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Abstract—Mobile phones security is becoming an important
issue because they are being connected to an Internet through
wireless modem technologies. System virtualization technology
provides trusted computing capability by running isolated multi-
ple virtual machines under hypervisor. In this paper, we propose
a design of system virtualization for ARM CPU architecture
and describe implementation of prototype called Xen on Arm
using Xen hypervisor. Secure and nonsecure guest Linux virtual
machines are executing under Xen on ARM isolated with each
other and virtualization overhead is shown to be moderate
compared to native Linux running on bare metal H/W.

I. INTRODUCTION

Recently, beyond-3G mobile phones will be connected to
Internet through packet-switched networks such as mobile
WiMax and WiBro technologies. Mobile phones will face the
similar security problems with malwares as shown in personal
computer(PC) environments. Operating system (OS) level se-
curity solutions can be compromised if OS is compromised.

System virtualization technology has been applied to servers
and workstations to helps system users be able to consolidate
the hardware and provides flexibility. System virtualization
means creating virtual machines by virtualizing a full set of
hardware resources, including a processor, memory, storage
resources and peripheral devices. A virtual machine monitor
(VMM) or hypervisor is the software that provides abstraction
of virtual machine to guest OSes which are running under the
VMM. The virtual machine is a duplicated real machine, and
VMM takes complete control of virtualized resources.

The security issue can be handled by system virtualization
since it provides isolation of guest OSes running under VMM,
so that any compromised guest OS cannot be propagated to
other guest OS domains. This can guarantee availability of a
computing system even when a guest OS domain fails.

To investigate virtualization technology for embedded, we
choose ARM architecture since it is popularly used for mobile
phones and choose Xen which is a popular open source
hypervisor. The authors of this paper had reported on “Xen on
ARM” which is Xen for ARM architecture including VMM
level access control scheme in [1]. In this paper, we focus on
ARM virtualization technology and its implementation issues.

This paper is organized as following. In section II, we
describe virtualization technology backgrounds, implications

on virtualization for ARM architecture. In section III related
works are mentioned. In section IV and V, ARM CPU and
memory virtualization are presented, respectively. Then we
describe implementation issues and show performance results
in section VI. Finally we conclude in section VII.

II. BACKGROUNDS

A. Virtualization History

The notion of virtual machine dates back to the mid 1960’s
IBM M44/44X[2] and IBM CP-40, and has been used for
various application areas such as server consolidation, disas-
ter recovery, and testing of OS kernel. Rigorous survey of
virtualization can be found in [3].

In [4], the authors described sufficient condition for a
computer architecture to allow creation of VMM: A VMM
may be constructed if the set of sensitive instructions1 for
that computer is a subset of the set of privileged instructions2

and processor has at least two privilege modes (privileged
mode and non-privileged mode). The theorem can be naturally
extended to current machines.

Though several modern processors are not virtualizable
in the author’s sense because it has sensitive unprivileged
instructions, VMMs have been built successfully by handling
sensitive unprivileged instructions in various ways. Dynamic
recompilation technique is used to discover those instruc-
tions at run-time and replace them with a trap into the
VMM[5], which is known as full virtualization technology and
does not require OS source code modifications. In contrast,
paravirtualization approach modifies guest OS source code
to replace those instructions with invocations of hypervisor
routines (aka “hypercall”). Though paravirtualization requires
OS modification, this is not critical issue because required
modification is slight.

1Sensitive instructions are those that should be run in privileged mode to
ensure correct function of them. Sensitive instructions can be control sensitive
or behavior sensitive. Control sensitive instructions are those that attempt
to change the configuration of resources in the system. Behavior sensitive
instructions are those whose behavior or result depends on the configuration
of resources.

2Privileged instructions are those that trap if the processor is in user mode
and do not trap if it is in system mode.
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B. Issues in Virtualization for Embedded Devices

Embedded devices have scarce computing power compared
to servers and desktops. Efficiency is a major concern in
embedded virtualization. Paravirtualization approach is more
efficient than full virtualization because expensive binary
translation is not necessary, so we decide to use paravirtu-
alization approach.

Among several open source paravirtualization solutions
such as Xen [6] and L4, we chose Xen as the beginning
point of our research because the interface of Xen is rather
simple yet similar to machine interfaces than that of L4 which
was originally designed as an operating system. It has imple-
mentation of architecture independent common components
of VMM such as hypercall interface, VM scheduling, VM
controls, and memory management.

Currently Xen is supporting x86-64, IA-32, IA-64, and
PowerPC. However it cannot be directly ported to ARM
CPU because ARM’s virtualization capability is rather poor
than x86 and PowerPC which have rich functions designed
for desktops and servers. Compared to x86’s virtualization
capability [7], ARM CPU has the following problem in
virtualization. ARM CPU has only one unprivileged mode.3

Since guest OS should not run in privileged mode for VMM
to take exclusive control of hardware resources, guest OS
and applications should run together at user mode. However,
conventional MMU based paging mechanism cannot protect
the OS kernel from applications when they are running in the
same user mode.

Simply separating the address spaces of applications and OS
kernel will lead to significant cache/TLB flushing overheads
since ARM v4/v5 architecture has virtually indexed virtu-
ally tagged (VIVT) cache, and Translation Look-aside Buffer
(TLB) entries are not tagged with address space ID4, so cache
and TLB should be flushed when switching address spaces.

It is non-trivial task to protect OS kernel from applications
and to protect VMM from OS kernel and applications effi-
ciently with the difficulties in ARM CPU such as scarce CPU
privilege modes and high address space switching costs.

III. RELATED WORKS

In [8], the author indicated the two implications mentioned
above but did not address them fully. The author mentioned
separating page tables of OS kernel and user processes but
didn’t implement it and no experimental results were reported.
This scheme is emulated in our experiments to compare
regarding context switch latencies as shown in Fig. 3.

In L4 microkernel[9], Linux server runs as separate L4 task
side by side with Linux user processes under L4 microkernel.
The memory protection is ensured by page table separation.
In [10], they implemented single address space mechanism,
where address spaces of all L4 tasks including Linux servers
and Linux processes are not overlapping. Cache flush is not

3ARM has seven basic operating modes, six privileged modes (FIQ, IRQ,
Supervisor, Abort, Undef, System) and one unprivileged mode(User).

4ARM11 has virtually indexed physically tagged cache (VIPT) and MPcore
has physically indexed physically tagged (PIPT) cache.

required for virtual machine switching or process switching.
ARM’s FCSE (Fast Context Switch Extension)[11][12] is
exploited to relocate address space of a process at run-time.
However, the size of address space of each process is limited
to 32MB, which is not desirable for open platform mobile
phones which provides connectivity to Internet, downloads
and executes legacy applications.5 Additionally, since most of
operating systems do not support single address space scheme,
significant engineering effort is necessary to modify new guest
OS. However, the fast address-space switching (FASS) is a
useful optimization for particular embedded applications on
ARM. It can be our future work to employ FASS in Xen on
ARM for further performance optimization.

There are a few commercial VMMs for ARM; Trango and
VirtualLogix. They demonstrate running real-time OS and high
level OS like Linux side-by-side. Trango system hypervisor is
only 20KB which can be burn in ROM on CPU. However their
source codes are closed, so detailed architecture comparison
is not possible.

IV. CPU VIRTUALIZATION

A. Virtual Privilege Modes

In order to deprivilege guest OS and allow full resource
control to VMM, only VMM runs in the supervisor mode
and guest OS runs in user mode together with applications.
Compared to x86 architecture which has four privilege rings,
it is more difficult to protect guest OS kernel from user
applications because they have to run in the same mode. We
describe isolation of kernel’s CPU contexts from applications
in this section and protection of kernel memory from user
applications is detailed in section V.

ARM Linux kernel is implemented assuming that it runs
at supervisor mode and all register contexts are supervisor
mode context. To minimize Linux modifications, we decided
to provide an abstract supervisor mode to guest OS kernel.
User mode is split into two logical modes (user process mode
and kernel mode), and virtual banked registers for those virtual
privilege modes. Xen on ARM is in charge of switching
between the user process mode and the kernel modes.

S0: VMM mode

S2: User mode

S1: Kernel mode

t10

t20t02

t01

Fig. 1. VCPU mode transitions. t10: on interrupts/faults/aborts/hypercalls,
t20: on interrupts/faults/aborts/system calls, t01: upcall or return from excep-
tion, t02: return from exception

5Microsoft Windows CE has supported single address space by using FCSE
but recent Windows CE 6.0 does not support the limited model.
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B. Exception Handling

Virtual CPU is modeled by a state machine as illustrated in
Fig. 1 where each state corresponds to a virtual privilege mode.
VMM mode is entered when exceptions such as interrupt,
fault, abort, and software interrupt occurs. On entry to VMM
mode, ARM CPU’s SPSR (Saved Program Status Register) is
saved in the VSPSR (virtual SPSR) which will be restored later
when guest OS returns from exception. Stack pointer register
is also saved in VSP register for later restoration.

Xen invokes upcall to deliver exceptions to kernel mode
as virtual exception events. On upcall, Xen puts the VSPSR
information on the kernel’s stack so that kernel can get
last running virtual processor mode. The upcall mechanism
corresponds to hardware level exception handling that makes
CPU to jump into exception vector table.

Since the guest OS cannot access sensitive registers such
as ARM’s FAR (Fault Address Register)6 and FSR (Fault
Status Register)7, Xen on ARM provides virtual FAR and
virtual FSR to guest OS. Guest OS invokes hypercall to return
from exception and Xen restores the saved context. Exception
handling procedure is described in Fig. 2.

User Process Kernel VMM

Exception generated

Save context
Deliver virtual exception

Handle
virtual

exception

Restore context

Reques context restoration

Return to previous context

Fig. 2. Exception handling in virtualization environment

C. Sensitive Instructions

Since guest OS should run in user mode, all sensitive
instructions contained in guest OS should be replaced with
proper hypercalls. ARM v5 architecture has 14 sensitve
instructions [13], [14]. Sensitive unprivileged instructions8

silently fails when they are executed in user mode. For
example, many Linux kernel operations like semaphore use
MSR/MRS instructions that try to modify the status flag bits
of CPSR (Current Program Status Register). Those instruc-
tions fail without any error report, and may lead to system
malfunction in nondeterministic ways. Therefore, guest OS
code should be scanned to find the sensitive unprivileged
instructions and replace them with hypercalls.

6FAR contains the virtual address of an attempted access which caused the
exception.

7FSR contains source of fault and protection domain which caused the fault.
8MRS/MSR/MOVS/STM/LDM/CMPP/CMNP/TEQP/TSTP

V. MEMORY VIRTUALIZATION

The following (1) - (3) are the requirements to protect
memory area between virtual privilege modes inside a virtual
machine: (1) VMM memory region should be protected from
guest OS kernel and user processes, (2) guest OS kernel
memory should be protected from user processes, (3) User
process memory should be protected from other processes.
Additionally every virtual machine should be isolated each
other.

Xen on ARM ensures isolation between guest domains as
following. The guest domain’s memory mapping is created
and updated only by Xen. To modify memory mapping, guest
OS should invoke hypercall to update page table. Xen blocks
any attempt of guest OS to map physical memory area that is
not granted to the guest OS.

With paging mechanism we can protect Xen memory from
guest OS/user processes, however, cannot protect OS ker-
nel memory from user processes because paging mechanism
doesn’t know whether user processes or OS kernel is running.
We need another mechanism to protect OS kernel memory
from user processes.

We exploit ARM processor’s domain protection
mechanism[11]. Among 16 domains (D0 - D15), we
use three (D0 - D2) for virtualization purpose. Memory
areas of VMM mode, kernel mode, and user process mode
belong to D0, D1, and D2, respectively. Access permission
to a particular domain is configured by setting corresponding
bits of Domain Access Control Register(DACR)9 Access
permission to memory which belongs to a domain is one
of three types; no access (unconditionally inaccessible),
client(conditional, access permission check is to be performed
based on the page table entry’s AP flag setting), and
manager(unconditionally accessible).

At the user process mode, access permissions to kernel
memory area (D1) and VMM area are set to no access. At the
kernel mode, access permissions to D0, D1, and D2 are all
set to client. OS kernel is not allowed to access Xen memory
area because Xen memory area’s page table settings does not
allow access from user mode. At the VMM mode, access
permissions to all domains are set to client.

A. ARM Virtual Cache Optimizations

The x86 cache system is physically indexed and physically
tagged. In contrast, ARM v5 processor has virtually indexed
and virtually tagged cache[11], so cache may have multiple
items that are mapped to the same physical memory location.
For cache consistency, cache should be flushed when switching
address spaces. Since cache flush takes significant time, cache
flushing should be avoided as much as possible.

Xen hypervisor does not require cache flushing on switching
between virtual priviledge modes inside the same virtual
machine. The page table of a process has non-overlapping
page mappings for the process memory, OS kernel memory,

9This is a 32 bit register consisting of 16 2-bit fields which indicates access
permissions to memory area of a domain.
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TABLE I
LMBENCH RESULTS. RATIO = PARAVIRT VALUE / NATIVE VALUE

Bandwidth measured in MB/sec
Tests Native Paravirt Ratio
bw pipe 42.79 38.21 0.893
bw unix 44.52 39.18 0.880
bw mem 512 rd 1033.42 1075.79 1.041
bw mem 512 wr 1034.67 1019.27 0.985
bw mem 512 rdwr 1034.67 1019.27 0.985

Latencies measured in microseconds
Tests Native Paravirt Ratio
lat pipe 135.13 234.42 1.735
fork+exit 2891.75 10021.0 3.465
fork+execve 3109.25 10524 3.385
SysV semaphore 45.974 81.42 1.77
lat unix 251.41 431.85 1.70
signal handler 11.23 20.43 1.82
null syscall 1.13 2.83 2.50
read syscall 2.60 4.94 1.90
write syscall 2.25 4.16 1.85

and VMM memory. VMM address space is located at the up-
permost 64MB address space (0xFC000000 - 0xFFFFFFFF).
Linux kernel address space start from 0xC0000000 to 0xF-
BFFFFFF. Process memory address space is from 0x0 to
0xBFFFFFFF. Entry/exit to/from VMM does not require ad-
dress space switch, so cache/TLB flush is not necessary.
Caches flushing is required only when VMM switches domain
or guest OS switches process.

We reduce TLB flushing overheads incurred while switching
domains and processes. ARM provides eight lockdown TLB
entries which are not invalidated though TLB flush occurs.
We use two lockdown TLB entries to hold mappings for
Xen memory area. This reduces VMM overheads slightly by
keeping TLB entries always.

B. Inter-Domain Memory Isolation

Since paravirtualized guest OSes should run in user mode,
they are not allowed to manipulate MMU but instead they can
invoke hypercalls to control MMU, which is then validated by
Xen on ARM. Any attempt to map/unmap/read/write other
domain’s memory page is prohibited by VMM. Though a
domain is compromised by a malicious software, it cannot
attack other domain as far as VMM is not compromised. Other
research colleagues independently worked on making Xen on
ARM secure [15].

VI. EXPERIMENTAL RESULTS

We modified Xen 3.0.2 to run on a smart phone develop-
ment platform which is equipped with a 266MHz ARM926-
EJS core, 64MB DRAM, and 32MB NOR flash. Linux 2.6
is paravirtualized to run under Xen on ARM. Two virtual
machines(dom0 and domU) of paravirtualized Linux 2.6.11 are
running on the VMM. Total modified/appended source codes
of Xen is 23401 lines and Linux modifications are 4518 lines.

Conventional Xen on x86 has many python scripts for
XenBus utilities. Python interpreter cross-compiled for ARM
is about 40MB size which is too heavy to fit into flash mem-
ory devices. Among 280 modules, we removed unnecessary

modules, and reduced interpreter has only 40 modules and its
size is 5.7MB. Since XenBus and XenStore are working on
the ARM platform, conventional Xen tools can run without
source code modifications.

A. Micro Benchmarks

LMBENCH is used to investigate performance of basic
system operations. Paravirtualized Linux is compared with
native Linux running on bare metal H/W without VMM.
Direct performance comparison with optimized wombat on L4
microkernel[10] is not fair because the performance difference
is due to FASS scheme which is not related to virtualization.
If given native Linux with FASS support, paravirtualization
of the Linux version will enhance overall performance. The
benefit of FASS scheme will not be distinct for ARM11 core
architecture because it has physically tagged cache. System
call latency is better than optimized wombat ( {virtual Linux’s
syscall latency in usec} / {native Linux’s syscall latency in
usecs} = 2.83

1.13 (Xen on ARM) < 4.0
0.82 (optimized L4)).

LMBENCH results are summarized in Table VI. Latencies
of most operating system services are not higher than twice of
native Linux performance. Process creation takes longer times
than native Linux because a large number of page table updates
occur when creating a new process and hypercall is invoked
for every page table entry update. The number of hypercalls
can be reduced by exploiting multi-call mechanism(multiple
hypercalls are batched as a single hypercall) but not imple-
mented yet. Memory bandwidth is not degraded and the IPC
performance using pipe and unix socket show about 10% drop.

Fig. 3 shows context switching latency for four cases; (1)
Native: native Linux case, (2) paravirtualized Linux with the
TLB lockdown discussed in section V, (3) paravirtualized
Linux without the TLB lockdown, and (4) page table sep-
aration scheme that means user processes don’t have kernel
memory mappings, so flushes cache on switching between
user process and kernel mode to protect kernel from user
processes. Compared to native Linux, paravirtualized Linux
context switch time has about 50 microseconds additional
overhead. This overhead is appended by virtualization and
is moderate compared to separate page table scheme. TLB
lockdown optimization shows slight contribution when context
size is larger than 8 Kbytes.

B. Scalability Analysis

To analyze the performance impact of the number of con-
current VMs (n), we tested four cases; n=1,2,3, and 4. Xen
on ARM uses 2MB, dom0 uses 14MB, and other domains use
16MB. Root file systems are mounted as read-only, then we
run LMBENCH simultaneously on all running domains, which
is iterated ten times for each n. Average throughput values of
domains are aggregated and summarized in Table II, where
aggregate throughputs don’t degrade much as n increases.

C. Macro Benchmarks

To see the virtualization’s performance impact on common
operations in mobile phones, we compared User Interface (UI)
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Fig. 3. Context switching latency. X axis numbers in a row denote concurrent
number of tasks and context size of a task.

Benchmark n=1 n=2 n=3 n=4
bw pipe (MB/sec) 37.28 37.20 36.80 36.84
bw unix (MB/sec) 32.15 35.31 38.32 35.51

TABLE II
PERFORMANCE IMPACTS OF THE NUMBER OF CONCURRENTLY RUNNING

VMS. PIPE AND UNIX SOCKET PERFORMANCES ARE MEASURED FOR

n=1,2,3, AND 4.

loading time, image file saving time, and codec performance
with native Linux. The results are shown in Table III. Virtu-
alization overheads are not distinct for all those tests. For UI
loading test, we used Qtopia PDA Edition and binaries are
installed at NOR flash memory. For image file saving test, we
prepare 200 files whose size are distributed evenly from 20KB
to 90KB. Then we measure the time taken to save all those
files from NFS server to NAND flash memory. For codec tests,
Xvid MPEG4 stream encoder/decoder are used.

VII. CONCLUSIONS

In this paper, we described design and implementation of
Xen on ARM, which is a secure system virtualization of ARM
architecture. We described how the open source Xen hypervi-
sor is migrated to ARM architecture and guest OS kernel is
protected from applications when guest OS and applications
are executing in the user mode. Within our knowledge, Xen
on ARM is the first successful implementation of Xen based
ARM virtualization which can run multiple isolated high level

Benchmark Native Paravirt Ratio
UI loading time (seconds) 14.48 14.54 1.004

Image saving time (seconds) 52.71 53.81 1.020
Encoding rate (fps) 5.71 5.63 0.986
Decoding rate (fps) 24.54 24.41 0.995

TABLE III
MACRO BENCHMARKS RESULTS. RATIO = Paravirt value

Native value

operating systems. Xen on ARM has shown moderate virtual-
ization overheads. It introduces trusted computing capability
to mobile embedded devices by isolating secure OS domain
from nonsecure OS domain.
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