
Overview of the MPSoC Design Challenge

Grant Martin
Tensilica, Inc.

3255-6 Scott Boulevard
Santa Clara, CA 95054-3013 USA

+1-408-327-7323

gmartin@tensilica.com

ABSTRACT
We review the design challenges faced by MPSoC designers at all
levels. Starting at the application level, there is a need for
programming models and communications APIs that allow
applications to be easily re-configured for many different possible
architectures without tedious rewriting, while at the same time
ensuring efficient production code. Synchronisation and control of
task scheduling may be provided by RTOS's or other scheduling
methods, and the choice of programming and threading models,
whether symmetric or asymmetric, has a heavy influence on how
best to control task or thread execution. Debugging MP systems
for the typical application developer becomes a much more complex
job, when compared to traditional single-processor debug, or the
debug of simple MP systems that are only very loosely coupled.
The interaction between the system, applications and software
views, and processor configuration and extension, adds a new
dimension to the problem space. Zeroing in on the optimal solution
for a particular MPSoC design demands a multi-disciplinary
approach. After reviewing the design challenges, we end by
focusing on the requirements for design tools that may ameliorate
many of these issues, and illustrate some of the possible solutions,
based on experiments.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-Based Systems]: Real-time
and embedded systems

C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]:
SIMD, MIMD

General Terms
Measurement, Performance, Design, Experimentation, Languages,
Verification.

Keywords
MPSoC, Multi-Processor System-on-Chip, System-Level Design,

SLD, Electronic System Level design, ESL, MP-debug, design
space exploration

1. INTRODUCTION
Increasingly, the design of embedded systems and System-on-Chip
devices (SoC) is based on utilising multiple processors. What has
been dubbed “MPSoC” [1] is becoming a much more prevalent
design style, to achieve tight time-to-market design goals, to
maximise design reuse, to simply the verification process and to
provide flexibility and programmability for post-fabrication reuse of
complex platforms. Sometimes these processors may be fixed
Instruction Set Architecture (ISA) processors; sometimes they may
be configurable, extensible processors [2,3]. Very often there is a
mix of processor types. The now classical RISC+DSP combination
used in baseband applications in cellphones is an early example of
MPSoC, and a good illustration of the evolution of such devices.

Modern cell phones may have four to eight processors, including
one or more RISCs for user interfaces, protocol stack processing and
other control functions; a DSP for voice encoding and decoding and
radio interface; an audio processor for music playback; a picture
processor for camera functions; and even a video processor for new
video-on-phone capabilities. In addition, there may be other deeply
embedded processors substituting for other functions traditionally
designed as dedicated hardware blocks. Extensible processors in
particular are proving to be flexible substitutes for hardware blocks,
achieving acceptable performance and power consumption. Thus
these devices are a good illustration of heterogeneous MPSoC, and
their demanding requirements for low cost, reasonable performance,
and minimal energy consumption illustrates the advantages of using
highly application-specific processors for various functions.

This shift to an increasingly processor-, and multi-processor-,
centric design style, poses many challenges for system architects,
software and hardware designers, verification specialists and system
integrators. These may best be met by revisions to old tools and
methods to deal with MPSoC complexities; by new tools and
methods, working at the same abstraction levels; and by moving up
in abstraction to take advantage of new design approaches.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2006, July 24-28, 2006, San Francisco, California, USA.
Copyright 2006 ACM 1-59593-381-6/06/0007…$5.00.

274

16.1

2. DESIGN CHALLENGES FOR MPSOC
2.1 Programming Models
Since MPSoC design is by its nature processor-centric, and thus
software-centric, the first, and by all accounts, most difficult design
challenge for these devices lies in the programming model(s) that
are required to map application software into effective
implementations.
What makes MPSoC difficult to program? Two factors are key:
concurrency, and “fear of concurrency” [4, 5]. Software
developers have been well-trained by sixty years of computing
history to think in terms of sequentially defined applications code,
with ever-faster computers on which to run it. Early embedded
systems with a single processor continued this heritage. It’s very
easy to think sequentially; the fundamental nature of an algorithm is
to describe a sequence of steps to solve a problem. Most
programming languages encourage sequential thinking.
Contrast the sequential nature of classical programmes with the
concurrent possibilities opened up by MPSoC. Here we can
distinguish two major classes of MP systems: “symmetric multi-
processing” (SMP) in which multiple processors or processing cores
share a common view of main system memory, and multiple
processes or threads execute within global, shared coherent
memory; and “asymmetric multi-processing” (AMP), in which
processors are usually much more loosely coupled, may have quite
different ISAs, and usually have dedicated local memory resources.
But whatever the MP model, multiple tasks are executing on
different processors concurrently, communicating with each other
and possibly with central resources asynchronously via a number of
mechanisms. At any point in time, clashes of priorities,
deadlocking, data starvation, races, and data incoherency may
occur. The fictional concurrency offered by conventional
operating systems or RTOS’s running on a single processor, where
the transfer of control from one executing process to another is
handled in an orderly fashion, is replaced by a raging sea of
simultaneously executing tasks, any one of which might interact
with another in a most unpredictable fashion. Decomposing an
application described in a serial fashion into a set of concurrent or
parallel tasks that can co-operate in an orderly and predictable way
is one of the most difficult jobs imaginable, and despite forty or
more years of intensive research in this area, there are very few
applications for which this can be done automatically.
Programming models are chosen precisely to bring some of the
variability involved in concurrency under control. In the SMP
model, processors are usually identical or at least share a common
ISA, and thus threads can be assigned and re-assigned to different
processors depending on loading conditions and system-level
optimisation criteria such as reducing energy consumption. The
common coherent memory model means that this can be done
relatively easily; but it is still difficult to ensure that processing is
done in the right order, that all dependencies are met without
deadlock or starvation, that the tasks are well-balanced and that
processor utilisation is reasonable. In the AMP model, processors
are often tuned to specific tasks either in a coarse-grained fashion
(e.g. DSP vs. RISC for numerically-intensive tasks vs. control-
dominated tasks), or in a fine-grained manner (as with configurable
and extensible processors where instructions may be added to a core
for a very specific set of tasks). These communicate with a variety
of mechanisms – shared memory, direct hardware fifos, or

specialized signaling – but the same issues of processor balancing,
correct ordering of computations, and avoiding deadlock and
starvation, still occur. Often programming models are supported
by standard Application Programming Interface (API) libraries,
such as OpenMP or the Message Passing Interface (MPI), or
standardised threading models such as POSIX threads, in order to
make applications a little easier to map to different MPSoC
architectures, or to port from one architecture to another.
However, it is often the case that the mix of applications to be run
on a complex MPSoC device may require a mix of programming
models and “models of computation”, and choosing the correct
one(s) becomes a further issue of design. The correct
specification, implementation, decomposition and mapping of
applications to MPSoC architectures remains an intensely manual
task fraught with peril for the unwary.

2.2 Synchronisation and Control
We have alluded to some of the issues involved in synchronising
and controlling multiple concurrent tasks on multiple processor
cores in the previous section. Even assuming a good
decomposition and mapping of the target applications into multiple
tasks or threads running on the target MPSoC architecture, there are
higher level issues of synchronisation and control that are important.
Will the control be delegated to a Real-Time Operating System
(RTOS) or based on an ad-hoc scheduling mechanism? Will the
system be built by composing multiple processor-based subsystems
drawn from different domains (for example, a video, an audio, and
perhaps a communications subsystem) that synchronise via
infrequent high level messaging only, or must the tasks work in tight
lockstep that requires a high amount of inter-process
communication? All the classical issues of RTOS priority
management, including deadlock and priority inversion, come into
play when the number of tasks exceeds the number of processors, or
tasks contend simultaneously for a common pool of critical
resources.
To save energy, especially critical for portable embedded systems, it
is very desirable to shut down portions of the system when not in
use, or scale back processor voltage and frequency to match the
processing requirements precisely, via techniques such as Dynamic
Voltage and Frequency Scaling (DVFS). This requires taking a
holistic view of the overall system and its applications, such that
task requirements, processor loading, run rate, and energy usage are
precisely balanced. Many techniques have been developed in
research and industry for such control, but their application still
seems rather ad-hoc.
One key lesson learned from earlier attempts at concurrent systems
is the desirability of building systems up from composable
subsystems [4], which greatly eases the issues involved in MPSoC
design.

2.3 Debugging
Even after we’ve built an application and mapped it to an MPSoC
architecture, we will spend some considerable time debugging it.
Here all the issues we have tried to guard against in design come
bubbling back to the surface [6]. Despite our best efforts to avoid
mismatches in communication, deadlock, process starvation, race
conditions, and false sharing issues, inevitably when the application
is running on the real system (which may be the real MPSoC, or a
cycle-accurate or fast functional model of such a device), something
‘bad’ will happen. At this point, an MP-capable debugger is both

275

incredibly useful and often the sole recourse. The requirements for
MP debugging are rather complex. Perhaps one of the most subtle
points, as discussed in [6], is the need to support “multi-paradigm
debugging”, or what might be called in other contexts the need to
debug across multiple models of computation. Given a
composition of loosely coupled subsystems running different
portions of an application, communicating with each other in a
variety of ways, using a number of different ISA processors and
running tasks written in multiple programming languages using
multiple programming models, the task of understanding what is
going on, and skipping nimbly from paradigm to paradigm while
retaining a coherent view of system state in order to track down the
root cause of a problem, poses a formidable challenge to concurrent
debugging tools.
Of course, all the standard debug tools for starting up, setting
breakpoints and break conditions, multiple-processor compositional
breakpoints, observation points, tracing, visualising system,
application and processor state, and detecting bottlenecks, races, and
deadlocking, are required.

2.4 Interactions: System, Applications
Software, and Processor Configuration and
Extension
Let’s take all these MPSoC design challenges and stir them up even
further with the opportunity provided by designing Application-
Specific Instruction-set Processors (ASIPs). These have emerged
from academia [7,8] and the IP industry [2,3], and are also
supported by commercial ESL tools such as CoWare (Lisatek),
Synfora, Poseidon, and Critical Blue.
When you have the opportunity to configure and extend processor
ISAs to better match the performance and power consumption
requirements of an application, or portions of an application, and
you add to this the ability to have just about as many processors as
you want, you have exploded the design space that should be
explored in developing an optimal architecture for a particular
MPSoC. Suddenly, many more solutions are possible: different
decompositions, mappings, communications schemes, and the
particular processor configurations, all iteract in ways that make it
difficult to decide in an a priori fashion which part of the solution
space is likely to contain the optimal architecture.
Systematic design space exploration is not something that many
system architects have either needed to do in the past, or are familiar
with (with exceptions). Very often architectures have been based
on “gut feelings” and “the last application”, designed with Excel
and whiteboards, or are simple derivatives of previous SoC
architectures. The rising cost of SoC design and the complexities
of MPSoC optimisation make these ad hoc approaches much riskier
than in the past.
Design methods, and tools to help in this exploration may come
from a variety of sources. These include the commercial EDA tools
industry (the branch known as “Electronic System Level”, or ESL
tools); the IP industry (especially the provisioners of processor IP);
the embedded software (ESW) tools industry; or indeed, from
startups, and from within the engineering groups of systems and
semiconductor houses.

3. KEY MPSOC ARCHITECTURAL
QUESTIONS
[9] discusses some of the key architectural questions involved in
designing and programming an MPSoC system. These can be
classified into several categories:

• The number and configuration(s) of processors required for the
application. How homogeneous should the architecture be, vs.
how heterogeneous.

• Interprocessor communications – choosing the right mix of
standard buses, point to point communications, shared
memory, and emerging network on chip approaches.

• Concurrency, synchronisation, control and programming
model(s). Often multiple models will be appropriate.

• Memory hierarchy, types, amounts, and access methods, along
with estimating required latency.

• Special operating modes and controls for power reduction and
low energy consumption.

• Application partitioning, use of appropriate APIs and
communications models, and associated design space
exploration.

• Design and platform scalability. As technology evolves, will
the architecture move from 10 to 100 to 1000 or more
processors? How often must the application undergo major
re-architecting?

Although the commercial ESL, EDA and ESW tools industries may
provide some of the generic tool capabilities required to support
design space exploration, application analysis and debugging for
MPSoC platforms, it is also very likely that the commercial IP
industry will be required to offer large components of the solution.
This is especially true of highly configurable IP such as extensible
processors, where the nature of the IP on offer has a high degree of
interaction with the solution required.

4. REQUIREMENTS FOR MPSOC DESIGN
SOLUTIONS
4.1 Integrated Development Environment
Most ESW and IP providers, and many ESL tool vendors, are
offering integrated development environments (IDEs) to serve as a
standard ‘cockpit’ for software development, or mixed software-
hardware-system development. The Eclipse project [10], which
started as an open-source IDE for Java, but has added a C/C++
development toolkit (CDT), has grown in popularity as a base for
several ESW, IP and ESL tools.

Eclipse was created to be extended and configured for specific uses,
design flows and methodologies. It supports a wide variety of basic
design views and perspectives and can be complemented by specific
views, perspectives, plug-ins and tools. Eclipse is only one example
of an IDE that could be used; others are quite common in the ESW
tools industry. Whatever the IDE, there are several capabilities
important to MPSOC design:

• For configurable and extensible processors, a user interface for
processor configuration and extension. Instruction extensions
may require specialised compilers along with feedback on

276

results and integration of the resulting hardware views into the
final configuration.

• General software capture, editing, targeting, building and
modification capabilities for application software tasks,
middleware and project libraries. It must be possible to target
tasks to specific processor implementations or instantiations.

• System structural editing for the MPSoC architecture. This
includes instantiating processor configurations, memories,
communications interfaces, HW fifos, buses, bus interfaces,
and a variety of dedicated HW processing blocks and
peripherals.

• Simulation control. Generating and running system level
simulation models whether on a single processor or the
complete MPSOC. This also includes static and dynamic
processor profiling and the post-simulation visualisation and
analysis of these results. It also should include system-level
transaction tracing for bus-based communications transactions
as well as more specialised transactions, and an ability to post-
process these traces both statistically, generating system level
profiling data for performance analysis, and visually for
debugging and easy identification of performance problems.

• Advanced MP debugging capabilities, including those
discussed earlier, with provisions for setting watch points, trace
points and breakpoints on individual processors, software
tasks, and other devices; to move easily between simulation
and software source; to track the interaction between source
code, breakpoints and the simulation, to set up and trip on
complex conditions, etc.

• Export capabilities, including export of structural and logical
information to 3rd party ESL and ESW tools, and the
generation of simulation models, as well as SW export.

4.2 System Structure and Model Generation
Recently there has been an increase of interest in the development
and use of standard formats for system structure and IP
configuration parameters – what has been called the IP and MPSoC
“meta-data”. XML-based formats such as SPIRIT [11], derived
originally from the XML format used by Mentor Platform Express,
have been developed and promoted, although actual industrial usage
remains rather low. Although XML tends to be verbose and
inelegant, XML-based formats and schemas can be quickly
extended, parsed and generated and are an interesting way both to
store system structure and parameters and to pass this information
between tools.

Another important capability is to be able to generate simulation
models, in order to support design space exploration and system
level verification and performance analysis at a reasonably high
level of abstraction. System-level simulation models for MPSoC
will of course utilize Instruction Set Simulation (ISS) models.
SystemC has become the lingua franca for system level modeling
and is increasingly used as the basis for integrating interoperable
models into a system level model. The idea of transaction-level
modelling [12], although not yet fully standardised by the Open
SystemC Initiative (OSCI) or IEEE 1666, is a vehicle for building
reasonably fast cycle-accurate system level models, and can be
abstracted to offer fast functional models that may be up to 100 to
1000 times faster in performance.

These system-level simulation models are important for simulating
the many operating scenarios of a system and its applications, and
for tracing and analysing the operating conditions. Fast functional
simulation models, sometimes also called ‘virtual system
prototypes’ are particularly desirable for software development and
validation.

4.3 MP Programming Models
To allow efficient design space exploration (DSE) of various MP
architectures for a particular application, developers may find it
useful to have access to abstract programming models that allow the
various software tasks to be mapped to processors, scheduled, and to
inter-communicate without constantly modifying the source code.
Although there are a number of such models and API libraries, there
are no well-accepted universal standards that have been adopted in
the embedded systems domain. Pipelined dataflow models are one
attractive and reasonably simple model that have been studied for
years and interesting communications API models such as Philips
TTL [13] have begun to emerge. In this model, a limited number of
different abstract channels can be supported with varying semantics
depending on use models. These are especially useful for AMP
applications and platforms. Simultaneous multi-threading (SMT)
approaches are also attracting interest, especially for homogeneous
SMP clusters of processors with hardware support for thread
context-switching and scheduling. It is easy to conceive of
platforms with both AMP and SMP characteristics and thus use a
heterogeneous set of programming models and abstractions [14].

Of course, an MP-candidate architecture becomes much more
interesting if the processors within it support unconventional
communications mechanisms such as direct connect queues and
ports. It is possible to begin to experiment with direct inference of
communications implementation choices for unmapped
communications abstractions used in tasks. In addition, mapping
abstract communications channel APIs to different possible
implementations (for example, a FIFO channel can be mapped to a
hardware queue, a shared memory, or some kind of bus-based
device) allows flexible design space exploration of a number of
different implementation alternatives.

5. EXPERIMENTAL MPSOC SYSTEM-
LEVEL SOLUTIONS
These concepts have been implemented in an experimental
processor-IP centric design methodology and toolset, specifically
oriented towards configurable and extensible processors. This is
controlled via an Eclipse-based integrated development
environment (Figure 1).

Figure 1 illustrates a table-driven user interface for capturing system
structure. Although some tools provide graphical diagrammatic
ways of capturing system structure, and this may be a desirable
capability in the long term, in the short term it is reasonable at the
system level of abstraction to capture MP system structure in a
tabular way. Processors and other components, when modeled at
the transaction level, have a reasonable and controlled number of
high level interfaces, and stitching them up by choosing links in a
table is sufficiently easy for MP systems that range up to a few tens
of components. In addition, the support of hierarchical subsystem
structure with continued use of high level interfaces allows both
tabular and graphical system structure editing to be feasible as MP
systems grow in complexity.

277

Figure 1: Capturing System Structure

From the system structure captured in the IDE, and from models for
configurable processors created from their actual configurations,
plus models for other system level components such as memories,
routers, queues, arbiters and other devices, it is possible to
automatically generate system simulation models of the two kinds
mentioned earlier (Figure 2). The first is a SystemC-based cycle
accurate system model with extensive tracing capabilities. With this
model, the subsystem modeled using configurable processors can be
linked to other SystemC models for other portions of the embedded
SoC, as long as compatible transaction level models are used, or
appropriate wrappers or adaptors between the different notions of
‘transaction’ are created. Being cycle-accurate, but still using
transactions, such a model runs at least 100X the speed of an
equivalent RTL simulation. The tracing facilities allow both system
level transaction performance to be monitored on a statistical basis,
to derive figures on overall system throughput and latencies, and for
detailed transaction level debug to take place using a visual
depiction of the traces.

Figure 2: Generated System Simulation Model

Figure 3: Visualisation of an Event Trace

Alternatively, a fast functional simulation model, which is
instruction accurate rather than cycle-accurate, can be generated.
This will runs 10-100X faster than a full cycle-accurate system
simulation, for a multi-processor system. Such a model is
particularly useful for software developers, as long as careful
attention is paid to the speed-accuracy tradeoff, and as long as
appropriate synchronization models are used. For example, rather
than using a fifo queue of fixed depth as in the cycle-accurate
simulation, which may stall processor execution in a mis-matched
system for many cycles (because it is full when a processor wishes
to push more data to it, or empty when a processor wishes to pop
data from it), it may be appropriate in this case to use an effectively
infinite depth buffer rather than a fixed depth queue. Such a buffer
can be called using direct method calls from the fast simulation
rather than be an explicitly modeled device. This will be
functionally accurate in normal operation, and thus allow software
development and verification to proceed.

Figure 3 illustrates a trace file generated in the course of cycle-
accurate system simulation. This can be used to monitor and debug
system level transactions and to determine the systemic cause for
system performance problems. Transaction requests can be
examined as they ripple through a hierarchy of devices and their
responses can be analysed. Stalls, contention and unusually long
delays in transaction responses can be displayed visually as
exception conditions. The system level design capability has
implemented some of the abstract communications mechanisms
discussed previously and is able to map FIFO channels into a
variety of implementations including direct hardware queues and
shared memories with various locking mechanisms.
It is also possible to derive statistics from such trace files,
summarising the use of devices, and providing transaction latency
histograms, for example. These can be used in sizing various
required system resources and communications mechanisms.

6. JPEG ENCODING EXAMPLE
We applied this system-level design flow to a JPEG encoding
example mapped onto a five-processor MPSoC system. Two of the
processors acted as the source and sink for the JPEG examples, and
thus served as the testbench for the system. Three processors were
linked together in a dataflow style to form the core of the processing
requirement, and the algorithm was divided into colour conversion,
DCT and quantisation, and JPEG creation via Huffman encoding.
Each processor had access to plentiful local and system level
memory resources (these would be trimmed in a real system post-

278

analysis to the sizes required) and communicated with each other
via direct HW FIFO queue implementations. Alternatively,
experiments were run with shared memory implementations and a
mixture of queues and shared memory. These experiments were run
on a Pentium 4 based Linux workstation, running at 3.4 GHz with 1
GB memory.

Table 1: Fast vs. cycle accurate simulation for JPEG Encoding

Resolution Sum of
system
cycles

Fast
sim
time
(sec)

Sys.
Cycle/
sec.

Cycle-
accurate
sim time
(sec)

Sys.
Cycle/
sec

32x32 636K 1.5 370K 22 29K

64x64 2.031 M 1.84 1.1 M 70.5 29K

128x128 21.452M 4.06 5.8 M 261 82K

256x256 85.522 M 9.55 9.0 M 1048 82K

Both fast functional simulation and cycle-accurate SystemC based
simulation were used to validate the software and the system
architecture. Table 1 illustrates, for a standard picture in 32x32,
64x64, 128x128 and 256x256 resolutions, the total number of
simulated system cycles on the five processors, the elapsed time for
the two simulations, and the corresponding system simulation rates.
The simulated system used enormous HW queues as
communications mechanisms for FIFO channels – 20K items deep.
Significant processor stalling due to queues being full did not occur
for the 32x32 and 64x64 resolutions. The table illustrates the
difference between fast functional and cycle-accurate system
simulations (the cycle-accurate simulation involved 75 system level
devices – processors, local memories, system bus interfaces, routers,
system memories, and hardware queue models). Further quick,
hands-off optimisations were done on the configurable processors,
using an automated tool but avoiding code restructuring, which
reduced the number of cycles on the target processors by 18-26 %.
Code restructuring that allowed vectorisation would give a further
significant improvement in performance.
We also used statistical analysis of trace files to determine that a
maximum queue depth for image data of 500 would allow the
system to work without deadlock for all images, although further
optimisation is possible.

7. CONCLUSION
The design of complex MPSoC systems poses many interesting and
taxing challenges to system architects, SW and HW designers.
This paper has outlined several of those challenges and developed a
list of requirements for design technology that begins to offer such
capabilities. As an example of what might be possible, an
experimental MPSoC design tool was used to illustrate some of
these technologies.

Many additional capabilities can be envisaged for such a design
flow, including richer sets of abstract communications models,
additional system level components, more automated tools for
structural platform configuration, and automated mapping and
analysis tools.

8. REFERENCES
[1] Ahmed Jerraya and Wayne Wolf (editors), Multiprocessor

Systems-on-Chip, Elsevier Morgan Kaufmann, San Francisco,
California, 2005.

[2] Chris Rowen and Steve Leibson. Engineering the Complex
SOC. Prentice-Hall PTR, 2004.

[3] Steve Leibson and James Kim. “Configurable processors: a
new era in chip design”. IEEE Computer, July, 2005, pp. 51-
59.

[4] Ruth Ivimey-Cook, “Legacy of the transputer”, in B.M. Cook
(editor), Architectures, Languages and Techniques, IOS Press,
1999.

[5] Richard Goering, “Multicore design strives for balance... but
programming, debug tools complicate adoption”, Electronics
Engineering Times, March 27, 2006.

[6] Kang Su Gatlin, “Trials and tribulations of debugging
concurrency”, ACM Queue, Volume 2, Number 7, October
2004.

[7] Matthias Gries and Kurt Keutzer (editors). Building ASIPs:
The MESCAL Methodology. Springer, 2005.

[8] Makiko Itoh, Shigeaki Higaki, Yoshinori Takeuchi, Akira
Kitajima, Masaharu Imai, Jun Sato, and Akichika Shiomi,
“PEAS-III: An ASIP Design Environment”, ICCD 2000, pp.
430-436.

[9] Grant Martin, “ESL Requirements for Configurable Processor-
based Embedded System Design”, IP-SoC 2005, Grenoble,
France, pp. 15-20.

[10] http://www.eclipse.org
[11] http://www.spiritconsortium.org
[12] Frank Ghenassia (editor), Transaction-Level Modeling with

SystemC: TLM Concepts and Applications for Embedded
Systems, Springer, 2005.

[13] P. van der Wolf, et. al., “Design and programming of
embedded multiprocessors: an interface-centric approach”,
CODES+ISSS 2004, pp. 206-217.

[14] Pierre Paulin, et. al., “Application of a multi-processor SoC
platform to high-speed packet forwarding”, DATE 2004,
Volume 3, pp. 58-63.

279

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

