
Mercury: A Wearable Sensor Network Platform for High-fidelity
Motion Analysis

Konrad Lorincz, Bor-rong Chen, Geoffrey Werner Challen,
Atanu Roy Chowdhury, Shyamal Patel?, Paolo Bonato?, and Matt Welsh

School of Engineering and Applied Sciences, Harvard University
?Spaulding Rehabilitation Hospital

Abstract
This paper describes Mercury, a wearable, wireless sen-

sor platform for motion analysis of patients being treated for
neuromotor disorders, such as Parkinson’s Disease, epilepsy,
and stroke. In contrast to previous systems intended for
short-term use in a laboratory, Mercury is designed to sup-
port long-term, longitudinal data collection on patients in
hospital and home settings. Patients wear up to 8 wire-
less nodes equipped with sensors for monitoring movement
and physiological conditions. Individual nodes compute
high-level features from the raw signals, and a base station
performs data collection and tunes sensor node parameters
based on energy availability, radio link quality, and applica-
tion specific policies.

Mercury is designed to overcome the core challenges of
long battery lifetime and high data fidelity for long-term
studies where patients wear sensors continuously 12 to 18
hours a day. This requires tuning sensor operation and data
transfers based on energy consumption of each node and pro-
cessing data under severe computational constraints. Mer-
cury provides a high-level programming interface that allows
a clinical researcher to rapidly build up different policies
for driving data collection and tuning sensor lifetime. We
present the Mercury architecture and a detailed evaluation of
two applications of the system for monitoring patients with
Parkinson’s Disease and epilepsy.

Categories and Subject Descriptors
D.1 [Programming Techniques]; C.3 [Special-Purpose

and Application-Based Systems]: Real-time and Embed-
ded Systems

General Terms
Design

Keywords
Resource-Aware Programming, Wireless Sensor Net-

works, Mercury

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SenSys’09, November 4–6, 2009, Berkeley, CA, USA.
Copyright 2009 ACM 978-1-60558-748-6 ...$5.00

1 Introduction
Wireless sensor networks have the potential to greatly im-

prove the study of diseases that affect motor ability. Small,
wearable sensors that measure limb movements, posture, and
physiological conditions can yield high-resolution, quantita-
tive data that can be used to better understand the disease
and develop more effective treatments. In a typical scenario,
a patient wears up to 8 sensors (one on each limb segment)
equipped with MEMS accelerometers and gyroscopes. A
base station, such as a laptop in the patient’s home, collects
data from the network. Sophisticated analysis can be per-
formed on the data in order to rate the patient’s motor coor-
dination and activity level, which is in turn used to measure
the effect of rehabilitation exercise and medications.

The key challenge is tuning the network’s operation to
achieve high data quality as well as long battery lifetimes.
Wearable sensors operate under varying radio link conditions
and extremely limited energy budgets. Existing systems have
focused on laboratory settings and assume that a clinician is
assisting with the data capture and that the patient is always
in radio range of the base station. Moreover, previous work
has not focused on obtaining long battery lifetimes, since a
single clinic visit may only last a matter of hours. It is highly
desirable to capture longitudinal data from patients during
daily life or during extended stays at the hospital, which
pushes the limitations of current sensor platforms.

To support the clinical requirements we must address a
number of challenges. Battery lifetime is a paramount con-
cern, in order for the network to operate continuously for up
to several days between recharge cycles. This requires care-
ful management of radio communications, flash storage, and
data processing on the sensor nodes. Second, the network
must tune its operation in the face of variations in radio band-
width (e.g., as the patient moves around or leaves the home)
and energy availability (based on the activity level of each
sensor). Third, and most importantly, the system must yield
high-quality, clinically-relevant data. The high data rates of
the sensors involved (100s of Hz per channel or more) de-
mand on-board processing and storage. It is infeasible to
transmit the complete sensor data because it would rapidly
deplete the nodes’ batteries.

In this paper, we present Mercury, a wearable sensor net-
work platform for clinical neuromotor disease studies. The
high-level goal of Mercury is to enable a broad range of
clinical applications to be deployed on a wearable sensor

Figure 1: The SHIMMER wearable sensor platform.

network, with a focus on acquiring and processing high-
resolution signals. Since applications differ in data require-
ments, Mercury provides a flexible programming interface
allowing a range of policies to be implemented on top of the
core functionality of the sensor network.

This paper makes the following contributions. First, we
describe the Mercury architecture and its techniques for
managing sensor energy and optimizing data collection. Sec-
ond, we provide a detailed energy profile of the SHIM-
MER [20] wearable sensor platform that motivates the de-
sign tradeoffs made in our system. Third, we describe two
applications of Mercury, involving monitoring patients with
Parkinson’s Disease and epileptic seizure detection. Fourth,
we present a thorough experimental evaluation of Mercury
along several axes including data coverage, battery lifetime,
and latency. We present results from a testbed, extensive sim-
ulations, and a deployment of the system worn by one of the
coauthors. We demonstrate that Mercury achieves our goals
of high data quality and long lifetime for high-resolution mo-
tion analysis.

The rest of this paper is organized as follows. In the next
section, we describe the motivation and background for the
Mercury system. In Section 3, we describe the Mercury ar-
chitecture and application programming interface. We de-
scribe two representative applications in detail in Section 4,
and present our prototype implementation in Section 5. Sec-
tion 6 evaluates Mercury across a range of lifetime targets,
radio link conditions, and sensor activity levels. Related
work is presented in Section 7, and Section 8 describes future
work and concludes.

2 Motivation and Background
In recent years there has been increased interest in body

sensor networks for wearable applications as diverse as elder
care [12, 46], emergency response [28, 9], studying athletic
performance [1, 32], gait analysis [38, 40, 44], and activity
classification [18, 33]. A great deal of work has focused on
sensor and hardware design [8, 10, 20, 41], MAC and rout-
ing protocols [39, 48], and algorithms for processing wear-
able sensor data [5, 18]. Our focus in this paper is on the
systems challenge of designing a sensor network that can be
used for high-fidelity motion analysis studies in patients be-
ing treated for neuromotor disabilities including Parkinson’s
disease, epilepsy, stroke, and Huntington’s disease.

As an example, consider a study of patients being treated

for Parkinson’s disease. The basic approach is to capture
triaxial accelerometer and gyroscope data from each limb
segment (upper and lower arms and legs) using wearable
sensors. The patient wears up to 8 sensors each day and
recharges the sensors at night. A laptop in the home serves
as a base station to collect and store sensor data. The data is
then delivered via an Internet connection to the clinic where
it is visualized and further processed by physicians. The sig-
nals are subject to extensive processing and data mining to
tie the sensor data to clinical measures that evaluate the pa-
tient’s motor function and progression of the disease [37].

Each sensor samples 6 channels of data at 100 Hz with
16-bit resolution, yielding an aggregate per-node data rate
of 1200 bytes/sec. Nodes log raw sensor data to flash. The
SHIMMER sensor platform, described below, supports up to
2 GBytes of MicroSD flash, which is enough to record more
than 19 days worth of uncompressed data.

A core challenge is how to achieve efficient collection of
the sensor data. Although the complete signal can be down-
loaded from the node’s flash (via USB) while the sensors are
recharged at night, wireless data collection is highly desir-
able as clinicians wish to obtain real-time or near real-time
observations of the patient’s motor activities over the course
of each day. A physician might engage with the patient and
monitor sensor data during a telephone or video conference
in which the patient performs routine exercises that assist
with clinical assessment. In the case of epilepsy monitoring,
real-time detection of seizures is critical as these events can
be life-threatening.

However, wireless data collection is challenged by energy
constraints and fluctuations in radio bandwidth as the patient
moves about (or leaves) the home. Given the low power ra-
dios used on wearable sensor nodes, it is highly unlikely that
the complete sensor stream can be collected in this way. Even
assuming a perfect radio link to the base station, continuous
transmission of sensor data would rapidly deplete the sensor
nodes’ batteries. Therefore, some means of data reduction
is needed. Fortunately, in many applications, the first step
of clinical data analysis involves feature extraction from the
raw sensor data [19, 37], which can be performed (at least
partially) on the sensor nodes themselves. Generally, these
features are much smaller than the original signal, so energy
and bandwidth can be conserved by computing and transmit-
ting features instead of the raw data. The stream of features
represents a high-value, compressed form of the raw signal.
2.1 Hardware Platform and Energy Profile

Mercury is designed to support an emerging class of low-
power, wearable sensor platforms for medical monitoring,
such as the SHIMMER [20] platform shown in Figure 1. In
this paper we give a detailed description and energy profile of
SHIMMER in order to provide a concrete context in which
to evaluate our platform. However, the Mercury architecture
is not specific to the SHIMMER platform.

SHIMMER includes a TI MSP430 microcontroller; a
Chipcon CC2420 radio supporting the 802.15.4 standard; a
MicroSD slot supporting up to 2 GB of flash storage; and a
250 mAh Li-polymer rechargeable battery. SHIMMER in-
corporates triaxial MEMS accelerometer, and add-on daugh-
terboard interface to gyroscope, ECG, EMG, and other sen-

Component Energy (µJ)
Sampling accel 2805
CPU (activity filter) 946
Radio listen (LPL, 4% duty cycle) 2680
Time sync protocol (FTSP) 125
Sampling gyro 53163
Log raw samples to flash 2590
Read raw samples from flash 3413
Transmit raw samples 19958
Compute features 718
Log features to flash 34
Read features to flash 44
Transmit features 249
512-point FFT 12920

Figure 2: Energy profile of the SHIMMER sensor platform. Energy
consumption is shown for each major operation. Results are shown for each
second of data sampled, processed, or transmitted. Radio energy assumes
a perfect radio link to the receiver. Sampling both accelerometer and gyro-
scope produces 1200 bytes of raw samples per second.

sor types. The SHIMMER measures 44.5×20×13 mm and
weighs just 10 g, making it well-suited for long-term wear-
able use.

The need for small size and low weight mandate the use
of a small battery, and we anticipate future wearable sensor
designs will be further miniaturized. We do not expect en-
ergy limitations to go away anytime soon, despite advances
in device miniaturization and power. Future reductions in the
energy consumption of hardware components would permit
even smaller batteries to be used. As an extreme example,
implantable wireless sensors will have even more significant
power constraints. Therefore, it is vital that we understand
the energy characteristics of the hardware platform, which
define the operating regime for the Mercury system. Fig-
ure 2 summarizes the energy consumption of various hard-
ware components and operations on SHIMMER.

These results motivate a number of design tradeoffs that
we must consider. First, the gyroscope consumes a large
amount of energy, dominating both flash I/O and radio trans-
missions. This suggests that we should duty cycle the sen-
sor, for example, by disabling gyroscope sampling when the
node is not moving (which can be determined using only
the accelerometer). Second, computing certain features on
sensor nodes is relatively inexpensive, and the energy sav-
ings in terms of reduced flash logging and packet trans-
missions more than compensate for the increased CPU en-
ergy cost. Third, it does not make sense to compute more
computationally-demanding features, such as an FFT, on the
sensor node itself, due to the high energy cost. The FFT
cannot be computed on the fly as sensor data is being sam-
pled.1 Although it would be possible to compute the FFT as
an asynchronous background task, this would require read-
ing raw sample data back from flash, further increasing the
energy cost. This cost outstrips the potential savings in trans-
mission overhead.

Using the data from Figure 2, we can estimate the life-
time of the SHIMMER sensor in different modes of opera-

1A 512-point FFT across 6 channels of data requires approxi-
mately 2.7 sec to compute on the MSP430, which could not keep
up with a 100 Hz sampling rate.

 0

 20

 40

 60

 80

 100

 120

 140

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Li
fe

tim
e

(h
ou

rs
)

Fraction of time that sensor is active

Download features, gyro off
Download samples, gyro off
Download features, gyro on
Download samples, gyro on

Figure 3: Estimated lifetime for a SHIMMER under varying activity
levels with a 250 mAh battery. Separate lines are shown for continuously
downloading either samples or features and with gyroscope on or off.

tion. With the node continuously sampling and logging ac-
celerometer and gyroscope data, maintaining time sync, but
performing no data transfers to the base station, the achiev-
able lifetime with a 250 mAh battery is 12.5 h. Data down-
loads by the base station impinge further on this energy bud-
get. Figure 3 shows the achievable lifetime for several down-
load scenarios, including the worst-case lifetime of 9.2 h as-
suming continuous raw sample downloads.

Adaptive duty cycling of the gyroscope and flash logging
significantly reduces baseline energy consumption. A sim-
ple activity filter algorithm applied to the accelerometer data
can determine when the sensor is moving. With the sensor
moving 50% of the time, the worst-case lifetime (assuming
continuous downloads) jumps to 17 h. Further, if we opt to
download features, rather than raw samples, the lifetime can
exceed 22 h. Alternately, we could disable the gyroscope al-
together, which leads to a lifetime of up to 40 h when down-
loading raw samples and 89 h when downloading features.
However, this severely impacts the fidelity of the data pro-
duced by the network, which may or may not be acceptable
depending on the application requirements.

3 Mercury Architecture
Mercury provides a platform for the development of wear-

able sensor applications that must balance battery lifetime
and data quality requirements. A typical Mercury network
consists of multiple sensor nodes worn by a patient, and a
base station, which is typically a laptop with an 802.15.4
transceiver. The Mercury software architecture, shown in
Figure 4, is divided into components that run on the sensor
nodes and the base station.

Sensor nodes capture and store sensor data, compute fea-
tures, and respond to requests from the base station to down-
load data and change sampling and storage modes. The core
of the application-specific logic resides in the driver running
on the base station, which can be customized by an end user
to support a diverse range of clinical applications. Mercury
provides a simple API to the driver to control sensor node
operation and retrieve data. In this way, a clinician need not

Sensor nodes

Base station

Sample
accel

Reliable
xfer protocol

Sample
gyro

Activity
filter

Compute
features

Store
raw data

Flash

Send
heartbeat

Radio
Disk

Radio

Node status

Application driver

Download
manager

Sampling/storage
control

Sampling
control

Storage
control

Figure 4: The Mercury system architecture.

program the sensor nodes to customize the Mercury network.
The Mercury driver can employ a wide range of policies

for tuning data sampling, storage, and downloads to trade off
energy consumption and data fidelity. We provide a standard
suite of policies for achieving a given battery lifetime target,
acquiring high-value data from sensor nodes, and adapting
the sensor operation based on activity profile. In addition,
Mercury provides an accurate system simulator that permits
an end-user to rapidly assess the impact of changes to the
driver code on data quality and battery lifetime. This is an
essential tool for tuning the application code to meet clinical
requirements. In the following sections we detail each aspect
of the Mercury architecture.

3.1 Sensor Node Software
In Mercury, sensor nodes are programmed with a sin-

gle application that performs data sampling, storage, feature
computation, and reliable transfers. Sensor nodes provide a
narrow interface allowing the base station driver to tune sam-
pling and storage modes, as well as to download previously-
stored data. This avoids the need for clinicians to program
the sensor node software, but provides adequate control over
the network’s operation to support diverse application re-
quirements. The sensor node software is implemented using
the Pixie operating system [29], which supports a resource
aware programming model. We exploit Pixie’s ability to
track energy and bandwidth in real time, as described below.

Sampling and Activity Filter: Under normal operation,
a Mercury node samples its various sensors into sample
blocks each holding a chunk of raw sensor data. Sample
blocks are passed to downstream modules for further pro-
cessing and storage. Sample blocks can contain multiple
channels of sensor data. Mercury nodes provide a sampling
control interface allowing the base station to tune the sam-
pling rate and set of active channels. For example, the sam-
pling mode may specify that the accelerometer and gyro-
scope are to be sampled at a rate of 100 Hz.

Mercury provides an activity filter module that saves en-
ergy during periods when a sensor is inactive or other-
wise producing uninteresting data. The sensor uses the ac-
celerometer to determine whether the sensor is moving with
a simple algorithm that triggers whenever the difference be-
tween subsequent values exceeds a threshold. If the sensor

is not moving, the filter drops the accelerometer data (so it
will not be processed or stored) and disables any other sen-
sors, such as the power-hungry gyroscope sensor. The activ-
ity threshold can be tuned by the base station; setting it to
zero effectively disables the filter.

When the sensor begins to move, the activity filter begins
an active period. During active periods, all other sensors
that are enabled by the current sampling mode (e.g., the gy-
roscope) are sampled, and the data is passed downstream to
modules for feature extraction and data storage. Recall from
Figure 2 that the gyroscope consumes much more energy
than the accelerometer, so this approach can significantly re-
duce energy consumption during inactive periods. This ap-
proach is similar to the activity filter in SATIRE [15].

Data Storage: The SHIMMER sensor supports up to
2 GB of MicroSD flash, allowing the node to store the com-
plete raw signal for later retrieval. Each sample block that
passes the activity filter is assigned a 32-bit monotonically
increasing block sequence number. In our current prototype,
a sample block is 1200 bytes plus metadata, which is equiva-
lent to 1 sec of sensor data sampled at 100 Hz across 6 chan-
nels. Sample blocks are timestamped when the first sample
in the block is recorded. Sensor nodes synchronize their lo-
cal clocks using the FTSP [30] protocol.

Sample blocks are logged to flash as a simple append-
only log. Given the large size of the flash we do not expect
storage capacity to be an issue, since the flash can store sev-
eral weeks of data. The block sequence number can be used
to determine the location of the block in flash since blocks
are constant size. As described below, the base station driver
can disable sample block storage on a node in order to save
energy. This would permit the sensor data to still be used for
feature extraction, although the raw data could not be down-
loaded later.

Feature Extraction: As discussed earlier, computing
features on each sensor node can save considerable band-
width (and therefore, energy) when retrieving data from the
network. Mercury provides a standard suite of feature extrac-
tors that are used across a number of applications we have
studied. These feature extractors are efficient to compute on
sensor nodes. Of course, some applications may require cus-
tom feature-extraction algorithms. This logic is contained in

its own software component and is straightforward to cus-
tomize for a given application should the need arise.

Based on previous clinical studies [19, 37], Mercury pro-
vides five standard feature extraction algorithms: maximum
peak-to-peak amplitude; mean; RMS; peak velocity; and
RMS of the jerk time series. These features are efficient to
compute on the fly as sensor data is being acquired. Features
are computed over multiple overlapping subwindows of the
raw signal, which is helpful in reducing aliasing effects. The
number and size of the subwindows can be configured by the
application developer at compile time. In the applications we
have studied, features are computed over ten 5-sec overlap-
ping subwindows over each 30 sec window of sensor data.2

This set of features can be computed over 6 channels of
accelerometer and gyroscope data in 150 ms for each sample
block. Features computed over a window are combined to
produce a single feature block that is stored to flash. For a
30-sec window size, 5-sec subwindow size, 5 features, and 6
channels, each feature block consumes 600 bytes, not includ-
ing metadata. As with sample blocks, features are assigned
an increasing sequence number used for later retrieval from
flash. Note that although a feature block is only half the size
of a sample block, features represent 30 sec worth of data,
whereas a sample block represents just 1 sec. This is an ef-
fective compression ratio of 60:1. Even if we were to com-
press the raw data and assume a generous compression ratio
of 90%, features consume nearly an order of magnitude less
bandwidth.

Each feature block includes the range of sample block IDs
that correspond to those features. This makes it possible for
the driver to download a feature block, inspect its contents,
and optionally download the corresponding raw samples if
the data is deemed of sufficient value. Note that if raw sam-
ple storage is currently disabled by the driver (as described
below), this will be an empty range.

Heartbeats: Sensor nodes periodically transmit a heart-
beat packet to the base station that provides essential infor-
mation used to schedule data retrieval. The heartbeat in-
cludes the number of sample and feature blocks stored on
the node, a global timestamp based on the FTSP time syn-
chronization protocol, and status flags used for debugging.
Heartbeats are transmitted whenever a new feature block is
stored by the node, or every 60 sec if the node is in an inac-
tive state.

Heartbeats include estimates of the node’s energy con-
sumption and radio link quality to the base station. Energy
use is estimated using the software energy metering com-
ponent built into Pixie [29], which tracks energy use over
time using an empirical model that considers the state of each
hardware device (CPU, radio, flash, etc.) over time. Previ-
ous work [29] has shown that this model achieves up to 98%

2From an energy perspective, it only makes sense to compute
features for which the cost of computation and transmission re-
quires less energy than transmitting the raw samples. Due to mem-
ory constraints, a node cannot hold 5 sec of raw data in memory.
Therefore, features that require more than one pass on the raw data
must read the data from flash storage on each pass. As Figure 2
shows, this additional cost could outweigh the cost of transmitting
the raw signal.

Operation Description
lastHeartbeat(n) Get time last heartbeat received
energyConsumed(n) Get energy consumed
linkState(n) Get estimate of radio link
dataAvailable(n) Get amount of data stored
downloadFeature(n,ids) Download feature blocks
downloadSample(n,ids) Download sample blocks
sampleMode(n,rate,chans) Set sampling rate and channels
storageMode(n,bitmask) Set storage bitmask
activityThreshold(n,val) Set activity threshold

Figure 5: The Mercury driver API.

accuracy. Radio link quality is based on Pixie’s bandwidth
estimation algorithm which measures the mean transmission
delay for each packet to the base station, including ACKs
and retransmissions. Based on these radio and energy mea-
surements, the base station is able to carefully schedule data
transfers from sensor nodes to achieve lifetime targets and
avoid excessive bandwidth use, as described below.

Reliable Transfer Protocol: Mercury provides a simple
end-to-end reliable transfer protocol similar to Flush [21].
The base station transmits a request containing a sensor node
ID, data type (raw data or features), and a range of block
addresses that it wishes to retrieve. The node reads the re-
quested data from flash, segments it into radio packets, and
transmits each packet (using ARQ) to the base station. Se-
lective NACKs are used to request missing packets.

To save energy, sensor nodes make use of a low-power
listening MAC [39] that duty cycles the radio to listen for in-
coming packets infrequently (we currently use an 4% duty
cycle). This requires the base station to transmit a train
of packets when sending commands to sensor nodes; how-
ever, given that the base station is continuously powered,
transmissions to the base station do not incur this overhead.
Because the base station schedules data transfers centrally,
Mercury minimizes latency and energy consumption by dis-
abling the default CSMA MAC during downloads. Note that
this causes control packets (such as heartbeats) to be delayed
by an ongoing data download. We limit the duration of a
download packet burst to bound this delay.
3.2 Application Driver

The core of the Mercury system is the application driver,
which runs on the base station and coordinates the sensor
network’s operation to manage data sampling, storage, and
acquisition. The driver is responsible for implementing poli-
cies that are appropriate to meet the clinical requirements of
the application in terms of data quality and sensor lifetime.
Mercury provides a narrow API that permits the driver to
inspect the sensor node state, configure sampling and stor-
age modes, and drive data downloads. A wide range of
application-specific policies can be implemented on top of
this API to target different clinical requirements.

The driver API is shown in Figure 5. Several operations
query the state of the sensor nodes based on the most re-
cently received heartbeat from each node. lastHeartbeat(n)
returns the time that the most recent heartbeat was received
from node n, allowing the driver to ignore stale information
(e.g., when nodes are out of radio range of the base station).
The energyConsumed and linkState queries allow the driver

to track the energy consumption and quality of the radio link
for each node, which is useful for adapting sensor node be-
havior and driving downloads.

Downloads are performed using the downloadFeature and
downloadSample operations, which take the node ID and
range of feature or sample block IDs as arguments. These are
asynchronous calls which queue up the transfer for execution
by the Mercury download manager; the driver receives a call-
back when the transfer is complete. The range of block IDs
stored by a node is returned by the dataAvailable call. Recall
that feature blocks store the range of corresponding sample
blocks (if any), so a typical policy is to download the latest
feature block, then queue the corresponding sample blocks
for download if the features indicate interesting activity.

The driver can tune the sampling rate, set of channels
sampled, and whether data is stored by the sensor nodes
using the sampleMode and storageMode calls. These fea-
tures allow the driver to trade off data quality and energy
consumption, depending on clinical requirements. activi-
tyThreshold tunes the amount of data passed by the sensor
activity filter.

4 Application Case Studies
In this section, we present two applications developed for

the Mercury architecture: a system for monitoring neuromo-
tor activity of Parkinson’s Disease patients, and another for
detecting epileptic seizures. Both of these systems are be-
ing developed in conjunction with clinical researchers at a
local hospital, where Mercury is being used to capture data
on several patient populations.

4.1 Parkinson’s Disease Monitoring
The Mercury-based Parkinson’s Disease (PD) monitoring

system is intended to characterize fluctuations in a patient’s
motor activity over the course of a day. PD patients ex-
perience tremor, muscle rigidity, and sluggish movements
(bradykinesia) associated with the disease, which can be
controlled through medications and other treatments, such as
deep brain stimulation. Involuntary movements (dyskinesia)
are associated with medication intake, making it necessary
to tune the timing and dosage of medications to minimize
complications.

In the planned study, patients are monitored at home over
the course of several weeks. The clinician is primarily inter-
ested in the features computed from the raw signal, however,
if the features for a given time window indicate motor fluctu-
ations of interest, the raw sensor data corresponding to those
features should be downloaded as well. Typically, the patient
will put on the sensors in the morning and take them off to
recharge each night. A battery lifetime of at least 24 hours
is desirable, although longer lifetimes (48-60 hours) will en-
sure continuous monitoring if the patient forgets to recharge
the sensors every night.

Using the Mercury API, we have developed a range of
drivers to support this application. The standard driver
makes no attempt to save energy, and simply performs
round-robin downloads from each sensor node, with a prefer-
ence for downloading feature blocks before sample blocks.
Feature blocks are downloaded in FIFO order, but samples

for n in nodes:
Screen out disconnected nodes
if (lastHearbeat(n) > TIMEOUT): continue
Screen out nodes without enough energy
if (energyConsumed(n) > target(n)): continue
Screen out nodes with poor radio links
if (linkState(n) < LINKTHRESH): continue
Get list of available feature blocks
(fbs) and sample blocks (sbs)
fbs,sbs = dataAvailable(n)
if len(fbs) != 0:

fb = downloadFeature(n, fbs[0])
Assign score to corresponding
sample blocks
assignSampleScore(fb)

elif len(sbs) != 0:
sbs.sort(scoreSortFn)
downloadSample(n, sbs[0])

Figure 6: Pseudocode for the throttle downloads driver.

are downloaded according to a scoring function, as described
below.

Recall that raw samples are relatively expensive to down-
load: 30 sec of raw data requires transferring 60 times more
data than the features covering the same span. Therefore, the
driver prioritizes sample blocks according to an application-
defined scoring function that represents the clinical value of
the data. This ensures that the network will invest its lim-
ited resources on acquiring the data with the highest clini-
cal value. When a feature block is downloaded, the features
are used to compute the score for the corresponding sample
blocks.

The scoring function can take many forms. In our cur-
rent system, we assign the score of a sample block to be the
maximum value of the peak-to-peak amplitude feature over
all channels and subwindows in the corresponding feature
block. This approach prioritizes samples that contain greater
range of movement, which are more likely to contain events
of interest to a clinician studying Parkinson’s Disease. Note
that the scoring function can be readily modified simply by
changing the driver code on the base station, without repro-
gramming the sensor nodes.

Throttling Downloads: The standard driver yields
clinically-relevant data, but cannot ensure that the nodes
meet a target lifetime. We have developed several alternative
drivers for this purpose. The throttle download driver col-
lects data opportunistically by only performing a download if
the node has “excess energy” according to an energy sched-
ule. Pseudocode for this driver is shown in Figure 6. Recall
that each node’s activity filter saves energy by disabling gyro
sampling and storage when the node is idle. Therefore, the
energy consumption profile of a node will vary over time,
based in part on how often it moves.

The energy schedule is computed based on the initial bat-
tery capacity C and lifetime target tl . At a given time t, the
node should have at least ê(t) = C− (C/tl · t) joules of en-
ergy left in its battery in order to satisfy the lifetime target.
Given the node’s own estimate of its energy consumption
e(t), the driver computes the energy surplus s = ê(t)− e(t).

The driver will only attempt a download from the node if
s≥ 0.

Another feature of the throttle download driver is that
it will avoid downloading data from a node with a weak ra-
dio link. If the node’s most recent estimate of its link qual-
ity (based on calling linkState(n)) indicates a throughput of
lower than 30 packets per sec for bulk transfers, we exclude
the node from consideration. This saves energy by avoiding
a potentially large number of NACKs and retransmissions
during the transfer.

Throttling Gyro: As an alternative to limiting data
downloads, the throttle gyro driver disables the gyroscope
sensor on nodes that are running hot according to the energy
schedule. Although the activity filter on each node already
disables the gyro during inactive periods, turning it off dur-
ing some active periods can save a substantial amount of en-
ergy. The tradeoff, of course, is reduced data fidelity. Our
clinical colleagues have indicated that this is an acceptable
sacrifice during times when the node is unable to meet its
lifetime target otherwise. The driver monitors each node’s
energy state and computes an energy schedule as described
above. If energy consumption exceeds the schedule, the node
is sent a samplingMode command to disable the gyro sensor
altogether. If energy consumption falls behind the schedule,
the gyro is re-enabled.

Other Policies: It is easy to combine the above poli-
cies in various ways. The throttle gyro and downloads
driver limits both downloads and gyro sampling when energy
is limited, getting the combined effect of both techniques.
The throttle storage driver disables storage for raw sam-
ples when energy is constrained, causing the node to only
buffer feature blocks. This saves energy for the additional
flash writes, but makes the raw sample data unavailable for
later download. The throttle sampling driver disables all
data sampling when energy is limited. This can substantially
increase lifetime, but severely impacts data quality.

Each of these drivers is only a few lines of Python code,
using the API provided by Mercury for monitoring node
state, changing node parameters, and performing downloads.
In Section 6 we demonstrate the effectiveness of these poli-
cies under a wide range of conditions.
4.2 Epileptic Seizure Detection

The second application involves detection of the onset of
epileptic seizures. This system is intended for use in a hospi-
tal setting where patients are observed for several days while
withholding anticonvulsant medications, thereby permitting
seizures to occur. Rapid detection of seizure activity, espe-
cially continuous convulsive seizures (status epilepticus), is
important since this can be a life-threatening condition.

Detecting whole-body (tonic-clonic) seizures from ac-
celerometer and gyroscope data involves complex analysis
that cannot be performed in real time on the sensor nodes
themselves [6]. Therefore, if a seizure is suspected, the
driver must first download the raw signal from all of the sen-
sors worn by the patient. Of course, continuous raw signal
downloads would rapidly deplete the nodes’ batteries, so the
system must take care to download signals only if there is
some preliminary indication of seizure activity. Note that a
single node does not have enough information to determine if

a seizure is occurring. Therefore, it is necessary to combine
information across multiple sensors to discriminate seizures
from non-seizure activity.

In this application, it is assumed the patient is generally
within radio range of the base station (located in the patient’s
hospital room or nearby) and therefore we do not expect the
patient’s sensors to experience disconnectivity or extremely
poor radio links for extended periods of time. However, we
do assume fluctuations in the radio link. Also, we make no
explicit attempt to throttle data sampling or downloads to
meet a lifetime target, since low detection latency is the chief
concern. Instead, if the battery charge for a node falls below
a threshold, the driver sends a notification (e.g., to a nurse)
to replace the node.

The driver operates as follows. Feature blocks are down-
loaded from nodes in a round-robin fashion, as before. Fea-
tures spanning the same time window are assigned a score
based on how likely they represent seizure activity. Cur-
rently, we use the same scoring function as in the PD sys-
tem, which measures the motion envelope of the node over a
time window. If more than k nodes have a score over a given
threshold T , a seizure is suspected, and the driver rapidly
downloads the raw sample that span this time window from
all nodes. The raw data is subsequently processed at the base
station to determine if a seizure is indeed present, and if so,
an emergency notification is sent to the hospital staff.

To minimize latency for detection of seizure onsets, the
driver assigns a score to each sample block in a manner that
causes blocks earlier in the time window following a detec-
tion trigger to be downloaded first. This allows the driver
to quickly acquire data following a new trigger, even though
there may be pending data from previous triggers. Since it
is not necessary to acquire the complete raw signal to de-
termine if a seizure is present, this policy prevents spurious
triggers from delaying new sample downloads.

The two parameters of interest are the score threshold T
and the number of nodes required to trigger a download cy-
cle, k. We keep T fixed at a value that has been shown to
capture all possible seizures, but which may also capture
non-seizure activity from the patient’s normal movements.
Setting k to 1 will trigger downloads whenever a single node
moves in such a fashion, causing many false positives. Set-
ting k to 8 will only trigger downloads if all nodes indi-
cate a possible seizure, possibly missing some subtle seizure
events. In Section 6 we evaluate the accuracy and latency for
seizure detection for different settings of this parameter.
4.3 Other Applications

We are exploring a range of other applications based on
the Mercury platform. Two specific studies we are plan-
ning include monitoring of rehabilitation exercise in patients
being treated for stroke and measuring ambulation in pa-
tients with chronic obstructive pulmonary disease (COPD).
These applications have very different requirements. The
COPD study would require long battery lifetimes to moni-
tor patients at home, whereas the stroke study would be con-
ducted primarily in the lab. Also, the COPD study would
involve physiological monitoring using ECG and respiration
rate sensors, in addition to accelerometers worn on the legs.
The Mercury architecture is designed to support a wide range

of sensors and application requirements. Mercury’s driver
API should make it possible to rapidly build up the appropri-
ate network management policies without requiring complex
programming of the sensor nodes.
5 Implementation

We have implemented a complete prototype of the Mer-
cury system. The sensor node software is implemented in
NesC [16] using the Pixie [29] operating system. We lever-
age Pixie’s dataflow programming model, which maps well
onto the structure of this system. Pixie also provides accurate
and inexpensive runtime estimation of energy consumption
and radio link quality to the base station.

The Mercury base station components are implemented
in Python. The application driver is a Python module that
invokes the Mercury API shown in Figure 5. We have found
that implementing drivers for a range of applications and
policies is fairly straightforward, often involving just a few
lines of code.

Simulation Environment: Mercury makes it possible to
explore a wide range of policies for managing the sensor
network’s operation. To assist clinicians in understanding
the impact of the driver’s policy on lifetime and data qual-
ity, Mercury provides a detailed simulation environment that
accurately models sampling, storage, feature computation,
and data transfer behavior of real sensor nodes, as well as
the corresponding energy costs. The simulator can be driven
by traces of real sensor data acquired separately, or using a
range of synthetic trace generators to model varying types of
user activity. The simulator requires just seconds to model
several hours of sensor node activity, making it appropriate
for rapid offline estimation of the impact of a change to the
driver code. We have performed extensive validation of the
simulation against real sensor nodes, and find that it produces
results that are indistinguishable from those produced by the
actual sensor motes under similar conditions.
6 Evaluation

In this section, we present a detailed performance evalu-
ation of Mercury along several axes. First, we study the ef-
fectiveness of Mercury’s energy-saving features. Second, we
perform an extensive study of the Parkinson’s Disease mon-
itoring system while varying sensor activity levels and life-
time targets. Third, we evaluate the seizure detection system
in terms of accuracy, false positive rate, and latency. Finally,
we present results from a deployment of the PD monitoring
system (worn by one of the coauthors) to demonstrate the
complete system being used in a realistic setting.
6.1 Evaluation Methodology

The results in this section were obtained using a combi-
nation of live deployment, testbed experiments, and simula-
tion. The testbed setup consists of 8 SHIMMER nodes and
a single iMote2 connected to a PC as a base station. The
simulation environment is described in Section 5, and we
have confirmed that the results are nearly identical to those
observed in the testbed. We have also performed extensive
measurements of Mercury on live deployments in which we
wear the sensor nodes, as described below.

To induce variations in activity level and link quality, each
node in the testbed is driven by a tracefile stored in ROM

0 20 40 60 80 100 120 140
0

50

100

150

Fe
a
tu

re
 Q

u
e
u
e
 L

e
n
g
th

0 20 40 60 80 100 120 140

0

500

1000

1500

2000

2500

3000

R
a
w

 S
a
m

p
le

 Q
u
e
u
e
 L

e
n
g
th

Feature Downloads
Raw Sample Downloads
Inactive Periods

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

P
e
r-

P
a
ck

e
t

D
e
la

y
 (

m
s)

Delay
threshold

Good Link
Weak Link
Disconnected

0 20 40 60 80 100 120 140
Time (min)

0.0

0.5

1.0

1.5

2.0

2.5

S
p
a
re

 E
n
e
rg

y
 (

m
A

h
) Ahead of Energy Schedule

Behind Energy Schedule
Gyro enabled

Figure 7: Detailed view of a single node’s behavior. This data is from
a single node during one of the lab deployments of Mercury. The top figure
shows feature and sample queue lengths; the middle figure the radio link
quality; and the lower figure the amount of spare energy according to a
lifetime target of 24 h.

that specifies sensor data values and packet radio loss statis-
tics every second. Nodes emulate sensor data acquisition
and randomly drop packets according to the tracefile. The
simulator models these conditions as well. We model sen-
sor movement as a Poisson arrival process that produces a
mean amount of “active” versus “inactive” periods during
the course of the run. We vary the activity level of each node
independently between 25% to 100%. For the seizure detec-
tion system, we additionally model seizure onset as a Pois-
son process that causes all 8 nodes on the body to experience
elevated levels of movement.

We model variations in the radio link quality between sen-
sor nodes and the base station. The radio link varies between
lossless, lossy, and disconnected periods. By default, the ra-
dio link quality distribution is 25% lossless, 50% lossy, and
25% disconnected. At a given time, the radio link is identi-
cal for all nodes, to model conditions that would arise when
sensors are worn together on a patient moving in the home.

6.2 Node Dynamics
To get a handle on the complex dynamics of bandwidth

and energy use in Mercury, Figure 7 shows a detailed view
from an experiment using the Mercury Parkinson’s monitor-
ing platform, in which one of the coauthors wore the sen-
sor nodes for over 5 h. We have conducted extensive on-
body tests of the complete system spanning more than 13 h.
During this experiment, the user performed various activities
around the lab (walking, sitting, typing, etc.), and left the lab
several times to induce packet loss and disconnection. The
figure shows a representative trace from a single node during
the experiment, using the throttle gyro driver described in

0 10 20 30 40 50 60
Time (min)

225

230

235

240

245

250
B

a
tt

e
ry

 c
a
p
a
ci

ty
 (

m
A

h
)

Baseline
Activity filter
Throttle downloads
Throttle gyro
Energy schedule

Figure 8: Benefit of energy saving features in Mercury. Each line
represents the energy consumption of a node with different energy-saving
features enabled. A energy schedule for a 24 hour lifetime target is shown
for reference.

Section 4.1. The graph shows activity periods (in which the
sensor was moving), times when the node was disconnected
from the base station, and times when the gyro was enabled
or disabled.

From the figure, we can make the following observations.
The driver drains the feature queue whenever there is good
radio connectivity, while sample blocks are downloaded less
frequently. Due to bandwidth limitations, the driver is unable
to download all of the sample blocks stored by the node, ex-
plaining the gradual increase in the queue length over time.

The radio link quality (shown as the delay for success-
ful transmission to the base station, including ARQ) varies
considerably during the trace. The delay threshold shown in
the figure is the limit above which the driver will not attempt
to download data from the node. Finally, note that the en-
ergy profile of the node varies based both on movement and
download activity, as expected. The driver toggles the node’s
gyro on and off depending on energy availability. Note that
the spare energy hovers very close to zero, indicating that the
system is effective at meeting the lifetime target of 24 h.

6.3 Energy Saving Features
Next, we evaluate the effectiveness of Mercury’s energy

saving features, including the activity filter, throttling data
downloads, and throttling the gyroscope. Figure 8 shows the
energy usage profile from a single node in several experi-
ments in which we selectively disabled each feature.

The baseline system disables all features, and shows that
the node expends energy at a high rate. Enabling the activ-
ity filter greatly improves battery lifetime by disabling gyro
sampling, feature computation, and data storage when the
sensor is not moving. The throttle downloads driver saves
additional energy, but does not do as well as the throttle gyro
driver, which is effective at meeting the target lifetime.

Figure 9 shows the achievable lifetime for different driver
policies as the target lifetime is increased from 6 to 60 hours.
These experiments model a worst-case scenario where sen-

0 10 20 30 40 50 60
Lifetime target (hrs)

10

15

20

25

30

35

40

45

50

A
ch

ie
v
e
d
 l
if
e
ti

m
e
 (

h
rs

)

Throttle downloads

Throttle gyro+dloads

Throttle sampling

Throttle storage

Throttle gyro

Figure 9: Achievable lifetime under a range of driver policies. Re-
sults show the mean across 8 nodes, where all achieved lifetimes are within
14.5% of the mean. This is for a worst-case scenario where the sensors are
active at all times. The policy used by the application driver has a signifi-
cant impact on the maximum battery lifetime.

sors are moving at all times. The throttle downloads and
throttle storage drivers can obtain a peak lifetime of around
12 h. Throttle gyro does much better, with a peak of around
32 h, while throttling both gyro and downloads achieves
nearly 42 h. Throttling both gyro and accelerometer scales
almost linearly, but has a negative impact on data quality.

6.4 Data Coverage for Parkinson’s Monitor-
ing

The most important metric for the PD monitoring sys-
tem is the amount of data from active periods that can be
retrieved by the network. Therefore, the performance metric
we choose for the PD monitoring system is coverage as the
ratio between the amount of data downloaded by the base
station and the amount of data that would have been sampled
by an “ideal” network. The (hypothetical) ideal network is
not subject to energy limitations and records complete sam-
ple blocks during active periods with both the accelerometer
and gyroscope sensors enabled. Using an ideal network as
the baseline ensures that our analysis is not skewed by the
driver’s tuning of the node sampling parameters.3

We ran a series of experiments using 8 nodes while vary-
ing each node’s activity level (from 25% to 100%) and the
lifetime target (from 6 h to 60 h). Each experiment emulated
variable radio link conditions as described above. The data
we show in this section is aggregated across 8 SHIMMERs
and we use the sum of the amount of data downloaded from
8 nodes to compute coverage. Figure 10 shows results for
the throttle gyro driver. Recall that this driver prioritizes
features over raw samples, so sample coverage is lower than
that for features. The volume of sample data simply outstrips
the network’s download capacity.

3Otherwise, a driver that disabled all sampling would achieve a
coverage of 100% by fiat, since nodes would sample no data that
needed to be downloaded.

0 10 20 30 40 50 60
Lifetime target (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

S
a
m

p
le

 c
o
v
e
ra

g
e

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

Fe
a
tu

re
 c

o
v
e
ra

g
e

Throttle gyro activity 25%
Throttle gyro activity 50%
Throttle gyro activity 75%
Throttle gyro activity 100%

Figure 10: Impact of varying lifetime target and activity level on data
coverage for throttle gyro. As lifetime targets increase, the amount of
data that can be downloaded from each sensor given the energy budget
decreases. Increased sensor activity also effects data coverage. Data is
aggregated across 8 nodes.

One complication to note is that throttle gyro dynami-
cally enables and disables the gyroscope sensor. During pe-
riods when the gyro is disabled, the data produced by the
node contains only accelerometer readings. This degraded
data is still valuable for assessing PD motor fluctuations,
but has lower quality than with the gyro enabled. We de-
fine full-resolution coverage as the fraction of blocks down-
loaded that contain both accelerometer and gyro sensor data,
and degraded-resolution coverage as the fraction of blocks
that only include accelerometer data. In Figure 10, only full-
resolution data coverage is shown: we do not give ourselves
“credit” for non-gyro data blocks.

We further explore the impact of different driver policies
on coverage in Figure 11. These experiments are driven by
a trace of real sensor data, and each policy is described in
Section 4.1. Policies that tune the gyro have two segments:
full-width bars represent full-resolution data coverage, and
half-width bars represent degraded-resolution data coverage.

The throttle gyro policy maintains degraded feature cov-
erage of 100% across a range of lifetime targets, indicating
that it is able to collect a substantial amount of data despite
the severe energy constraints. Throttle storage maintains
high coverage for features, but sample coverage is severely
reduced, since this policy disables storage for raw sam-
ples when energy is limited. No policy is able to achieve
greater than about 25% coverage for sample blocks (when al-
ways logging samples), due to limited radio bandwidth. The
throttle downloads policy falls off rapidly since it is unable
to sustain lifetimes longer than about 12 h. The upshot is that
toggling the gyro does the best job at meeting long lifetimes
while maintaining good (albeit degraded) data coverage.

6.5 Lab Experiment
The aforementioned laboratory experiments (Figure 7)

provide us with an opportunity to observe Mercury’s be-
havior in a realistic setting with sensors worn by one of the

12 24 36 60
0.0

0.2

0.4

0.6

0.8

1.0

Fe
a
tu

re
 c

o
v
e
ra

g
e

12 24 36 60
Lifetime target (hrs)

0.0

0.2

0.4

0.6

0.8

1.0

S
a
m

p
le

 c
o
v
e
ra

g
e

Throttle gyro

Throttle storage

Throttle gyro+dloads

Throttle sampling

Throttle downloads

Figure 11: Data coverage for a range of driver policies. In the figure,
full-width bars represent coverage for full-resolution data, whereas half-
width bars represent coverage for degraded-resolution data (without gyro
sampling enabled). Data is aggregated across 8 nodes.

Node Feature coverage Sample coverage
1 (left upper arm) 97% 34%
2 (left lower arm) 98% 34%
3 (right upper arm) 98% 30%
4 (right lower arm) 96% 30%
5 (left upper leg) 98% 46%
6 (left lower leg) 96% 41%
7 (right upper leg) 91% 39%
8 (right lower leg) 90% 34%
Total 96% 36%

Figure 12: Summary of data coverage from the lab deployments.

coauthors. We conducted a series of long-term experiments
which yield over 13.5 h worth of data.

During the experiments, nodes exhibited a wide range of
activity levels and radio link conditions as we would expect
in a real home or hospital setting. Figure 12 summarizes the
data coverage for each node; all nodes obtain 90% or greater
feature coverage, although the total raw sample coverage is
only 36%, owing to limited radio bandwidth. The lower-
body nodes exhibit higher coverage for sample blocks, be-
cause these nodes were generally less active and therefore
stored less data for download. We also observe that the radio
link varies across nodes being worn on different parts of the
body, as shown in Figure 13. Note that there is not an ob-
vious relationship between the link quality and the sensor’s
location on the body.

6.6 Epileptic Seizure Detection
Finally, we evaluate the seizure detection system, de-

scribed in Section 4.2. Since the goal is to provide accu-
rate detections with low latency, we evaluate the system with
detection accuracy and latency as metrics. Recall that the
application driver operates by downloading feature blocks in
round-robin fashion, and triggering a full download of 30 sec
of raw samples from all nodes when at least k nodes exhibit
a high degree of movement.

Two primary factors affect the performance of this appli-

10 20 30 40 50 60
Time(min)

0

20

40

60

80

100

120

140

P
a
ck

e
t

d
e
la

y
(m

s)

upper left arm
lower right arm
lower left leg
lower right leg

Figure 13: Radio link quality variation across sensor nodes. Measured
ARQ packet delays are shown for four nodes in the 8-node lab test. Higher
delays indicate lossy links. As the figure shows, there is significant variation
in the link conditions for individual nodes.

0 20 40 60 80 100
Percent noise

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fr
a
ct

io
n
 o

f
ti

m
e

seizures

noise downloads

k = 8

k = 4

seizure downloads

k = 8

k = 4

Figure 14: Impact of varying noise. This figure shows the effect of
increased noise on the data captured by the network for all 8 nodes.

cation. The first is the degree of noise induced by routine
movements by the patient, which can be misconstrued as
seizure activity, therefore triggering unnecessary data down-
loads. The second is the threshold number of nodes k re-
quired to trigger a bulk data download. For low values of
k, spurious movements can trigger false positive downloads.
For large values of k, some subtle seizure events could be
missed. To simplify the evaluation, we only consider whole-
body (tonic-clonic) seizures that affect all nodes; therefore a
threshold k = 8 should achieve the best performance.

Varying Movement Noise: We ran a series of experi-
ments with the seizure detection system using 8 nodes sam-
pling accelerometer and gyro data at 100 Hz. In these ex-
periments, seizures are modeled as a Poisson arrival process
with an onset probability of 5%. This is, of course, extremely
high, but we are interested in the performance of the system
under heavy load. We varied the amount of movement noise

k True positives False positives
1 0.34 0.11
2 0.33 0.11
3 0.34 0.11
4 0.34 0.11
5 0.35 0.11
6 0.42 0.11
7 0.83 0.08
8 0.95 0.07

Figure 15: Impact of detection threshold. Data is shown for seizure
probability of 5%. Movement noise is based on a trace of real sensor data.

0 10 20 30 40 50 60 70 80 90 100 trace
Amount of noise (%)

0

20

40

60

80

100

120

140

160

180

M
e
d
ia

n
 l
a
te

n
cy

 (
se

c)

Figure 16: Seizure detection latency vs. noise. This is for a 3 hour run
with 8 nodes in which the patient has seizures 10 % of the time.

occurring independently on each sensor.
Figure 14 shows the total amount of data downloaded

from all 8 nodes for seizure periods versus noise periods,
with two values of the detection threshold k (4 and 8). For
low movement noise, the network downloads 100% of the
seizure data. As the noise increases beyond a certain amount,
false triggers and limited bandwidth conspire to cause the
network to download a large amount of non-seizure data,
causing some seizure signals to be lost. Using k = 8 per-
forms better, as expected, since more spurious movements
are filtered out. On the other hand, this approach would miss
certain subtle seizure events. Note that the total volume of
sample data downloaded from the network is no greater than
11%, which is due to radio bandwidth limitations.

Varying Detection Threshold: The parameter k controls
how many nodes must report high movement before a down-
load cycle is initiated. Figure 15 shows the true positive ra-
tio and false positive ratio for increasing values of k, with
seizure onset probability of 5%. Movement noise and radio
bandwidth fluctuations are based on a trace captured using
real sensors over part of the lab deployment described earlier.
For k = 8, the system captures 95% of the seizure signals.
Due to the high degree of noise in the trace, lower values of
k lead to less accuracy. The number of false positives (times
when the network downloaded full body data but no seizure
was present) is no more than 11%.

Detection Latency: We define detection latency as the

time between the start of a seizure and the time by which at
least 10 sec of raw sample blocks covering the seizure sig-
nal have been downloaded from all nodes. The base station
can rapidly analyze this raw signal to determine whether a
seizure is in fact underway. The detection latency depends
on several factors, including the time for the base station to
download and analyze feature blocks and the time required
for enough raw samples to be downloaded so that we have at
least 10 sec of data from each node to analyze.

From a clinical perspective, it is critical that tonic-clonic
seizures are detected in less than 5 minutes so that hospital
staff can be alerted [11]. Figure 16 shows the detection la-
tency as movement noise increases. Recall that the driver’s
policy prioritizes raw samples immediately following a trig-
ger, which minimizes the delay arising from spurious down-
load cycles induced by movement noise. The rightmost bar
shows the results when a trace of real human activity is used
instead of synthetic noise data. As the figure shows, the max-
imum detection latency is around 170 sec, well below our
300 sec threshold. The primary limiting factor here is the
transfer throughput for raw signals from the nodes.

6.7 Preliminary Deployment
Mercury is currently used in several patient studies at

Spaulding Rehabilitation Hospital. To date, these deploy-
ments have been focused on data collection in a clinical set-
ting. However, our preliminary experiences have yielded
tremendous insight into the challenges that we expect to face
in a home setting and motivate many of the design choices
made in Mercury.

An earlier version of the Mercury platform has been used
to collect data on 6 patients over the last several months.
Four of these patients are involved in a study of deep brain
stimulation (DBS) for Parkinson’s Disease. We have under-
taken 8 data recording sessions for each patient over a 3-
month period, in which each patient wears 9 SHIMMER sen-
sors and performs a series of predetermined tasks while their
DBS parameters are adjusted. The sensor data is being used
to build predictors of the severity of Parkinsonian symptoms
and to gain an understanding of how different DBS parame-
ters affect those symptoms.

The two remaining patients are undergoing treatment for
epilepsy. Mercury has been used to capture up to 12 h of
accelerometer and electromyogram (EMG) data per day for
a 5-day period for each patient. The specific number and
placement of the sensors varies depending on the nature of
the seizures. The earlier version of Mercury used in these
studies assumes a good radio link to the base station and
manual data retrieval by the operator. Feedback from the
medical users has resulted in a large number of enhance-
ments reflected in our current design to improve ease-of-use,
automatic failure recovery, and longer battery lifetimes. We
anticipate rolling out the current Mercury software as de-
scribed in this paper at the hospital, as well as in several
patients’ homes, in the coming months.

7 Related Work
A number of previous projects have investigated use of

wearable sensors for motion analysis, activity classification,
and monitoring athletic performance. We briefly describe

previous work on wearable sensor platforms, resource adap-
tivity, and sensor processing algorithms.

Wearable Sensor Platforms: The field of body sensor
networks [27] has developed a range of wearable platforms
for measuring movement [8, 10, 36] and physiological pa-
rameters [28, 46]. One closely related project to Mercury is
SATIRE [15], which is designed to identify a user’s activ-
ity based on accelerometer and GPS sensors integrated into
“smart attire” such as a winter jacket. SATIRE is based
on a single application (activity classification) and is not
intended for clinical applications that require high-fidelity
data. Rather, its focus is on broadly classifying movement
into a set of “stationary” and “non-stationary” activities.

Compared to the SHIMMER sensors used in our study,
SATIRE uses relatively bulky motes using AA batteries for
power. Two AA batteries have roughly 10 times the energy
capacity of our lightweight Li-poly battery, but with a com-
bined mass of 50 g, 5 times that of the entire SHIMMER
package. This solution is not appropriate for fine-grained
movement studies where sensors are worn directly on a pa-
tient’s body and must not interfere with routine activities.
Also, minimizing sensor weight is a major concern when
dealing with elderly patients. Mercury’s requirement of very
low-power operation drives many design features of our sys-
tem not found in SATIRE. SATIRE does not track energy
and bandwidth consumption, nor does it adapt its behavior
based on resource availability. Also, near-real time data ac-
quisition is not a requirement in their system and therefore
not addressed.

LiveNet [43], based on the MIThril [10] wearable archi-
tecture, shares many goals with Mercury. The system is
based on a PDA worn by the patient connected to individual
sensors using wires. Given the choice of hardware, LiveNet
devices are much bulkier than the SHIMMER sensor nodes.
LiveNet is designed for applications involving a small num-
ber of sensors, but is impractical for monitoring limb move-
ments for each body segment. Likewise, MOCA [13] is a
low-cost motion capture system based on several accelerom-
eters wired to a PC or PDA. However, the use of multiple
wires running to each of the patient’s limbs is highly unde-
sirable for long-term wear.

A number of BSN projects have focused on monitoring
athletic performance. Examples include assisting profes-
sional skiers [32], analyzing tennis serves [1], measuring
pitch in baseball [3], and martial arts training [22]. While
some of these systems involve high data rates and low-
latency data delivery [3], most of them are intended for short-
term deployments, such as during training sessions.

Resource Awareness and Fidelity: Adapting data fi-
delity as a function of resource availability and activity load
is a major goal of Mercury. Several projects have looked at
one or both of these requirements, mostly outside the wear-
able domain. Eon [42], Levels [23], and Pixie [29] provide
programming primitives for adapting to energy availability
in a sensor network. These systems focus on managing re-
sources on a single node, rather than a network. Lance [45]
provides a framework for optimizing data retrieval from a
sensor network, but focuses exclusively on bulk data trans-
fers, and does not provide methods for tuning sampling or

storage operations performed by nodes.
Resource adaptation in mobile and pervasive computing

systems has been widely studied, although with an empha-
sis on supporting traditional applications running on laptops
and PDAs. Odyssey [35] supports adaptations to changing
network bandwidth [35], energy [14, 26], and computational
load [34]. ECOsystem [47] tunes OS scheduling parameters
to manage battery life, while Puppeteer [24] supports band-
width adaptations. Compared to these systems, Mercury is
tailored for the needs of high-fidelity motion analysis in a
body sensor network, which involves a very different set of
design tradeoffs.

BodyQoS [48] proposes a communication layer for body
sensor networks that provides quality-of-service guarantees
using link estimation and admission control. In contrast, the
Mercury driver centrally coordinates download schedules on
a per-transfer granularity, yielding control over the type and
amount of data acquired from nodes, as well as energy drain.

Algorithms and Classifiers: Much previous work has in-
vestigated algorithms and classifiers for extracting informa-
tion from inertial sensors. These can be broadly categorized
as those running on the sensors themselves, or on a back-
end device with more substantial processing capacity. The
traditional approach has been to sample data on the sensors
and deliver it to a back-end for offline processing [2, 4, 31].
However, this approach potentially requires a large amount
of data transfer, that does not scale with the limited band-
width and energy resources in a typical body sensor network.
In addition, these systems generally assume that the back-
end is always within radio range of the sensors.

To overcome these limitations, a number of algorithms
have been developed to run on resource-constrained sensor
nodes. These include feature extraction [17, 19, 37], gait
analysis [40, 44], fall detection [7, 12, 25], and activity clas-
sifiers [5, 15, 18, 33]. These algorithms are largely comple-
mentary to Mercury and could be incorporated in the sensor
node software. Mercury uses a hybrid of on-node feature
extraction coupled with back-end processing on the base sta-
tion based on a combination of features and raw signals.

8 Future Work and Conclusions
Mercury represents an important step towards longitudi-

nal monitoring of neuromotor diseases in a home setting.
Combining wearable, wireless sensors with sophisticated
data analysis can greatly improve our understanding of these
diseases and the most effective methods of treatment. In this
paper, we have presented the Mercury architecture and de-
scribed techniques for managing energy and radio bandwidth
consumption to achieve long lifetimes and high data qual-
ity. We are currently finalizing laboratory testing of Mercury
with the goal of deploying the system in several patients’
homes over the next year.

As future work, we intend to extend the Mercury system
to support a wearable base station, such as a cell phone or
iMote2, that can be used to collect and process sensor data
on the body itself without requiring an external base station.
This will require careful balancing of computation and com-
munication within the network to ensure acceptable battery
lifetimes. We are also studying additional clinical applica-

tions of Mercury in home and hospital settings for monitor-
ing patients being treated for chronic obstructive pulmonary
disease and stroke. Experience gained through our work with
Parkinson’s and epilepsy patients will inform our future de-
velopments on the platform.

9 References
[1] A. Ahmadi, D. Rowlands, and D. James. Investigating the

translational and rotational motion of the swing using ac-
celerometers for athlete skill assessment. Sensors, 2006. 5th
IEEE Conference on, pages 980–983, Oct. 2006.

[2] F. R. Allen, E. Ambikairajah, N. H. Lovell, and B. G. Celler.
Classification of a known sequence of motions and postures
from accelerometry data using adapted gaussian mixture mod-
els. PHYSIOLOGICAL MEASUREMENT, 2006.

[3] R. Aylward and J. A. Paradiso. A compact, high-speed, wear-
able sensor network for biomotion capture and interactive me-
dia. In IPSN ’07, New York, NY, USA, 2007. ACM.

[4] J. Boyle, M. Karunanithi, T. Wark, W. Chan, and C. Colavitti.
Quantifying functional mobility progress for chronic disease
management. EMBS ’06, pages 5916–5919, 2006.

[5] T. R. Burchfield and S. Venkatesan. Accelerometer-based
human abnormal movement detection in wireless sensor net-
works. In HealthNet ’07, pages 67–69, New York, NY, 2007.

[6] B. Ceulemans, B. Vanrumste, P. Colleman, S. Omloop, and
K. Cuppens. Detection of nocturnal epileptic seizures of
pediatric patients using accelerometers. In Belgian Day on
Biomedical Engineering, 2007.

[7] J. Chen, K. Kwong, D. Chang, J. Luk, and R. Bajcsy. Wear-
able sensors for reliable fall detection. IEEE-EMBS’05, pages
3551–3554, 2005.

[8] T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, B. Har-
rison, B. Hemingway, J. Hightower, P. Klasnja, K. Koscher,
A. LaMarca, J. A. Landay, L. LeGrand, J. Lester, A. Rahimi,
A. Rea, and D. Wyatt. The mobile sensing platform: An em-
bedded system for capturing and recognizing activities. IEEE
Pervasive Magazine, April 2008.

[9] D. W. Curtis, E. J. Pino, J. M. Bailey, E. I. Shih, J. Water-
man, S. A. Vinterbo, T. O. Stair, J. V. Guttag, R. A. Greenes,
and L. Ohno-Machado. Smart: An integrated wireless system
for monitoring unattended patients. Journal of the American
Medical Informatics Association, 15(1):44–53, 2008.

[10] R. DeVaul, M. Sung, J. Gips, and A. Pentland. Mithril 2003:
applications and architecture. IEEE International Symposium
of Wearable Computing, 2003.

[11] O. Devinsky. Tonic-clonic seizures. http://www.epilepsy.
com/epilepsy/seizure_tonicclonic, 2004.

[12] C. Doukas and I. Maglogiannis. Advanced patient or elder
fall detection based on movement and sound data. Pervasive-
Health’08, pages 103–107, 30 2008-Feb. 1 2008.

[13] E. Farella, L. Benini, B. Riccò, and A. Acquaviva.
Moca: A low-power, low-cost motion capture system based
on integrated accelerometers. Advances in Multimedia,
2007(82638), 2007.

[14] J. Flinn and M. Satyanarayanan. Managing battery lifetime
with energy-aware adaptation. ACM Transactions on Com-
puter Systems (TOCS), 22(2), May 2004.

[15] R. Ganti, P. Jayachandran, T. Abdelzaher, and J. Stankovic.
SATIRE: A Software Architecture for Smart AtTIRE. In Proc.
ACM Mobisys, Uppsala, Sweden, June 2006.

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-

worked embedded systems. In Proc. Programming Language
Design and Implementation (PLDI), June 2003.

[17] B. Greenstein, C. Mar, A. Pesterev, S. Farshchi, E. Kohler,
J. Judy, and D. Estrin. Capturing high-frequency phenomena
using a bandwidth-limited sensor network. In Proc. Sensys
2006, Boulder, CO, November 2006.

[18] J. He, H. Li, and J. Tan. Real-time daily activity classification
with wireless sensor networks using hidden markov model.
Engineering in Medicine and Biology Society, 2007. EMBS
2007. 29th Annual International Conference of the IEEE,
pages 3192–3195, Aug. 2007.

[19] T. Hester, R. Hughes, D. Sherrill, B. Knorr, M. Akay, J. Stein,
and P. Bonato. Using wearable sensors to measure motor abil-
ities following stroke. In BSN ’06, April 2006.

[20] Intel Corporation. The SHIMMER Sensor Node Platform.
2006.

[21] S. Kim, R. Fonseca, P. Dutta, A. Tavakoli, D. Culler, P. Levis,
S. Shenker, and I. Stoica. Flush: A Reliable Bulk Trans-
port Protocol for Multihop Wireless Networks. In Proc. Sen-
Sys’07, 2007.

[22] D. Y. Kwon and M. Gross. Combining body sensors and vi-
sual sensors for motion training. In ACE ’05: Proceedings
of the 2005 ACM SIGCHI International Conference on Ad-
vances in computer entertainment technology, pages 94–101,
New York, NY, USA, 2005. ACM.

[23] A. Lachenmann, P. J. Marron, D. Minder, and K. Rothermer.
Meeting lifetime goals with energy levels. In Proc. ACM Sen-
Sys, November 2007.

[24] E. D. Lara, D. S. Wallach, and W. Zwaenepoel. Pup-
peteer: Component-based adaptation for mobile computing.
In USITS’01: Proceedings of the 3rd conference on USENIX
Symposium on Internet Technologies and Systems, pages 14–
14, San Francisco, CA, 2001.

[25] Q. Li, J. A. Stankovic, M. A. Hanson, A. T. Barth, J. Lach, and
G. Zhou. Accurate, fast fall detection using gyroscopes and
accelerometer-derived posture information. BSN’09, pages
138–143, 2009.

[26] X. Liu, P. Shenoy, and M. D. Corner. Chameleon: Applica-
tion level power management. IEEE Transactions on Mobile
Computing, 2008.

[27] B. Lo and G.-Z. Yang. Architecture for Body Sensor Net-
works. In Perspective in Pervasive Computing, pages 23–28,
September 2005.

[28] K. Lorincz, D. Malan, T. R. F. Fulford-Jones, A. Nawoj,
A. Clavel, V. Shnayder, G. Mainland, S. Moulton, and
M. Welsh. Sensor Networks for Emergency Response: Chal-
lenges and Opportunities. IEEE Pervasive Computing, Oct-
Dec 2004.

[29] K. Lorincz, B. rong Chen, J. Waterman, G. Werner-Allen, and
M. Welsh. Resource aware programming in the pixie os. In
SenSys ’08: Proceedings of the 6th ACM conference on Em-
bedded network sensor systems, pages 211–224, New York,
NY, USA, 2008. ACM.

[30] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding
time synchronization protocol. In Second ACM Conference
on Embedded Networked Sensor Systems, November 2004.

[31] M. J. Mathie, B. G. Celler, N. H. Lovell, and A. C. F. Coster.
Classification of basic daily movements using a triaxial ac-
celerometer. Medical and Biological Engineering and Com-
puting, 2004.

[32] F. Michahelles and B. Schiele. Sensing and monitoring pro-
fessional skiers. Pervasive Computing, IEEE, 2005.

[33] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Mu-
solesi, S. B. Eisenman, X. Zheng, and A. T. Campbell. Sens-
ing meets mobile social networks: the design, implementation
and evaluation of the cenceme application. In SenSys ’08,
pages 337–350, New York, NY, USA, 2008. ACM.

[34] D. Narayanan and M. Satyanarayanan. Predictive resource
management for wearable computing. In Proc. ACM MobiSys
2003, San Francisco, CA, May 2003.

[35] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,
J. Flinn, and K. R. Walker. Agile application-aware adaptation
for mobility. In SOSP ’97: Proceedings of the sixteenth ACM
symposium on Operating systems principles, pages 276–287,
Saint Malo, France, 1997.

[36] C. A. Otto, E. Jovanov, and A. Milenkovic. A wban-based
system for health monitoring at home. In Proceedings of the
3rd IEEE EMBS International Summer School and Sympo-
sium on Medical Devices and Biosensors (ISSS-MDBS 2006),
Boston, MA, 2006.

[37] S. Patel, K. Lorincz, R. Hughes, N. Huggins, J. H. Growdon,
M. Welsh, and P. Bonato. Analysis of feature space for moni-
toring persons with Parkinson’s Disease with application to a
wireless wearable sensor system. In Proc. 29th IEEE EMBS
Annual International Conference, August 2007.

[38] A. Pentland. Healthwear: medical technology becomes wear-
able. Computer, 37(5):42–49, May 2004.

[39] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proc. Second ACM
Conference on Embedded Networked Sensor Systems (Sen-
Sys), November 2004.

[40] A. Salarian, H. Russmann, F. Vingerhoets, C. Dehollain,
Y. Blanc, P. Burkhard, and K. Aminian. Gait assessment in
parkinson’s disease: toward an ambulatory system for long-
term monitoring. Biomedical Engineering, IEEE Transac-
tions on, 51(8):1434–1443, Aug. 2004.

[41] Sentilla Tmote Sky. http://www.sentilla.com/pdf/eol/
tmote-sky-datasheet.pdf.

[42] J. Sorber, A. Kostadinov, M. Brennan, M. Garber, M. Corner,
and E. D. Berger. Eon: A Language and Runtime System for
Perpetual Systems. In Proc. ACM SenSys, November 2007.

[43] M. Sung, C. Marci, and A. Pentland. Wearable feedback sys-
tems for rehabilitation. Journal of NeuroEngineering and Re-
habilitation, 2(1):17, 2005.

[44] M. Visintin, H. Barbeau, N. Korner-Bitensky, and N. E. Mayo.
A new approach to retrain gait in stroke patients through body
weight support and treadmill stimulation. Stroke, 29(6):1122–
1128, June 1998.

[45] G. Werner-Allen, S. Dawson-Haggerty, and M. Welsh. Lance:
optimizing high-resolution signal collection in wireless sensor
networks. In SenSys ’08: Proceedings of the 6th ACM confer-
ence on Embedded network sensor systems, pages 169–182,
New York, NY, USA, 2008. ACM.

[46] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu,
L. Fang, Z. He, S. Lin, and J. Stankovic. Alarm-net: Wire-
less sensor networks for assisted-living and residential moni-
toring. Technical Report CS-2006-11, University of Virginia,
2006.

[47] H. Zeng, X. Fan, C. S. Ellis, A. Lebeck, and A. Vahdat.
ECOSystem: Managing Energy as a First Class Operating
System Resource. In ASPLOS’02, San Jose, CA, 2002.

[48] G. Zhou, J. Lu, C.-Y. Wan, M. D. Yarvis, and J. A. Stankovic.
BodyQoS: Adaptive and Radio-Agnostic QoS for Body Sen-
sor Networks. In Proc. IEEE INFOCOM 2008, Phoenix, AZ,
April 2008.

