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ABSTRACT 
We review the design challenges faced by MPSoC designers at all 
levels.   Starting at the application level, there is a need for 
programming models and communications APIs that allow 
applications to be easily re-configured for many different possible 
architectures without tedious rewriting, while at the same time 
ensuring efficient production code.    Synchronisation and control of 
task scheduling may be provided by RTOS's or other scheduling 
methods, and the choice of programming and threading models, 
whether symmetric or asymmetric, has a heavy influence on how 
best to control task or thread execution.    Debugging MP systems 
for the typical application developer becomes a much more complex 
job, when compared to traditional single-processor debug, or the 
debug of simple MP systems that are only very loosely coupled.    
The interaction between the system, applications and software 
views, and processor configuration and extension, adds a new 
dimension to the problem space.   Zeroing in on the optimal solution 
for a particular MPSoC design demands a multi-disciplinary 
approach.  After reviewing the design challenges, we end by 
focusing on the requirements for design tools that may ameliorate 
many of these issues, and illustrate some of the possible solutions, 
based on experiments. 

Categories and Subject Descriptors 
C.3 [Special Purpose and Application-Based Systems]: Real-time 
and embedded systems 

C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]: 
SIMD, MIMD 

General Terms 
Measurement, Performance, Design, Experimentation, Languages, 
Verification. 

Keywords 
MPSoC, Multi-Processor System-on-Chip, System-Level Design, 

SLD, Electronic System Level design, ESL, MP-debug, design 
space exploration 

1. INTRODUCTION 
Increasingly, the design of embedded systems and System-on-Chip 
devices (SoC) is based on utilising multiple processors.   What has 
been dubbed “MPSoC” [1] is becoming a much more prevalent 
design style, to achieve tight time-to-market design goals, to 
maximise design reuse, to simply the verification process and to 
provide flexibility and programmability for post-fabrication reuse of 
complex platforms.   Sometimes these processors may be fixed 
Instruction Set Architecture (ISA) processors; sometimes they may 
be configurable, extensible processors [2,3].  Very often there is a 
mix of processor types.  The now classical RISC+DSP combination 
used in baseband applications in cellphones is an early example of 
MPSoC, and a good illustration of the evolution of such devices.    

Modern cell phones may have four to eight processors, including 
one or more RISCs for user interfaces, protocol stack processing and 
other control functions; a DSP for voice encoding and decoding and 
radio interface; an audio processor for music playback; a picture 
processor for camera functions; and even a video processor for new 
video-on-phone capabilities.  In addition, there may be other deeply 
embedded processors substituting for other functions traditionally 
designed as dedicated hardware blocks.   Extensible processors in 
particular are proving to be flexible substitutes for hardware blocks, 
achieving acceptable performance and power consumption.   Thus 
these devices are a good illustration of heterogeneous MPSoC, and 
their demanding requirements for low cost, reasonable performance, 
and minimal energy consumption illustrates the advantages of using 
highly application-specific processors for various functions. 

This shift to an increasingly processor-, and multi-processor-, 
centric design style, poses many challenges for system architects, 
software and hardware designers, verification specialists and system 
integrators.   These may best be met by revisions to old tools and 
methods to deal with MPSoC complexities; by new tools and 
methods, working at the same abstraction levels; and by moving up 
in abstraction to take advantage of new design approaches.  
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2. DESIGN CHALLENGES FOR MPSOC 
2.1 Programming Models 
Since MPSoC design is by its nature processor-centric, and thus 
software-centric, the first, and by all accounts, most difficult design 
challenge for these devices lies in the programming model(s) that 
are required to map application software into effective 
implementations. 
What makes MPSoC difficult to program?   Two factors are key:  
concurrency, and “fear of concurrency” [4, 5].    Software 
developers have been well-trained by sixty years of computing 
history to think in terms of sequentially defined applications code, 
with ever-faster computers on which to run it.    Early embedded 
systems with a single processor continued this heritage.   It’s very 
easy to think sequentially; the fundamental nature of an algorithm is 
to describe a sequence of steps to solve a problem.   Most 
programming languages encourage sequential thinking. 
Contrast the sequential nature of classical programmes with the 
concurrent possibilities opened up by MPSoC.   Here we can 
distinguish two major classes of MP systems:   “symmetric multi-
processing” (SMP) in which multiple processors or processing cores 
share a common view of main system memory, and multiple 
processes or threads execute within global, shared coherent 
memory; and “asymmetric multi-processing” (AMP), in which 
processors are usually much more loosely coupled, may have quite 
different ISAs, and usually have dedicated local memory resources.    
But whatever the MP model, multiple tasks are executing on 
different processors concurrently, communicating with each other 
and possibly with central resources asynchronously via a number of 
mechanisms.    At any point in time, clashes of priorities, 
deadlocking, data starvation, races, and data incoherency may 
occur.    The fictional concurrency offered by conventional 
operating systems or RTOS’s running on a single processor, where 
the transfer of control from one executing process to another is 
handled in an orderly fashion, is replaced by a raging sea of 
simultaneously executing tasks, any one of which might interact 
with another in a most unpredictable fashion.   Decomposing an 
application described in a serial fashion into a set of concurrent or 
parallel tasks that can co-operate in an orderly and predictable way 
is one of the most difficult jobs imaginable, and despite forty or 
more years of intensive research in this area, there are very few 
applications for which this can be done automatically. 
Programming models are chosen precisely to bring some of the 
variability involved in concurrency under control.     In the SMP 
model, processors are usually identical or at least share a common 
ISA, and thus threads can be assigned and re-assigned to different 
processors depending on loading conditions and system-level 
optimisation criteria such as reducing energy consumption.   The 
common coherent memory model means that this can be done 
relatively easily; but it is still difficult to ensure that processing is 
done in the right order, that all dependencies are met without 
deadlock or starvation, that the tasks are well-balanced and that 
processor utilisation is reasonable.   In the AMP model, processors 
are often tuned to specific tasks either in a coarse-grained fashion 
(e.g. DSP vs. RISC for numerically-intensive tasks vs. control-
dominated tasks), or in a fine-grained manner (as with configurable 
and extensible processors where instructions may be added to a core 
for a very specific set of tasks).   These communicate with a variety 
of mechanisms – shared memory, direct hardware fifos, or 

specialized signaling – but the same issues of processor balancing, 
correct ordering of computations, and avoiding deadlock and 
starvation, still occur.    Often programming models are supported 
by standard Application Programming Interface (API) libraries, 
such as OpenMP or the Message Passing Interface (MPI), or 
standardised threading models such as POSIX threads, in order to 
make applications a little easier to map to different MPSoC 
architectures, or to port from one architecture to another. 
However, it is often the case that the mix of applications to be run 
on a complex MPSoC device may require a mix of programming 
models and “models of computation”, and choosing the correct 
one(s) becomes a further issue of design.    The correct 
specification, implementation, decomposition and mapping of 
applications to MPSoC architectures remains an intensely manual 
task fraught with peril for the unwary. 

2.2 Synchronisation and Control 
We have alluded to some of the issues involved in synchronising 
and controlling multiple concurrent tasks on multiple processor 
cores in the previous section.   Even assuming a good 
decomposition and mapping of the target applications into multiple 
tasks or threads running on the target MPSoC architecture, there are 
higher level issues of synchronisation and control that are important.    
Will the control be delegated to a Real-Time Operating System 
(RTOS) or based on an ad-hoc scheduling mechanism?    Will the 
system be built by composing multiple processor-based subsystems 
drawn from different domains (for example, a video, an audio, and 
perhaps a communications subsystem) that synchronise via 
infrequent high level messaging only, or must the tasks work in tight 
lockstep that requires a high amount of inter-process 
communication?   All the classical issues of RTOS priority 
management, including deadlock and priority inversion, come into 
play when the number of tasks exceeds the number of processors, or 
tasks contend simultaneously for a common pool of critical 
resources.    
To save energy, especially critical for portable embedded systems, it 
is very desirable to shut down portions of the system when not in 
use, or scale back processor voltage and frequency to match the 
processing requirements precisely, via techniques such as Dynamic 
Voltage and Frequency Scaling (DVFS).   This requires taking a 
holistic view of the overall system and its applications, such that 
task requirements, processor loading, run rate, and energy usage are 
precisely balanced.   Many techniques have been developed in 
research and industry for such control, but their application still 
seems rather ad-hoc. 
One key lesson learned from earlier attempts at concurrent systems 
is the desirability of building systems up from composable 
subsystems [4], which greatly eases the issues involved in MPSoC 
design. 

2.3 Debugging 
Even after we’ve built an application and mapped it to an MPSoC 
architecture, we will spend some considerable time debugging it.   
Here all the issues we have tried to guard against in design come 
bubbling back to the surface [6].  Despite our best efforts to avoid 
mismatches in communication, deadlock, process starvation, race 
conditions, and false sharing issues, inevitably when the application 
is running on the real system (which may be the real MPSoC, or a 
cycle-accurate or fast functional model of such a device), something 
‘bad’ will happen.  At this point, an MP-capable debugger is both 
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incredibly useful and often the sole recourse.    The requirements for 
MP debugging are rather complex.  Perhaps one of the most subtle 
points, as discussed in [6], is the need to support “multi-paradigm 
debugging”, or what might be called in other contexts the need to 
debug across multiple models of computation.   Given a 
composition of loosely coupled subsystems running different 
portions of an application, communicating with each other in a 
variety of ways, using a number of different ISA processors and 
running tasks written in multiple programming languages using 
multiple programming models, the task of understanding what is 
going on, and skipping nimbly from paradigm to paradigm while 
retaining a coherent view of system state in order to track down the 
root cause of a problem, poses a formidable challenge to concurrent 
debugging tools. 
Of course, all the standard debug tools for starting up, setting 
breakpoints and break conditions, multiple-processor compositional 
breakpoints, observation points, tracing, visualising system, 
application and processor state, and detecting bottlenecks, races, and 
deadlocking, are required. 

2.4 Interactions:  System, Applications 
Software, and Processor Configuration and 
Extension 
Let’s take all these MPSoC design challenges and stir them up even 
further with the opportunity provided by designing Application-
Specific Instruction-set Processors (ASIPs).    These have emerged 
from academia [7,8] and the IP industry [2,3], and are also 
supported by commercial ESL tools such as CoWare (Lisatek), 
Synfora, Poseidon, and Critical Blue. 
When you have the opportunity to configure and extend processor 
ISAs to better match the performance and power consumption 
requirements of an application, or portions of an application, and 
you add to this the ability to have just about as many processors as 
you want, you have exploded the design space that should be 
explored in developing an optimal architecture for a particular 
MPSoC.   Suddenly, many more solutions are possible:  different 
decompositions, mappings, communications schemes, and the 
particular processor configurations, all iteract in ways that make it 
difficult to decide in an a priori fashion which part of the solution 
space is likely to contain the optimal architecture. 
Systematic design space exploration is not something that many 
system architects have either needed to do in the past, or are familiar 
with (with exceptions).   Very often architectures have been based 
on “gut feelings” and “the last application”, designed with Excel 
and whiteboards, or are simple derivatives of previous SoC 
architectures.   The rising cost of SoC design and the complexities 
of MPSoC optimisation make these ad hoc approaches much riskier 
than in the past. 
Design methods, and tools to help in this exploration may come 
from a variety of sources.  These include the commercial EDA tools 
industry (the branch known as “Electronic System Level”, or ESL 
tools); the IP industry (especially the provisioners of processor IP); 
the embedded software (ESW) tools industry; or indeed, from 
startups, and from within the engineering groups of systems and 
semiconductor houses.    

3. KEY MPSOC ARCHITECTURAL 
QUESTIONS 
[9] discusses some of the key architectural questions involved in 
designing and programming an MPSoC system.  These can be 
classified into several categories:   

• The number and configuration(s) of processors required for the 
application.   How homogeneous should the architecture be, vs. 
how heterogeneous. 

• Interprocessor communications – choosing the right mix of 
standard buses, point to point communications, shared 
memory, and emerging network on chip approaches.  

• Concurrency, synchronisation, control and programming 
model(s).  Often multiple models will be appropriate.   

• Memory hierarchy, types, amounts, and access methods, along 
with estimating required latency.  

• Special operating modes and controls for power reduction and 
low energy consumption. 

• Application partitioning, use of appropriate APIs and 
communications models, and associated design space 
exploration. 

• Design and platform scalability.    As technology evolves, will 
the architecture move from 10 to 100 to 1000 or more 
processors?   How often must the application undergo major 
re-architecting?  

Although the commercial ESL, EDA and ESW tools industries may 
provide some of the generic tool capabilities required to support 
design space exploration, application analysis and debugging for 
MPSoC platforms, it is also very likely that the commercial IP 
industry will be required to offer large components of the solution.   
This is especially true of highly configurable IP such as extensible 
processors, where the nature of the IP on offer has a high degree of 
interaction with the solution required. 

4. REQUIREMENTS FOR MPSOC DESIGN 
SOLUTIONS 
4.1 Integrated Development Environment 
Most ESW and IP providers, and many ESL tool vendors, are 
offering integrated development environments (IDEs) to serve as a 
standard ‘cockpit’ for software development, or mixed software-
hardware-system development.    The Eclipse project [10], which 
started as an open-source IDE for Java, but has added a C/C++ 
development toolkit (CDT), has grown in popularity as a base for 
several ESW, IP and ESL tools.   

Eclipse was created to be extended and configured for specific uses, 
design flows and methodologies.   It supports a wide variety of basic 
design views and perspectives and can be complemented by specific 
views, perspectives, plug-ins and tools.  Eclipse is only one example 
of an IDE that could be used; others are quite common in the ESW 
tools industry.   Whatever the IDE, there are several capabilities 
important to MPSOC design: 

• For configurable and extensible processors, a user interface for 
processor configuration and extension.   Instruction extensions 
may require specialised compilers along with feedback on 
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results and integration of the resulting hardware views into the 
final configuration. 

• General software capture, editing, targeting, building and 
modification capabilities for application software tasks, 
middleware and project libraries.  It must be possible to target 
tasks to specific processor implementations or instantiations. 

• System structural editing for the MPSoC architecture.  This 
includes instantiating processor configurations, memories, 
communications interfaces, HW fifos, buses, bus interfaces, 
and a variety of dedicated HW processing blocks and 
peripherals. 

• Simulation control.    Generating and running system level 
simulation models whether on a single processor or the 
complete MPSOC.   This also includes static and dynamic 
processor profiling and the post-simulation visualisation and 
analysis of these results.    It also should include system-level 
transaction tracing for bus-based communications transactions 
as well as more specialised transactions, and an ability to post-
process these traces both statistically, generating system level 
profiling data for performance analysis, and visually for 
debugging and easy identification of performance problems. 

• Advanced MP debugging capabilities, including those 
discussed earlier, with provisions for setting watch points, trace 
points and breakpoints on individual processors, software 
tasks, and other devices; to move easily between simulation 
and software source; to track the interaction between source 
code, breakpoints and the simulation, to set up and trip on 
complex conditions, etc. 

• Export capabilities, including export of structural and logical 
information to 3rd party ESL and ESW tools, and the 
generation of simulation models, as well as SW export. 

4.2 System Structure and Model Generation 
Recently there has been an increase of interest in the development 
and use of standard formats for system structure and IP 
configuration parameters – what has been called the IP and MPSoC 
“meta-data”.    XML-based formats such as SPIRIT [11], derived 
originally from the XML format used by Mentor Platform Express, 
have been developed and promoted, although actual industrial usage 
remains rather low.   Although XML tends to be verbose and 
inelegant, XML-based formats and schemas can be quickly 
extended, parsed and generated and are an interesting way both  to 
store system structure and parameters and to pass this information 
between tools. 

Another important capability is to be able to generate simulation 
models, in order to support design space exploration and system 
level verification and performance analysis at a reasonably high 
level of abstraction.   System-level simulation models for MPSoC 
will of course utilize Instruction Set Simulation (ISS) models.    
SystemC has become the lingua franca for system level modeling 
and is increasingly used as the basis for integrating interoperable 
models into a system level model.    The idea of transaction-level 
modelling [12], although not yet fully standardised by the Open 
SystemC Initiative (OSCI) or IEEE 1666, is a vehicle for building 
reasonably fast cycle-accurate system level models, and can be 
abstracted to offer fast functional models that may be up to 100 to 
1000  times faster in performance.    

These system-level simulation models are important for simulating 
the many operating scenarios of a system and its applications, and 
for tracing and analysing the operating conditions.   Fast functional 
simulation models, sometimes also called ‘virtual system 
prototypes’ are particularly desirable for software development and 
validation. 

4.3 MP Programming Models 
To allow efficient design space exploration (DSE) of various MP 
architectures for a particular application, developers may find it 
useful to have access to abstract programming models that allow the 
various software tasks to be mapped to processors, scheduled, and to 
inter-communicate without constantly modifying the source code.   
Although there are a number of such models and API libraries, there 
are no well-accepted universal standards that have been adopted in 
the embedded systems domain.   Pipelined dataflow models are one 
attractive and reasonably simple model that have been studied for 
years and interesting communications API models such as Philips 
TTL [13] have begun to emerge.   In this model, a limited number of 
different abstract channels can be supported with varying semantics 
depending on use models. These are especially useful for AMP 
applications and platforms.   Simultaneous multi-threading (SMT) 
approaches are also attracting interest, especially for homogeneous 
SMP clusters of processors with hardware support for thread 
context-switching and scheduling.  It is easy to conceive of 
platforms with both AMP and SMP characteristics and thus use a 
heterogeneous set of programming models and abstractions [14]. 

Of course, an MP-candidate architecture becomes much more 
interesting if the processors within it support unconventional 
communications mechanisms such as direct connect queues and 
ports.  It is possible to begin to experiment with direct inference of 
communications implementation choices for unmapped 
communications abstractions used in tasks.  In addition, mapping 
abstract communications channel APIs to different possible 
implementations (for example, a FIFO channel can be mapped to a 
hardware queue, a shared memory, or some kind of bus-based 
device) allows flexible design space exploration of a number of 
different implementation alternatives. 

5. EXPERIMENTAL MPSOC SYSTEM-
LEVEL SOLUTIONS 
These concepts have been implemented in an experimental 
processor-IP centric design methodology and toolset, specifically 
oriented towards configurable and extensible processors.   This is 
controlled via an Eclipse-based integrated development 
environment (Figure 1).   

Figure 1 illustrates a table-driven user interface for capturing system 
structure.   Although some tools provide graphical diagrammatic 
ways of capturing system structure, and this may be a desirable 
capability in the long term, in the short term it is reasonable at the 
system level of abstraction to capture MP system structure in a 
tabular way.   Processors and other components, when modeled at 
the transaction level, have a reasonable and controlled number of 
high level interfaces, and stitching them up by choosing links in a 
table is sufficiently easy for MP systems that range up to a few tens 
of components.   In addition, the support of hierarchical subsystem 
structure with continued use of high level interfaces allows both 
tabular and graphical system structure editing to be feasible as MP 
systems grow in complexity.   
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Figure 1:   Capturing System Structure 

 
From the system structure captured in the IDE, and from models for 
configurable processors created from their actual configurations, 
plus models for other system level components such as memories, 
routers, queues, arbiters and other devices, it is possible to 
automatically generate system simulation models of the two kinds 
mentioned earlier (Figure 2).   The first is a SystemC-based cycle 
accurate system model with extensive tracing capabilities. With this 
model, the subsystem modeled using configurable processors can be 
linked to other SystemC models for other portions of the embedded 
SoC, as long as compatible transaction level models are used, or 
appropriate wrappers or adaptors between the different notions of 
‘transaction’ are created.  Being cycle-accurate, but still using 
transactions, such a model runs at least 100X the speed of an 
equivalent RTL simulation.  The tracing facilities allow both system 
level transaction performance to be monitored on a statistical basis, 
to derive figures on overall system throughput and latencies, and for 
detailed transaction level debug to take place using a visual 
depiction of the traces. 

 

 
Figure 2:   Generated System Simulation Model 

 
Figure 3:  Visualisation of an Event Trace 

Alternatively, a fast functional simulation model, which is 
instruction accurate rather than cycle-accurate, can be generated.   
This will runs 10-100X faster than a full cycle-accurate system 
simulation, for a multi-processor system.   Such a model is 
particularly useful for software developers, as long as careful 
attention is paid to the speed-accuracy tradeoff, and as long as 
appropriate synchronization models are used.  For example, rather 
than using a fifo queue of fixed depth as in the cycle-accurate 
simulation, which may stall processor execution in a mis-matched 
system for many cycles (because it is full when a processor wishes 
to push more data to it, or empty when a processor wishes to pop 
data from it), it may be appropriate in this case to use an effectively 
infinite depth buffer rather than a fixed depth queue.   Such a buffer 
can be called using direct method calls from the fast simulation 
rather than be an explicitly modeled device.    This will be 
functionally accurate in normal operation, and thus allow software 
development and verification to proceed. 

Figure 3 illustrates a trace file generated in the course of cycle-
accurate system simulation.  This can be used to monitor and debug 
system level transactions and to determine the systemic cause for 
system performance problems.  Transaction requests can be 
examined as they ripple through a hierarchy of devices and their 
responses can be analysed.   Stalls, contention and unusually long 
delays in transaction responses can be displayed visually as 
exception conditions. The system level design capability has 
implemented some of the abstract communications mechanisms 
discussed previously and is able to map FIFO channels into a 
variety of implementations including direct hardware queues and 
shared memories with various locking mechanisms. 
It is also possible to derive statistics from such trace files, 
summarising the use of devices, and providing transaction latency 
histograms, for example.  These can be used in sizing various 
required system resources and communications mechanisms. 

6. JPEG ENCODING EXAMPLE 
We applied this system-level design flow to a JPEG encoding 
example mapped onto a five-processor MPSoC system.  Two of the 
processors acted as the source and sink for the JPEG examples, and 
thus served as the testbench for the system.   Three processors were 
linked together in a dataflow style to form the core of the processing 
requirement, and the algorithm was divided into colour conversion, 
DCT and quantisation, and JPEG creation via Huffman encoding.  
Each processor had access to plentiful local and system level 
memory resources (these would be trimmed in a real system post-
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analysis to the sizes required) and communicated with each other 
via direct HW FIFO queue implementations.  Alternatively, 
experiments were run with shared memory implementations and a 
mixture of queues and shared memory.  These experiments were run 
on a Pentium 4 based Linux workstation, running at 3.4 GHz with 1 
GB memory. 

Table 1:  Fast vs. cycle accurate simulation for JPEG Encoding 

Resolution Sum of 
system 
cycles 

Fast 
sim 
time 
(sec) 

Sys. 
Cycle/ 
sec. 

Cycle-
accurate 
sim time 
(sec) 

Sys. 
Cycle/ 
sec 

32x32 636K 1.5 370K 22  29K 

64x64 2.031 M 1.84  1.1 M 70.5 29K 

128x128 21.452M 4.06 5.8 M 261 82K 

256x256 85.522 M 9.55 9.0 M 1048 82K 

Both fast functional simulation and cycle-accurate SystemC based 
simulation were used to validate the software and the system 
architecture.  Table 1 illustrates, for a standard picture in 32x32, 
64x64, 128x128 and 256x256 resolutions, the total number of 
simulated system cycles on the five processors, the elapsed time for 
the two simulations, and the corresponding system simulation rates.  
The simulated system used enormous HW queues as 
communications mechanisms for FIFO channels – 20K items deep.  
Significant processor stalling due to queues being full did not occur 
for the 32x32 and 64x64 resolutions.  The table illustrates the 
difference between fast functional and cycle-accurate system 
simulations (the cycle-accurate simulation involved 75 system level 
devices – processors, local memories, system bus interfaces, routers, 
system memories, and hardware queue models).  Further quick, 
hands-off optimisations were done on the configurable processors, 
using an automated tool but avoiding code restructuring, which 
reduced the number of cycles on the target processors by  18-26 %.    
Code restructuring that allowed vectorisation would give a further 
significant improvement in performance. 
We also used statistical analysis of trace files to determine that a 
maximum queue depth for image data of 500 would allow the 
system to work without deadlock for all images, although further 
optimisation is possible. 

7. CONCLUSION 
The design of complex MPSoC systems poses many interesting and 
taxing challenges to system architects, SW and HW designers.   
This paper has outlined several of those challenges and developed a 
list of requirements for design technology that begins to offer such 
capabilities.   As an example of what might be possible, an 
experimental MPSoC design tool was used to illustrate some of 
these technologies. 

Many additional capabilities can be envisaged for such a design 
flow, including richer sets of abstract communications models, 
additional system level components, more automated tools for 
structural platform configuration, and automated mapping and 
analysis tools. 
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