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INTRODUCTION

Paper: Scratchpad Memory: A Design Alternative for Cache On-chip memory in Embedded Systems

● Modern embedded device is light weight and low power consumption
○ Chip caches using 25% to 45% total chip power
○ Need a more efficient compiler 

Main Contribution：
1. Establishing area model to evaluate and compare different caches and scratch pad memory, 

further different size of caches and scratch pad memory
2. Using a systematic framework to evaluate the area-performance tradeoff of cache and scratch 

pad based system
3. Report and analysis the performance and energy consumption for different caches and scratch 

pad memory
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Scratch Pad Memory
● Memory array with the decoding and the column circuitry logic

● Scratch pad memory (benefits)
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Scratch Pad Memory
● Major energy consumption is memory array unit

Energy dissipation formula:

Capacitance of the memory array unit:

 Total energy spent in the scratch pad memory:

SPaccess is the number of accesses to the scratch pad memory. E
scratchpad

 is 

the energy per access obtained from our analytical scratch pad model.  
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Cache Memory

Area Model

● base on the transistor count in the circuitry

Cache Memory Organization

means area of tag array

means area of tag array
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Cache Memory

Above is the area of 

● tag decoder unit
● tag array
● column multiplexer
● pre-charge
● sense amplifiers
● tag comparators
● multiplexer driver units

Respectively Cache Memory Organization
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Cache Memory

Cache Memory Organization

Above is the area of 

● data decoder unit
● data array
● column multiplexer
● pre-charge
● data sense amplifiers
● output driver units

Respectively
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Cache Memory

Power Model

● energy consumption for each access in a cache is the 

sum of energy consumptions of all the components 

identified in area model and is obtained from CACTI

Cache Memory Organization
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METHODOLOGY
● Quantitatively evaluate usage of Scratchpad memory vs Cache for Embedded applications.

● Evaluation Criteria:

○ Performance 

○ Energy

○ Area 

● Evaluation Platforms used:

○ ARMulator - Performance 

○ CACTI - Energy and Area
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PERFORMANCE MODEL
● ARMulator instruction set simulator is used that generates trace 

output for Cache and SPM.

● The number of clock cycles per access determines the performance 

of Cache or SPM.

  SCRATCH PAD MEMORY ACCESS

● Addresses are classified as going to SPM or memory based on 

outputs of trace analyzer.

● SPM read and write access time is assumed to be one clock cycle.

CACHE MEMORY ACCESS

● Trace file give the number of cache read hits, read misses, write hits, 

write misses.

● The cache model used in the paper is a writethrough.

Access  Number of cycles

SPM 1 cycle

Main Memory 16 bit 1 cycle + 1 wait state

Main Memory 32 bit 1 cycle + 3 wait states
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  Cases of Cache access considered in the model:

● Cache read hit: 
○ Data read from Cache
○ No write to Cache
○ No memory access

● Cache read miss:
○ Main memory accessed
○ L words written to Cache

● Cache write hit:
○ Cache write
○ Main memory write

● Cache write miss:
○ Main memory write
○ No cache update

Access type Cache read Cache write Mem read Mem write

Read hit 1 0 0 0

Read miss 1 L L 0

Write hit 0 1 0 1

Write miss 1 0 0 1

Cache Energy Eq:
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EXPERIMENTAL SETUP AND FLOW

● Target architecture: AT91M40400 is a member of the ATMEL 
AT91 16/32 bit microcontroller family based on the 
ARM7TDMI embedded processor.

● 4KB on chip SPM.

● Encc compiler generates the binary code for ARM7 which is 

simulated by ARMulator to generate trace file.

● Knapsack algorithm is used for assigning code and data 

blocks for SPM.

● CACTI model is used to predict area and energy for Cache 

and SPM
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Selection of memory objects for Scratch Pad 

● A set of functions, basic blocks and/or variables is assigned to the scratch pad on a static basis.

● Algorithm in the compiler first identifies and evaluates frequent program and data memory 
objects.

● Program memory objects - Functions and basic blocks are identified to be assigned to SPM.

● Energy consumption is computed by multiplying energy consumption of a single execution with 
number of executions of the memory objects, E = n * E

instr_fetch

● Data memory objects - Along with program, variables can also be assigned to SPM.

● The number of accesses of the variable is the number of static references in the block times 
number of block executions, E = n * E

data_word

● The best set of memory objects which fit into the scratch pad and save the highest amount of 
energy now has to be identified.

● Maximizing the total gain is a problem that can be modeled as a knapsack problem.
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Performance Results
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Area-Time Results
Parameters - 

● 2-way set associative cache
● Performance measured by CPU 

cycles
● Data for bubble-sort

Average reduction in Scratchpad (SPM) 
compared to Caches -

● Area - 34%
● Time - 18%
● Area-time product - 46%
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Energy Results
Energy per access -

● Cache (2KB) - 4.57 nJ
● SPM (2KB) - 1.53 nJ

Average reduction - 40%
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Conclusion & Future Work

● For small size (less than 600B), ambiguous results
● For large size, SPM static allocation > cache dynamic (in terms of area, 

energy, time)

● DRAM main memory should be studied
● Needs real measurements
● Clock period of SPM vs cache (currently, CPU cycles)
● Cost/performance direct mapped caches
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Unanswered Questions
● Results based on few algorithms. Use benchmarks? Real world more 

complex

● Static memory allocation. Possible/Optimal for all programs? If not, do 
programmers allocate? Binary compatibility?

● Paper published in 2002. Now, multiprocessors. Common SPM? No 
coherence issue

● Write through cache. What about write back?

● No OS? No VM? Virtually or physically indexed SPM? Context 
switching?

● Mix of both cache & SPM



University of Michigan 

Thank you!


