
Simple, Accurate Time Synchronization for
Wireless Sensor Networks

Mihail L. Sichitiu and Chanchai Veerarittiphan
Electrical and Computer Engineering Department

North Carolina State University
Raleigh, NC 27695-7911

Email: {mlsichit,cveerar}@eos.ncsu.edu

Abstract— Time synchronization is important for any
distributed system. In particular, wireless sensor networks
make extensive use of synchronized time in many contexts
(e.g. for data fusion, TDMA schedules, synchronized sleep
periods, etc.). Existing time synchronization methods were
not designed with wireless sensor networks in mind, and
need to be extended or redesigned. Our solution centers
around the development of a deterministic time synchro-
nization method relevant for wireless sensor networks. The
proposed solution features minimal complexity in network
bandwidth, storage and processing and can achieve good
accuracy. Highly relevant for sensor networks, it also
provides tight, deterministic bounds on both the offsets
and clock drifts. A method to synchronize the entire
network in preparation for data fusion is presented. A real
implementation of a wireless ad-hoc network is used to
evaluate the performance of the proposed approach.
Keywords: synchronization, wireless sensor networks,
model based, clock drift bound.

I. INTRODUCTION

The availability of small, cheap microsensors and low
power wireless communications nowadays enables the
deployment of large arrays of wireless sensor networks
allowing us to monitor and, eventually, control many as-
pects of the physical world. Applications include tagging
small animals unobtrusively, environmental monitoring,
tagging small objects in a hospital or factory warehouse.
In tactical environments, it can be used to track the
movements of troops or targets.

The sensed data is of limited usage if it is not
accompanied by the coordinates of the sensor - position
and time stamp. This is perhaps the primary reason for
clock synchronization in wireless sensor networks. But
there are also other vital functions which depend on
clock synchronization.

A basic function of a wireless sensor network is data
fusion, i.e. combining data from multiple sensors into
high level data. For example, a vehicle going through a
sensor network equipped with acoustic sensors can be
detected by different sensor nodes at different moments
(corresponding to the moments when the vehicle entered
the detection range of those nodes). A fusion node
receiving the raw information from the sensor nodes

can refine it by estimating the speed and the direction
of the sensed vehicle. For this application (and most
other applications), synchronized timestamps (together
with position information) are essential.

Sensor networks are expected to have very small form
factors and be cheap such that they can be deployed
in very large numbers. This precludes spending a large
amount of resources on a large, expensive power source
for each node. Once deployed, the sensor networks are
usually unattended, so battery replacement is out of the
question – the life of the sensor network is equal to the
life of its batteries. Finally, such a network is typically
expected to work for extended periods of time (weeks,
months, and in some cases, years). There is no better way
to conserve energy but to put the nodes to sleep (using
low power components only goes so far). However, to
perform its function the network should wake up at
periodic intervals. It is essential that all the nodes are
able to wake up at the same time to be able to exchange
information.

In addition, various time division multiple access
(TDMA) schemes proposed in literature for ad hoc
networks assume clock synchronization of the nodes [1].

Nodes could be equipped with a global positioning
system (GPS) [2] to synchronize them, but currently
this is a costly (in size, cost and power consumption)
solution.

There is a considerable amount of work available in
the field synchronization for distributed systems [3]–
[14]. However most of the existing methods do not
take into account the limited resources available for
sensor networks and require either error free operation,
significant storage for the data samples, or processing
power not plentiful in a sensor network.

Elson and Estrin presented an interesting technique
called post-facto synchronization [15] which is also
based on unsynchronized local clocks but limits synchro-
nization to the transmission range of the mobile comput-
ing nodes. The precision achieved by their approach is
very good, but lacks a deterministic bound on the clock
drift.

0-7803-7700-1/03/$17.00 (C) 2003 IEEE 1266

Recently, other approaches suitable for wireless sensor
networks synchronization were published [16] or are
under review [17]. However, those approaches are still
comparatively computation intensive, and do not provide
firm bounds on the achieved precision.

This paper presents a synchronization algorithm for
drifting clocks similar to that found in [4], [18] but
processes the collected data in a different manner. The
proposed algorithm preserves the fault-tolerance proper-
ties of the methods in [4], [18].

Due to unpredictability and imperfect measurability
of message delays in a networked environment, physi-
cal clock synchronization is always imperfect. We will
present two closely related algorithms suitable for syn-
chronizing two wireless nodes. We will also present a
scheme building on these algorithms capable to synchro-
nize the clocks of an entire sensor field.

To avoid confusion between the two algorithms we
will name them mini-sync and tiny-sync as they use
limited resources and very limited resources respectively.
The two algorithms feature:

• Drift awareness: the algorithm not only takes the
drift of the clock into account, but also finds tight
bounds on the drift which allows for corrections.

• Tight bounds on the precision: Most other algo-
rithms provide best estimates for the offset and the
drift of the clocks, and possibly probabilistic bounds
on these estimates. Our approach deliverers tight,
deterministic bounds on these estimates, such that
absolute information can be deduced about ordering
and simultaneous events.

• Accuracy: given small uncertainty bounds on the
delays the exchanged messages undergo, the preci-
sion of the synchronization can be arbitrarily good.

• Low computation and storage complexity: wire-
less sensor nodes typically feature low computa-
tional power microcontrollers with small amounts
of RAM. Both algorithms have low computational
and storage complexity.

• Insensitivity to communication errors: wireless
communications are notoriously error prone, and
thus one cannot rely on receiving correctly all
messages. The presented approach works correctly
even if a large percentage of the messages are lost.

The main contribution of the paper is the development
of a simple algorithm which delivers accurate offset
and drift information together with tight, deterministic
bounds on them. This is a highly desirable property
for wireless sensor networks. Assume that two nodes, a
transmitter and a receiver are in sleep mode. To ensure
that the receiver wakes up before the transmitter, the
offset error and the drift error between their clocks have
to be known.

The two algorithms presented in this paper are not lim-

ited to wireless sensor networks. They can synchronize
the nodes on any communication network which allows
bi-directional data transmission. However, the algorithms
provide very good precision (micro-second if crafted
carefully) and bounds on the precision while using very
little resources and thus being especially well suited for
wireless sensor networks.

II. DATA COLLECTION ALGORITHMS

In this Section a simple data collection algorithm and
possible enhancements are presented.

A. A simple data collection algorithm

We will use a classical data collection algorithm [4],
[8], [11], [16]. We will however process the data stream
differently. Consider two wireless nodes 1 and 2, with
their hardware clocks t1(t) and t2(t) respectively, where
t is the Coordinated Universal Time (UTC).

In general the hardware clock of node i is a monoton-
ically non-decreasing function of t. In practice, a quartz
oscillator is used to generate the real time clock. The os-
cillator’s frequency depends on the ambient conditions,
but for relatively extended periods of time (minutes -
hours) can be approximated with good accuracy by an
oscillator with fixed frequency:

ti(t) = ait + bi, (1)

where ai and bi are the drift and the offset of node i’s
clock. In general ai and bi will be different for each
node and approximately constant for an extended period
of time.

From (1) it follows that t1 and t2 are linearly related:

t1(t) = a12t2(t) + b12 (2)

The parameters a12 and b12 represent the relative
drift and the relative offset between the two clocks
respectively. If the two clocks are perfectly synchronized,
the relative drift is equal to one and the relative offset is
equal to zero.

Assume that node 1 would like to be able to determine
the relationship between t1 and t2. Node 1 sends a probe
message to node 2. The probe message is timestamped
right before it is sent with to. Upon receipt, node 2
timestamps the probe tb and returns it immediately (we
will shortly relax this requirement) to node 1 which
timestamps it upon receipt tr. Fig. 1 depicts such an
exchange.

The three time-stamps (to, tb, tr) form a data-point
which effectively limits the possible values of parameters
a12 and b12 in (2). Indeed, since to happened before
tb and tb happened before tr the following inequalities
should hold:

to(t) < a12tb(t) + b12, (3)

tr(t) > a12tb(t) + b12. (4)

1267

t1

t2

to

tb

t r

Fig. 1. A probe message from node 1 is immediately returned by
node 2 and timestamped at each send/receive point resulting in the
data-point (to, tb, tr).

The measurement described above will be repeated
several times and each probe which returns will provide
a new data point and thus new constraints on the admis-
sible values of a12 and b12.

point 2
data

point 3
data

tb

point 1
data

t1

t2

t r

to

b12

a12

12b
12

a12
12b

a

1

1

1

Fig. 2. The linear dependence (2) and the constraints imposed on
a12 and b12 by three data-points.

The linear dependence between t1 and t2 and the
constraints imposed by the data points can be represented
graphically as shown in Fig. 2. Each data-point can
be represented by two constraints in the system of
coordinates given by the local clocks of the two nodes
t2 and t1. One constraint is (tb, to) and the other one is
(tb, tr).

Inequalities (3) and (4) graphically require that the line
representing the relationship (2) is positioned between
the two constraints of each data-point. The exact values
of a12 and b12 cannot be exactly determined using this
approach (or any other approach) as long as the message
delays are unknown. But a12 and b12 can be bounded:

a12 ≤ a12 ≤ a12, (5)

b12 ≤ b12 ≤ b12. (6)

Not all combinations of a12 and b12 satisfying (5) and
(6) are valid, but all valid combinations satisfy (5) and

(6). The true parameters a12 and b12 can be estimated
as:

a12 = â12 ± ∆a12

2
, (7)

b12 = b̂12 ± ∆b12

2
, (8)

where

â12 =
a12 + a12

2
, (9)

∆a12 = a12 − a12, (10)

b̂12 =
b12 + b12

2
, (11)

∆b12 = b12 − b12. (12)

Once a12 and b12 are estimated, node 1 can always
correct the reading of the local clock (using (2)) to have
it match the readings of the clock at node 2.

To decrease the overhead of this data-gathering al-
gorithm the probes can be piggybacked on data mes-
sages. Since most MAC protocols in wireless networks
employ an acknowledgment (ACK) scheme, the probes
can be piggybacked on the data and the responses on
the ACKs. Elaborate schemes with optional headers can
be devised to reduce the length of the header when
probes do not need to be sent. This way, synchronization
can be achieved almost “for free” (i.e. with very little
overhead in terms of communication bandwidth, which is
perhaps the most important constraint in wireless sensor
networks).

B. Relaxing the immediate reply assumption on node 2

In Fig. 1 we assumed that node 2 replies immediately
to node 1. The correctness of the presented approach
is not affected in any way if node 2 does not respond
immediately. Node 2 can delay the reply as long as it
wants, the relations (3) and (4) and thus the rest of the
analysis will still hold.

However, as the delay between to and tr increases,
the precision of the estimates will decrease. In practice
node 2 may have to delay the reply due to any number
of reasons (e.g. it has something more important to send,
it cannot access the wireless channel, etc.).

t1

t2

to

tbr tbt

t r

Fig. 3. A probe message from node 1 may be returned by node 2
and timestamped at both the send and receive points resulting in two
data-points: (to, tbr, tr) and (to, tbt, tr).

1268

To counteract the possible loss in precision, node 2 can
time-stamp the probe message both upon receipt (tbr)
and when it resends it (tbt) (as depicted in Fig. 3). In
this case each of the triplets (to, tbr, tr) and (to, tbt, tr)
represent a data point satisfying (3) and (4). Thus we
obtain two data-points using only one probe. They will
be treated as two independent data-points and in this
paper no further distinction will be made between the
two methods of collecting data points.

C. Increasing the accuracy by considering the minimum
delay

If no information about the delays encountered by the
probe messages is available, nothing else can be done to
increase the accuracy. However, if the minimum delay a
probe encounters between the nodes is known, the data-
points can be adjusted for a boost in the precision of the
results.

To determine the minimum delay, one can take into
account the minimum length of such a probe and the time
it takes to transmit such a probe (at the transmission rate
of the sensor node), and eventually other operations that
have to be completed before the probe is sent or upon
receiving such a probe (e.g. encryption/decryption, CRC
calculation, etc.).

Assume that we are able to determine the minimum
delay δ12 the probe encounters between the moment to
is stamped at node 1 and the moment tb (tbr) is stamped
at node 2. Also denote with δ21 the minimum delay
between the moment tb (tbt) is stamped and the moment
tr is stamped. Then (to + δ12, tb, tr − δ21) should be
used as a data-point as this will offer increased accuracy
over the data-point (to, tb, tr).

If for two probes both minimums δ12 and δ21 are
reached the method presented in this paper can achieve
perfect synchronization (i.e. both for the relative offset
and the relative drift: ∆a12 = ∆b12 = 0).

III. TINY-SYNC AND MINI-SYNC - PROCESSING THE

DATA

After acquiring a few (at least two) data-points, the
offset and the drift can be estimated using inequalities
(3) and (4). An existing solution for finding the optimal
bounds on the drift and offset involves solving two linear
programming problems with twice as many inequalities
as data points [4].

The disadvantage of this approach is that as more and
more data samples are collected, the computational and
storage requirements increase (potentially unbounded).
Also, one should not limit the number of collected
samples to a fixed window as the best drift estimates are
obtained when a large number of samples are available.
The approach in [4] is clearly not suitable for systems
with limited memory and computing resources such as

wireless sensor nodes. In this paper we will pursue
another avenue.

The two proposed algorithms spring from the obser-
vation that not all data-points are useful. In Fig. 2 the
bounds on the position estimates [a12, a12] and [b12, b12]
are constrained only by the data points 1 and 3. Therefore
we do not need data point 2, and we can discard it, as
data point 3 produces better estimates than data point 2.

It seems that we should be able to keep only four
constraints (the ones which define the best bounds on the
position estimates) at any time. Upon the arrival of a new
data point the two new constraints are compared with the
existing four constraints and two of the six discarded (i.e.
the four constraints which result in the best estimates are
kept). The comparison operation to decide which four
constraints to keep is very simple computationally (only
8 additions, 4 divisions and 4 comparisons). At any one
time only the information for the best four constraints (8
timestamps = 4 constraints × 2 timestamps/constraint)
needs to be stored. We will name the algorithm described
in this paragraph “tiny-sync”. The four constraints that
are stored at any one time instant may very well belong
to two, three or four different data points.

t1

t2

A4

A3

A2

A1

B4

B3

B2

B1

Fig. 4. Tiny-sync will miss the optimum solution in this situation, as it
will discard the constraint A2 upon the receipt of data-point (A3−B3).

Unfortunately while tiny-sync is very efficient it does
not always produce the optimal solution. Consider the
situation depicted in Fig. 4. For clarity we labeled each
constraint individually. After the first two data-points
(A1-B1) and (A2-B2) are received, the first estimates
for the drift and offset may be computed. After the third
data-point (A3-B3) is received the estimates improve, so
the constraints A1,B1,A3 and B3 are stored, while A2
and B2 are discarded. The next data point (A4-B4) could
have used constraint A2 to construct a better estimate.
Unfortunately A2 was already discarded at this point,

1269

and thus a less than ideal estimate for b12 will now be
imposed by A1 and A4. Thus tiny-sync while producing
correct results, might miss the optimum result. We will
compare the performance of tiny-sync with the optimal
solution in the experimental Section V.

In Fig. 4 the constraint A2 was discarded by tiny-sync
because it was not immediately useful, but rather only
potentially useful in the future. This does not mean that
all the constraints are potentially useful. In fact, only the
constraints Aj (e.g. A2) that satisfy the condition

m(Ai, Aj) > m(Aj , Ak) (13)

for some integers 1 ≤ i < j < k are potentially useful
in the future (by m(X,Y) we denote the slope of the
line going through the points X and Y).

Theorem 1 Any constraint Aj (e.g. A3) which satisfies

m(Ai, Aj) ≤ m(Aj , Ak) (14)

for any integers 1 ≤ i < j < k can be safely discarded
as it will never be useful.

The proof is presented in the Appendix. Similar con-
ditions for discarding upper-bound constraints (Bi) exist.

The resulting algorithm (called “mini-sync”) upon
the receipt of a new data point will check if the new
constraints can eliminate any of the old constraints. Po-
tentially many old constraints can be eliminated with one
new data-point. Since we only eliminate the constraints
(conditions) that are irrelevant we still obtain the optimal
solution with only a few points (solving the set of all
inequalities is shown to result in the optimal solution
[4]).

Storing only four points like in tiny-sync does not
produce the optimal solution. How many points do we
actually need to store to produce the optimal solution?
Theoretically a potentially large number. If the delay
between node 1 and node 2 is monotonically increasing,
(13) can hold for all the constraints Aj . In practice, the
delays do not increase monotonically forever. Therefore,
only a few constraints need to be stored to obtain the
optimal result. In practice, our experiments showed that
no more than 40 points have to be stored at any one
time which is quite reasonable even for wireless sensor
nodes.

IV. SYNCHRONIZING AN ENTIRE NETWORK

In the previous Sections we presented two algorithms
to synchronize two wireless sensor nodes. In this Section
we will explore the possibility to extend the synchroniza-
tion from two nodes to any number of nodes.

Consider the situation depicted in Fig. 5. Node s
synchronizes with node u and node u synchronizes with
node v. Therefore node s is able to determine the bounds

asu ≤ asu ≤ asu, (15)

bsu ≤ bsu ≤ bsu, (16)

s u v

Fig. 5. Synchronization transitivity: if s is synchronized with u and
u is synchronized with v, then s is synchronized with v.

and node u is able to determine the bounds

auv ≤ auv ≤ auv, (17)

buv ≤ buv ≤ buv. (18)

If node u sends its bounds, auv , auv , buv and buv to
node s, then s can compute the bounds

asv ≤ asv ≤ asv, (19)

bsv ≤ bsv ≤ bsv, (20)

where

asv = asuauv, (21)

asv = asuauv, (22)

bsv = min
{
asubuv + bsu, asubuv + bsu

}
, (23)

bsv = max
{
asubuv + bsu, asubuv + bsu

}
. (24)

This approach effectively synchronizes nodes s and v
without exchanging any messages between them.

A wireless sensor network is logically organized as
a hierarchy (see Fig. 6) with sensor nodes in the lowest
layer, one (or more) root node(s) (also called sink(s)) and
possibly several layers of intermediate nodes. The sensor
nodes send the data at the intermediate node where the
data is fused and further sent to the upper layers.

layer 1 (root node)

layer 2 (intermediate nodes)

layer n (sensor nodes)

layer n−1 (intermediate nodes)

.

.

.

Fig. 6. Hierarchical wireless sensor network.

Since data is fused at the intermediate nodes, there
is no point in synchronizing the entire network to one
unique clock (e.g. the clock of the root node). Indeed,
all the sensors reporting to the same intermediate node
should synchronize with the fusion point and use the
synchronized time to time-stamp all the data they send
(eventually the lower and upper bounds on t20 and t20

are sent as time-stamps if so required by the application).
In turn, the nodes in the intermediate layer i should
synchronize to the nodes in layer i − 1, and so on.

Synchronizing the nodes in layer i to the nodes in
layer i − 1 for all i = 2, . . . , n is not equivalent with

1270

synchronizing all the nodes with the root node. If all
nodes are synchronized with the root node, the precision
of the synchronization degrades linearly with number of
layers, the sensor nodes in layer n having the lowest
precision. Instead, sensor nodes should synchronize only
with the fusion nodes in the layer immediately above.
Thus the precision can be kept relatively high (clearly
better than if all nodes are synchronized with the root
layer).

As suggested in Fig. 6, some sensors may report to
more than one intermediate node. In this case the sensor
nodes will synchronize with all intermediate nodes that
receive data from it. How is it possible to synchronize
with two intermediate nodes which are not themselves
synchronized? This is indeed possible, because in the
presented approach we do not modify the local clock. We
just estimate the parameters aij and bij used to “correct”
the local clock and estimate the time at the receiver of
the data. To send data to two (or more) receivers, we’ll
just keep track of two (or more) sets of aij and bij and
use each set for its corresponding receiver.

The logical organization of the wireless sensor net-
work might not be mirrored by the physical layout of
the nodes. For example, the sensors may send the data
to the intermediate nodes through a multi-hop path which
may go through other sensors, or even the root. In this
case, the synchronization can be either done through
transitivity (hop-by-hop) or the synchronization probes
may be relayed on the same path that data will travel
once the nodes are synchronized.

V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algo-
rithms we implemented and tested them on two sets of
data points. Since a wireless sensor network was not
available, we used an 802.11b multi-hop ad-hoc network.
It is expected that wireless sensor networks will exhibit
similar delay patterns as the ones encountered in this ad-
hoc network. To mimic the data traffic in the wireless
sensor network, we used a background traffic in the ad-
hoc network as well. For the first set of data points the
two computers to be synchronized were neighbors (i.e.
one hop away). For the second data set, the computers
were five hops away. For both experiments a message
probe was sent once a second for about 83 minutes thus
resulting in almost 5000 data-point samples for each
experiment. Each experiment was repeated several times
to increase the confidence in the results. The statistics of
the collected data-points are presented in Table I.

The same two sets of 5000 data points were used
to compare the performance of the two algorithms. In
practice far fewer messages have to be exchanged for
precisions similar to the ones given by these 5000 data
points, by taking the samples at the “right” times Also,

TABLE I

STATISTICS OF THE DATA-POINTS COLLECTED FOR THE ONE HOP

AND THE FIVE HOPS EXPERIMENTS.

Min [ms] Max [ms] Avg [ms] Std Dev [ms]
one hop 3.040 24.217 3.366 1.112
five hops 16.073 177.744 31.540 12.874

TABLE II

UPPER BOUNDS OF THE RELATIVE ERROR BETWEEN MINI-SYNC

AND TINY-SYNC

Relative errors for
a12 a12 b12 b12

one hop 0.14% 0.19% 0.19% 0.14%
five hops 1.8% 1.7% 1.7% 1.8%

in practice, only a limited number of data points (four
for tiny-sync) have to be stored. In this section we
worked with 5000 data points to observe the processing
capabilities of the two algorithms.

Fig. 7 a) and 8 a) depict the evolution of the bounds
on a12 and b12 respectively. Fig. 7 b) and 8 b) depict the
improvement in precision of the estimate ∆a12 and ∆b12
(see (7) and (8)) respectively. The values correspond
to the five hops data points processed with mini-sync.
The corresponding figures for one hop are similar. As
expected, the bounds converge. It can be shown that
precision of the drift is expected to be bounded by
2RTT/(sample number) where RTT is the round trip
time of the samples, and sample number is the number
of samples collected. Also the precision of the offset is
expected to be on the order of RTT . The justification
for both expected bounds is omitted due to the lack of
space. The expectations match closely the experimental
results in Fig. 7 (b) and Fig. 8 (b). The precision of
the offset estimate increases significantly during the
first samples, and then improves only marginally. In
contrast the precision of the drift continues to improve
significantly for as long as data samples are collected.

In theory tiny-sync, while simple, is sub-optimal. To
evaluate the loss in precision for tiny-sync we computed
the upper bound of the relative error between mini-
sync (the optimal solution) and tiny-sync after each
new sample was processed. The results are presented in
Table II. It can be seen that the difference is practically
insignificant - smaller than 2% in all cases (and actually
smaller than 0.1% after the first few samples have been
processed). The direct implication is that in practice
usually one does not need the precision provided by
mini-sync. The results from tiny-sync are very close to
the ones from mini-sync with far less complexity.

We can improve the results if we take into account
the minimum delays that 802.11b introduces for each
hop. We used 256 bytes UDP packets in both direc-
tions (to mimic the piggybacking of the time-stamps

1271

500 1000 1500 2000 2500 3000 3500 4000 4500

10
−0.0004

10
−0.0003

10
−0.0002

10
−0.0001

10
0

10
0.0001

10
0.0002

10
0.0003

10
0.0004

samples

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
 o

n
a 1

2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

samples

∆
a 12

∆ a
12

2 RTT/(sample number)

(a) (b)

Fig. 7. a) Evolution of the bounds on a12 (a) and of ∆a12 (b) as more samples are collected

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−1.7795

−1.779

−1.7785

−1.778

−1.7775

−1.777

−1.7765

−1.776

−1.7755
x 10

7

samples

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
 o

n
b 1

2

500 1000 1500 2000 2500 3000 3500 4000 4500

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

x 10
4

samples

∆
b 12

 (
µ

s)

∆ b
12

min(RTT)

(a) (b)

Fig. 8. a) Evolution of the bounds on b12 (a) and of ∆b12 (b) as more samples are collected

on sensed data and control information) and we used
the CSMA/CA high rate (11 Mbps) mode of 802.11b.
A careful examination of all delays involved (DIFS,
preamble, MAC, LLC/SNAP header, IP and UDP head-
ers) results in a minimum transmission delay for each
probe of 1089 µs. For the five hop case, neglecting
the processing in each intermediate node, we consider
the minimum one way delay equal to five minimum
transmission times.

To evaluate the usefulness in adjusting the results for
the minimum delay, in Table III the results of tiny-sync
are shown after processing both streams of data samples.
The results for mini-sync are similar.

The improvement obtained by eliminating known de-
lays is significant (up to five times better), and it can be

TABLE III

RESULTS FOR TINY-SYNC WITH AND WITHOUT DATA

PRE-PROCESSING

Raw data Pre-processed data
∆a12

2
∆b12

2 (ms) ∆a12
2

∆b12
2 (ms)

one hop 7.133e-07 2.0941 2.768e-07 0.9457
five hops 5.013e-06 17.08 1.167e-06 3.239

further increased especially for wireless sensor network
nodes where many of the uncertainties present in the ad-
hoc network used as testbed can be eliminated. In the
one hop case we were able, in a little over an hour, to
bound the offset by ±945µs and the drift by ±2.7 10−7

corresponding to a drift of 23.3 ms in a day.

1272

VI. CONCLUSION

A light-weight synchronization algorithm is presented.
The proposed algorithm is able to produce tight, de-
terministic synchronization with only few message ex-
changes. While the algorithm is suitable for any type
of network, it is especially useful in wireless sensor
networks which are typically extremely constrained on
the available computational power and bandwidth and
have some of the most exotic needs for high precision
synchronization. The performs of the presented algo-
rithms is verified with an experimental testbed. The
experimental results match closely the theoretical expec-
tations. A method to extend the synchronization to the
entire sensor network, as needed for data fusion is also
presented. Two varieties of the algorithm are presented
and their performance is compared using real delay
traces collected from a wireless ad-hoc network. The
experimental results show that the simplest of the two
algorithms, called tiny-sync, produces results very close
to the optimum (within 0.1%) and thus is preferable.

REFERENCES

[1] G. Asada, M. Dong, T. Lin, F. Newberg, G. Pottie, W. Kaiser,
and H.O.Marcy, “Wireless integrated network sensors: low power
systems on a chip,” in Proc. of the 24th European Solid-State
Circuits Conference, The Hague, Netherlands, Sept. 1998.

[2] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global
Positioning System: Theory and Practice, 4th ed. Springer-
Verlag, 1997.

[3] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21, no. 7,
pp. 558–565, 1978.

[4] M. Lemmon, J. Ganguly, and L. Xia, “Model-based clock
synchronization in networks with drifting clocks,” in Proc. of
the 2000 Pacific Rim International Symposium on Dependable
Computing, Los Angeles, CA, Dec. 2000, pp. 177–185.

[5] R. Ostrovsky and B. Patt-Shamir, “Optimal and efficient clock
synchronization under drifting clocks,” in Proceedings of the
18th ACM Symposium on Principles of Distributed Comput-
ing(PODC99), 1999.

[6] J. Lundelius and N. Lyunch, “A new fault-tolerant algorithm for
clock synchronization,” Information and Computation, vol. 77,
no. 1, pp. 1–36, 1988.

[7] L. Lamport and P. J. Melliar-Smith, “Synchronizing clocks in
the presence of faults,” Journal of the ACM, vol. 32, no. 1, pp.
52–78, 1985.

[8] F. Cristian, “Probabilistic clock synchronization,” Distributed
Computing, vol. 3, no. 3, pp. 146–158, 1989.

[9] R. Gussell and S. Zatti, “The accuracy of clock synchronization
achieved by TEMPO in Berkeley UNIX 4.3 BSD,” IEEE Trans-
actions on Software Engineering, vol. 15, pp. 847–853, 1989.

[10] T. K. Srikanth and S. Toueg, “Optimal clock synchronization,”
J-ACM, vol. 34, no. 3, pp. 625–645, 1987.

[11] D. L. Mills, “Internet time synchronization: the network time
protocol,” IEEE Trans. Communications, vol. 39, no. 10, pp.
1482–1493, Oct. 1991.

[12] ——, “Improved algorithms for synchronizing computer network
clocks,” in Proc. of ACM Conference on Communication Archi-
tectures (ACM SIGCOMM’94), London, UK, Aug. 1994.

[13] P. Ashton, “Algorithms for off-line clock synchronization,” in
Technical Report TR COSC 12/95, Department of Computer
Science, University of Canterbury, Dec. 1995.

[14] A. Duda, G. Harrus, Y. Haddad, and G. Bernard, “Estimating
global time in distributed systems,” in Proc. of the 7th IEEE
International Conference on Distributed Computing Systems
(ICDCS’87), Berlin, Germany, Sept. 1987.

[15] J. Elson and D. Estrin, “Time synchronization for wireless
sensor networks,” in Proc. of the 2001 International Parallel
and Distributed Processing Symposium (IPDPS), Workshop on
Parallel and Distributed Computing Issues in Wireless Networks
and Mobile Computing, San Francisco, CA, Apr. 2001.

[16] K. Römer, “Time synchronization in ad hoc networks,” in Proc.
of ACM Mobihoc, Long Beach, CA, 2001.

[17] J. Elson, L. Girod, and D. Estrin, “Fine-grained network
time synchronization using reference broadcasts,” in UCLA
Technical Report 020008, Feb. 2002. [Online]. Available:
citeseer.nj.nec.com/elson02finegrained.html

[18] D. Dolev, J. Halpern, B. Simmons, and H. Strong, “Dy-
namic fault-tolerant clock synchronization,” Journal of the ACM,
vol. 42, no. 1, pp. 1–36, 1988.

APPENDIX

Proof of Theorem 1
We can provide a strictly mathematical proof for

Theorem 1. However, there is little intuition behind the
mathematical proof. Instead, we will provide a graphic
argument.

t1

t2

Ai

Ak

Aj

B

B

b12(A ,Bxk

b12(Ai,Bx

b12(A ,Bxj

b12(A ,Bxj

x1

x2

)
1

)
2

)
1

)
2

Fig. 9. Aj can be safely discarded as Ai or Ak will result in better
estimates in all cases.

Consider the situation depicted in Fig. 9. The points
Ai, Aj and Ak satisfy condition (14). Consider a point
Bx of coordinates (t2x

, t1x
) such that t1x

> t1k
and

t2x
> t2k

. Constraint Bx and any of the constraints
Ai, Aj or Ak may determine a lower bound on b12
(or alternatively an upper bound on a12). Denote with
b12(Ay, Bx) the lower bound on b12 determined by the
constraints Ay and Bx. We can distinguish two cases:

1. If Bx is below the line determined by Ai and Ak

(position Bx1 in Fig. 9). In this case b12(Aj , Bx1) <
b12(Ak, Bx1) and the constraint Aj can be safely
discarded.

2. If Bx is above the line determined by Ai and Ak

(position Bx1 in Fig. 9). In this case b12(Aj , Bx2) <
b12(Ai, Bx2) and the constraint Aj can be safely
discarded as well.

Thus in both cases, the constraint Aj can be discarded
as it will never be useful (i.e. it will never constrain a12
or b12 more than than Ai and Ak do).

1273

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

