway maps this request to a request
in the proprietary API of the node and transmits it using the
communication protocol the sensor node understands (e.g.

Figure 3: Devices extended attached to the Ploggs
power outlets communicating with a Smart Gate-
way offering the Ploggs functionalities as RESTFul
services.

Zigbee3). A Smart Gateway can support several types of
devices through a driver architecture as shown on Figure 2
where the gateway supports three types of devices and their
corresponding communication protocols. Technical details
of the Smart Gateways can be found in [16]. Ideally, a
Smart Gateway needs to keep a small footprint so that it
can be integrated to computers already present in the envi-
ronment such as Network Attached Storage (NAS) devices
or Wireless routers. As an example we successfully tested
the deployment of our gateway on an NSLU2 NAS4.

Aside from connecting limited devices to the Web, a Smart
Gateway can also add more functionalities to devices. Gate-
ways can be used for orchestrating the composition of several
low-level services into higher-level services available from the
RESTful API, that is creation of mashups using device-level
services. For instance, if an embedded device offers moni-
toring of the energy consumption of appliances, the Smart
Gateway could provide a service that returns the sum of
all the energy consumption monitored by all the embedded
devices connected to the gateway.

4. IMPLEMENTATION
In order to empirically analyze and test the potential of

the RESTful approach for real-world services and how our
approach could become the basis for the Web of Things, we
implemented the architecture on two WSNs plateforms: the
Sun SPOT sensor nodes5 and the Ploggs Energy Sensors6.
In this section we describe the architecture of both imple-
mentations and then focus on how these were used to create
mashups.

4.1 RESTful Ploggs
In our first implementation, we illustrate the usage of a

Smart Gateway (see Section 3.3). For this purpose, we use

3http://www.zigbee.org/
4http://en.wikipedia.org/wiki/NSLU2
5http://www.sunspotworld.com/
6http://www.plogginternational.com/

intelligent power outlets called Plogg which can measure the
electricity consumption of the devices that are plugged into
them. Each Plogg is also a wireless sensor node that com-
municates over Bluetooth. This makes the Ploggs especially
suited for energy monitoring at the appliance level. How-
ever, the integration interface offered by the Ploggs is pro-
prietary which makes the development of the applications
on top of the Ploggs rather tedious.

The Web-oriented architecture we have implemented us-
ing the Ploggs is based on four main layers as shown in
Figure 3. The first layer is composed of appliances we want
to monitor and control through the system. In the second
layer, each of these appliances is then plugged to a Plogg
sensor node. In the third layer, the Ploggs are discovered
and managed by a Smart Gateway. The Smart Gateway em-
beds a lightweight Web server which offers the monitoring
and control functionalities of the Ploggs through URL, in a
RESTful manner. The last layer is the user interface where
the mashup actually occurs and is described in Section 4.3.1.

4.1.1 Ploggs Smart Gateway
The Ploggs Smart Gateway is a component written in

C++ whose role is to automatically find all the Ploggs in
the environment and make them available as Web resources.
The Gateway first discovers the Ploggs on a regular basis by
scanning the environment for Bluetooth devices. It then fil-
ters the identified devices according to their Bluetooth iden-
tifier. The next step is to make their functionalities available
though simple URLs, and for that a small footprint Web
server is used to enable access to the sensors’ functionalities
over the Web. This is done by mapping URLs to native re-
quests on the Plogg Bluetooth API. For instance,
http://webofthings.com/energymonitor/ploggs/kitchen

is automatically bound by the Gateway to a method that
runs a low-level call that first initiates a bluetooth connec-
tion, and then connects to the Plogg named “Kitchen”, and
polls the Plogg for reading the current load of energy mea-
sured. For URLs to be served on the Web, the Gateway
embeds a small footprint Web server. After evaluating sev-
eral options7, we decided to use Mongoose, a 35 Kb cross-
platform Web server8.

Beyond discovering the Ploggs and mapping their func-
tionalities to URLs available on the Web, the gateway has
two other main features. First, it can offer local mashups or
aggregates of device-level services. For example, the Ploggs’
Smart Gateway offers a service that returns the combined
electricity load of all the Ploggs found at any given time.
The second feature is that the gateway can represent the
output of services on resources in various formats. As is
often the case in Resource Oriented Architectures [12], an
(X)HTML page is returned by default to ensure the brows-
ability of the results. Results could also be returned in a
more interoperable format called JSON (JavaScript Object
Notation)9. JSON is an alternative to XML often used as
a data exchange format for Web mashups. Since JSON is
a lightweight format we believe it more adapted to devices
with limited capabilities. As an example, the monitoring
data of all the Ploggs currently available can be retrieved
by accessing the following URL:
http://webofthings.com/energymonitor/ploggs/*.json

7http://tinyurl.com/compareWS
8http://code.google.com/p/mongoose
9http://json.org/

[{

"deviceName": "ComputerAndScreen",

"currentWatts": 50.52,

"KWh": 5.835,

"maxWattage": 100.56

},

"deviceName": "Fridge",

"currentWatts": 86.28.,

"KWh": 4.421,

"maxWattage": 288.92

}, {...}]

Figure 4: A sample HTTP response sent back to the
client. The packet contains the usual HTTP headers
(including the HTTP verb or method: GET), as
well as a JSON document as the body part. For
simplicity, only the JSON part is shown.

Figure 5: Architecture deployed on the Sun SPOTs.

As a result, the gateway calls all the Ploggs and wraps the
results in the form of a JSON document, and is shown in
Figure 4.1.1.

4.2 RESTful Sun SPOTs
The Sun SPOT plateform is a wireless sensor node partic-

ularly suitable for rapid prototyping of WSNs applications.
Sun SPOTs run a small footprint Java Virtual Machine that
enables the nodes to be programmed using the high-level
Java programming language (Java Micro Edition CLDC10).
The RESTful architecture we designed and implemented for
the Sun SPOTs is composed of two main parts: a software
stack embedded on each node, and a proxy server to forward
the HTTP requests from the Web to the SPOTs.

4.2.1 Embedded Stack
Each Sun SPOT offers a number of sensors (light, tem-

perature, accelerometer, etc.), a number of actuators (dig-
ital outputs, LEDs, etc.) and a number of internal com-
ponents (radio, battery). The goal of the embedded web
server is to make both the sensors and actuators available as
REST resources. Unlike for the Ploggs’ implementation, we

10http://java.sun.com/javame/

GET /spot1/sensors/light HTTP/1.1

Host: localhost:8080

[...]

HTTP/1.x 200 OK

Server: Noelios-Restlet-Engine/1.0..11

Content-Type: text/plain; charset=ISO-8859-1

device: spot1

resource: /sensors/light

method: GET

Gateway-Location: Office B 7.1.60

{"values":

[{"lightlevel":[80]},

{"threshold":[-1,37]}

]}

Figure 6: A sample HTTP request and response ex-
changed between a client and SPOT. The packet
contains the usual HTTP headers (including the
HTTP verb or method: GET) as well as a JSON
document a body part.

wanted the Sun SPOT nodes to provide directly a RESTful
interface (see Section 3.2), without a Smart Gateway that
translates REST requests to proprietary protocols. We im-
plemented an embedded HTTP server directly on the Sun
SPOTs nodes (nanohttpd). The server natively supports the
four main operations of the HTTP protocol GET, POST,
PUT, DELETE, i.e the main verbs of REST. The HTTP
server is deployed on each sensor node, making it an inde-
pendent and autonomous Web device.

As for the Ploggs, requests for services (i.e. verbs on re-
sources) are formulated using a standard URL. For instance,
typing a URL such as
http://webofthings.com/spot1/sensors/light

in a browser, requests the resource “light” of the resource
“sensor” of “spot1” with the verb GET. When the embed-
ded webserver gets such a request, it will dispatch it to the
corresponding resource handler as shown on Figure 5. The
resource then reads the current light level using the native
SunSPOT API and sends it to a formatter component. This
component formats the results using JSON, and wraps it
into an HTTP packet that is sent back to the client. An
extract of the resulting HTTP packet is shown on Figure
6. Alternatively, our implementation allows the results to
be transmitted asynchronously to a URL when the values
reach a certain threshold, which is configurable through the
REST API as well.

4.2.2 Proxy Server
Since Sun SPOTs do not yet support the IP (Internet Pro-

tocol) stack, we were not able to integrate them completely
into the Web. Their radio communication is based on the
IEEE 802.15.4 standard. The Web is not directly linked to
this protocol, thus a proxy that bridges the Web requests
(from TCP/IP) and to the devices over the IEEE 802.15.4
link is needed.

Furthermore, to allow mobile mashups, we wanted the
nodes to be able to travel from one place to the other, which
requires a dynamic discovery process to find new nodes and
register their basic information (their MAC address and/or
URL, a short description, etc). This process is carried out
by a discovery component, which broadcasts invitation mes-

sages on a regular basis on a dedicated port. On their side,
the nodes listen to this port and can decide to subscribe
to the broadcasting proxy server. Then, the proxy registers
the node’s address and when receiving an HTTP request
from the Internet, it reads the request URL and maps it
to one of the registered nodes. In case the node is busy, it
also serves as a buffer by queuing requests and resubmit-
ting them later. In order to deal with URL and HTTP, the
proxy uses functionalities developed on top of RESTlet, a
lightweight REST framework implemented in Java11. We
expect 6LowPAN implementations to be available for the
SunSPOT soon, thus a proxy will not be needed anymore
for connecting the SPOTs to the Internet.

4.3 Mashups in the Web of Things
Based on this substrate of real-world devices that offer a

RESTful API, we can now easily integrate the functionalities
of both the Sun SPOTs and the Ploggs to easily create new
composite applications. We provide in this section two con-
crete example of mashups that can be created on top of these
embedded devices. We classify these examples in two cate-
gories: physical-virtual mashups (also called cyber-physical
systems) and physical-physical mashups. In the first cate-
gories, we present two prototypes of user interfaces running
on a computer and consuming services from the real-world.
In the second category, we present a prototype of a physical
user interface, or ambient user interface that uses services
from the real-world.

4.3.1 Physical-Virtual Mashups
In the first example of prototype implementation, we built

an AJAX management interface on top of the Sun SPOT
RESTful API. In the second example, we create a mashup
web UI that can be used to monitor the energy consumption
of household appliances.

4.3.1.1 Sun SPOT Resources Manager.
While a minimal presentation requirement for real-world

devices in the Web of Things is to offer a (X)HTML interface
to browse their resources, it might not always be sufficient.
Indeed, the sole HTTP verbs that can easily be used from
HTML pages are GET and POST. Furthermore, using the
plain HTML interface each page can be browsed to explore
the Spots’ resources results in initiating a new communica-
tion link with the involved Spots. Since these initializations
are rather expensive in terms of battery life, it would be
desirable to reduce them as much as possible by having the
Spot communicating more data at once and by caching this
data on the client side (or on the proxy).

To overcome both these limitations (limited verbs and ex-
pensive communication) and illustrate a solution, we built
an AJAX (Asynchronous Javascript and XML) interface on
top of the RESTful Sun SPOT API, shown on Figure 7.
AJAX Web pages present two main advantages in this case.
First, they can initiate HTTP calls with any of the HTTP
verbs (e.g. with PUT and DELETE). Second, these calls
can be executed asynchronously and the results can be dis-
played only when needed, thus offering a straightforward
way of reducing communication with the device. Note that
while such an interface is not a mashup per se, it greatly
helps building mashups on top of the Sun SPOTs as it en-

11http://www.restlet.org/

ables mashup developers to test all the functionalities pro-
vided by the sensors from their Web browser. The Resource
Manager interface offers to mashup builders a set of tools
to experiment and configure the Sun SPOT RESTful API.
Using the left-side of the UI the resource hierarchy is repre-
sented as a tree reflecting the hierarchy of the physical world
(e.g. a temperature sensor is the “son” of a sensor node).
The right-side of the UI allows for testing and configuring
the functionalities of the selected resource using all the avail-
able HTTP verbs. As an example, on the left-side of Figure
7 the mashup builder can create a new rule to be applied
to the temperature sensor of Spot3. Whenever this rule is
trigerred, the Spot will POST the rule result to the speci-
fied URI. The user can create a rule by filling the provided
HTML form and clicking on the HTTP verb he wants to use,
POST in this case. These forms are dynamically generated
based on the JSON message received from the device.

Figure 7: Using the AJAX Resource Explorer, users
can explore directly the resources provided by the
device. This example shows how the UI can be used
to create new rules on the temperature sensor.

4.3.1.2 Energy Visualizer.
In this second example we create a mashup that fullfills an

increasingly important need for households. Indeed, a ma-
jor burden for people who want to save energy is to identify
how much energy is consumed by home appliances. “How
much does my computer consume in operation / when it
is powered off or in standby? Is the consumption of my
energy-saving lamp significantly lower in the long run than
the normal lamp I’ve got there?” Such questions are key to
understand where energy can be saved with simple efforts.
Currently available solutions, such as traditional LCD power
monitors, are helpful but do not really fit the needs of most
individuals. They lack the ability to compare consumption
of individual devices into a single place, on a screen or a
mobile phone in an appealing and simple manner. Further-
more, they do not offer many options for remote monitoring
and control.

The idea of the Energy Visualizer prototype we have built
is to offer a dashboard user interface on the Web that en-

PUT /energymonitor/ploggs/tv HTTP/1.1

Host: webofthings.com

status: off

Figure 9: An HTTP request using the RESTful
Plogg API to turn a TV off.

ables people to control and experiment with the consump-
tion of their appliances. We wanted the user interface to
be attractive, easily accessible (no additional software to
learn or install) and to display real-time data about the en-
ergy consumption rather than snapshots, thus decided to
use a dynamic Web page illustrated in Figure 8. It offers
six real-time and interactive graphs. The four graphs on the
right side provide detailed information about the current
consumption of all the appliances currently in the vicinity
of the gateways. The two remaining graphs show the total
consumption (kWh), and respectively a comparison (on the
same scale) of all the running appliances. Finally, a switch
button next to the graphs enables the user to power on and
off the devices over the Web.

This dashboard is built as a mashup that uses the REST-
ful Plogg API in a Google Web Toolkit application12. The
Google Web Toolkit (GWT) is a great platform for building
web mashups since it offers a large number of easily cus-
tomizable widgets. For the graphs shown on Figure 8, we
use the Open Flash Chart GWT Widget Library. This li-
brary offers a comprehensive set of graph widgets that are
customizable by feeding them JSON documents.

To dynamically draw the graphs according to the cur-
rent energy consumption, the mashup application calls the
Ploggs Smart Gateway every 10 seconds by issuing a GET
HTTP request to all the Ploggs
http://webofthings.com/energymonitor/ploggs/*.json

or by requesting the energy consumption of a single Plogg
with a GET call to
http://webofthings.com/energymonitor/ploggs/fridge.

json

It then feeds the resulting JSON document (shown on Fig-
ure 4) to the corresponding graphs. Furthermore, a click
on the switch button next to the graphs on Figure 8 can
stop the corresponding appliance by sending the following
HTTP packet shown on Figure 9. The effect of this call will
be to stop delivering power to the device attached to the TV
plogg, i.e. in this case it will turn the TV off.

4.3.2 Physical-Physical Mashups
This last prototype demonstrates how real-world services

provided by physical devices can be combined together us-
ing the underlying technologies of mashups, without even
requiring a computer or HTTP browser.

4.3.2.1 Ambient Meter.
The prototype is an ambient device that displays the level

of energy consumption of the place it is currently located in
by changing its color. It can be taken from one place to
the other and adapts to the place it monitors automatically,
without the need for human intervention. Depending on the
total amount of energy consumed in the room it is located
in, the Ambient Meter changes its color from very green (i.e.

12http://code.google.com/webtoolkit/

Figure 8: The monitoring and control web user interface for the Ploggs.

Figure 10: Demonstration settings of the Ambient
Meter. Every 20 seconds the Ambient Meter (im-
plemented as a Sun SPOT) polls the URL for an
assessment of the energy consumption observed by
all the Ploggs the Smart Gateway discovered.

the amount of energy consumed in the room is low) to very
red (i.e. a lot of energy is currently consumed in this place).

The Ambient Meter is implemented on a Sun SPOT which
uses the Ploggs for energy monitoring as well as the Ploggs
Smart Gateway for resolution of its current location. It uses
an HTTP connector we implemented in the RESTful Sun
SPOT API to contact the RESTful Plogg API. Every 5 sec-
onds, the Ambient Meter will poll the following URL using
the GET method on
http://localhost/energymonitor/load.json

When the meter is located in Room 1, as shown on Figure 10
(step 1) it is bound to the Smart Gateway 1, meaning that
localhost in this context is bound to the address of Smart
Gateway 1. Thus, the result of the call is going to be the
JSON representation of the energy consumption of all the
Ploggs discovered by the Ploggs’ Smart Gateway 1. Placed
in the hallway, the Ambient Meter binds itself to Smart
Gateway 2. Using the same URL as before it will get the
energy consumption of all the devices monitored. Again, the
same process occurs in Room 2, where the Ambient Meter
gets the load of the desktop computer and the lamp. In-
tegrating all the real-world devices of this prototype would
have been rather time consuming if the Smart Gateways,
the Ploggs and the Sun SPOTs were only offering their na-
tive (proprietary) APIs. Thanks to the RESTful approach
the integration work was reduced to building a simple Web
mashup, where all the services are invoked by means of sim-
ple and lightweight HTTP requests.

5. DISCUSSION AND FUTURE WORK
In this paper we have contributed to a step towards the re-

alization of the Web of Things. By creating RESTful APIs
to integrate the services offered by devices and objects in
the real world such as wireless sensor networks, embedded
devices and household appliances with any other Web con-
tent. We have described two ways to integrate devices to the
Web using REST: direct integration based on the advances

in embedded computing, and a Smart Gateway-based ap-
proach for resource-limited devices. We have further illus-
trated these methodologies by implementing them on two
different platforms. Finally, we show how an eco-system of
RESTful devices can facilitate significantly the creation of
cyber-physical mashups. In the meanwhile, using REST and
the Web to connect devices offers a very flexible and power-
ful mechanism to fast prototype all kinds of applications.

Still, it is important to note that REST services also have
certain limitations and do not always solve problems in a
straightforward manner. For instance, the inherent simplic-
ity of REST paradoxically complicates the creation of com-
plex services. While REST services are well adapted for
simple and atomic services, which cover the greatest part
of services available on embedded computers, their limita-
tions become evident when it comes to modeling services
which require complex input and/or deliver complex out-
puts. Based on our own experience and the experience of
others [9] in more traditional integration patterns such as
WS-* Web Services, we suggest that WS-* services are to
be preferred for complex real-world integration and rather
static use-cases, such as those involving complicated busi-
ness processes or requiring high reliability, for example com-
posing a manufacturing process on several machines. How-
ever, for smaller and more user-oriented applications, the
RESTful approach offers many advantages such as light and
simple use, browsability of services, and a much looser cou-
pling. In our opinion, this illustrates very well the type of
applications mashups are suited to.

Providing a substrate of RESTful and Web oriented em-
bedded devices is only a step towards a global Web of Things.
While we believe it greatly simplifies the development of ad-
hoc applications, the RESTful approach also introduces new
challenges, such as dealing with the vast variety of data for-
mats that HTTP payloads can contain (e.g. XML, JSON,
raw ASCII, etc.). Furthermore, as more and more devices
will become part of the Web new challenges will appear.
Some of these, directly related to mashups, are shown on
the upper parts of Figures 1 and 2. How will we be able to
search amongst an increasing number of dynamic devices,
and in particular how will we be able to identify the device
we want to interact with? This point has been identified as
a particularly important problem for future ubiquitous en-
vironments [3]. Even if real-world devices are to offer Web
Servers and Web pages, searching for them is not entirely
similar to searching textual information on the Web. In
particular, context information such as location, time, type
of use is central for searching real-world services. Thus, a
scalable dynamic search mechanism that takes into account
the physicality of real-world services will be necessary. Sim-
ilarly, building mashups consuming services on the Web is
not entirely similar to building mashups consuming real-
world services. If we really want end-users to be able to
build mashups we need to provide them with higher ab-
stractions, such as mashup editors like Microsoft Popfly or
Yahoo Pipes adapted to the real-world.

6. ACKNOWLEDGMENTS
The authors would like to thank the European Commis-

sion and the partners of the European IST FP6 project
“Service-Oriented Cross-layer infRAstructure for Distributed
smart Embedded devices” (SOCRADES - www.socrades.

eu) for their support. A special thanks goes to Thomas

Pham for his work on the Sun SPOT RESTful architecture,
to Markus Weiss for his advices on the Energy Visualizer
Prototype, and to Samuel Wieland for his help on the Smart
Gateway Architecture.

7. REFERENCES
[1] A. Dunkels and J. Vasseur. Ip for smart objects alliance.

Internet Protocol for Smart Objects (IPSO) Alliance White
paper No.2, September 2008.

[2] R. T. Fielding and R. N. Taylor. Principled design of the
modern web architecture. ACM Trans. Internet Techn.,
2(2):115–150, 2002.

[3] H. Gellersen, C. Fischer, D. Guinard, R. Gostner,
G. Kortuem, C. Kray, E. Rukzio, and S. Streng. Supporting
device discovery and spontaneous interaction with spatial
references. Journal of Personal and Ubiquitous Computing.

[4] J. Hui and D. Culler. Extending IP to Low-Power, wireless
personal area networks. Internet Computing, IEEE,
12(4):37–45, 2008.

[5] A. Kansal, S. Nath, J. Liu, and F. Zhao. SenseWeb: an
infrastructure for shared sensing. IEEE Multimedia,
14(4):8–13, 2007.

[6] T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell,
P. Debaty, G. Gopal, M. Frid, V. Krishnan, H. Morris,
J. Schettino, B. Serra, and M. Spasojevic. People, places,
things: web presence for the real world. Mob. Netw. Appl.,
7(5):365–376, 2002.

[7] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos,
and K. Kim. Tinyrest - a protocol for integrating sensor
networks into the internet. Stockholm, Sweden, 2005.

[8] S. Mäkeläinen and T. Alakoski. Fixed-Mobile Hybrid
Mashups: Applying the REST Principles to Mobile-Specific
Resources, pages 172–182. 2008.

[9] C. Pautasso, O. Zimmermann, and F. Leymann. RESTful
Web services vs. ”big” Web services: making the right
architectural decision. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web. ACM, 2008.

[10] C. Prehofer, J. van Gurp, and C. di Flora. Towards the web
as a platform for ubiquitous applications in smart spaces.
In Second Workshop on Requirements and Solutions for
Pervasive Software Infrastructures (RSPSI), at Ubicomp,
2007.

[11] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao.
Tiny web services: design and implementation of
interoperable and evolvable sensor networks. In SenSys ’08:
Proceedings of the 6th ACM conference on Embedded
network sensor systems, pages 253–266, New York, NY,
USA, 2008. ACM.

[12] L. Richardson and S. Ruby. RESTful Web Services.
O’Reilly Media, Inc., May 2007.

[13] P. Schramm, E. Naroska, P. Resch, J. Platte, H. Linde,
G. Stromberg, and T. Sturm. A service gateway for
networked sensor systems. Pervasive Computing, IEEE,
3(1):66–74, Jan.-March 2004.

[14] V. Stirbu. Towards a restful plug and play experience in
the web of things. In IEEE International Conference on
Semantic Computing, pages 512–517, Aug. 2008.

[15] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou,
J. Hugly, and E. Pouyoul. Project JXTA-C: Enabling a
Web of Things. In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, pages
282–290, 2003.

[16] V. Trifa, S. Wieland, and D. Guinard. Design and
implementation of a gateway for web-based interaction and
management of embedded devices. In Submitted to
DCOSS., 2009.

[17] E. Wilde. Putting things to REST. Technical Report UCB
iSchool Report 2007-015, School of Information, UC
Berkeley, November 2007.

