
University of Michigan

EECS 507 Presentation
Scratchpad Memory: A Design Alternative for Cache On-Chip Memory in Embedded

Systems

University of Michigan 2

Content

●Introduction

●Scratch pad memory

●Cache memory

●Methodology

●Results

●Conclusion

University of Michigan

INTRODUCTION

Paper: Scratchpad Memory: A Design Alternative for Cache On-chip memory in Embedded Systems

● Modern embedded device is light weight and low power consumption
○ Chip caches using 25% to 45% total chip power
○ Need a more efficient compiler

Main Contribution：
1. Establishing area model to evaluate and compare different caches and scratch pad memory,

further different size of caches and scratch pad memory
2. Using a systematic framework to evaluate the area-performance tradeoff of cache and scratch

pad based system
3. Report and analysis the performance and energy consumption for different caches and scratch

pad memory

University of Michigan

Scratch Pad Memory
● Memory array with the decoding and the column circuitry logic

● Scratch pad memory (benefits)

University of Michigan

Scratch Pad Memory
● Major energy consumption is memory array unit

Energy dissipation formula:

Capacitance of the memory array unit:

 Total energy spent in the scratch pad memory:

SPaccess is the number of accesses to the scratch pad memory. E
scratchpad

 is

the energy per access obtained from our analytical scratch pad model.

University of Michigan

Cache Memory

Area Model

● base on the transistor count in the circuitry

Cache Memory Organization

means area of tag array

means area of tag array

University of Michigan

Cache Memory

Above is the area of

● tag decoder unit
● tag array
● column multiplexer
● pre-charge
● sense amplifiers
● tag comparators
● multiplexer driver units

Respectively Cache Memory Organization

University of Michigan

Cache Memory

Cache Memory Organization

Above is the area of

● data decoder unit
● data array
● column multiplexer
● pre-charge
● data sense amplifiers
● output driver units

Respectively

University of Michigan

Cache Memory

Power Model

● energy consumption for each access in a cache is the

sum of energy consumptions of all the components

identified in area model and is obtained from CACTI

Cache Memory Organization

University of Michigan

METHODOLOGY
● Quantitatively evaluate usage of Scratchpad memory vs Cache for Embedded applications.

● Evaluation Criteria:

○ Performance

○ Energy

○ Area

● Evaluation Platforms used:

○ ARMulator - Performance

○ CACTI - Energy and Area

University of Michigan

PERFORMANCE MODEL
● ARMulator instruction set simulator is used that generates trace

output for Cache and SPM.

● The number of clock cycles per access determines the performance

of Cache or SPM.

 SCRATCH PAD MEMORY ACCESS

● Addresses are classified as going to SPM or memory based on

outputs of trace analyzer.

● SPM read and write access time is assumed to be one clock cycle.

CACHE MEMORY ACCESS

● Trace file give the number of cache read hits, read misses, write hits,

write misses.

● The cache model used in the paper is a writethrough.

Access Number of cycles

SPM 1 cycle

Main Memory 16 bit 1 cycle + 1 wait state

Main Memory 32 bit 1 cycle + 3 wait states

University of Michigan

 Cases of Cache access considered in the model:

● Cache read hit:
○ Data read from Cache
○ No write to Cache
○ No memory access

● Cache read miss:
○ Main memory accessed
○ L words written to Cache

● Cache write hit:
○ Cache write
○ Main memory write

● Cache write miss:
○ Main memory write
○ No cache update

Access type Cache read Cache write Mem read Mem write

Read hit 1 0 0 0

Read miss 1 L L 0

Write hit 0 1 0 1

Write miss 1 0 0 1

Cache Energy Eq:

University of Michigan

EXPERIMENTAL SETUP AND FLOW

● Target architecture: AT91M40400 is a member of the ATMEL
AT91 16/32 bit microcontroller family based on the
ARM7TDMI embedded processor.

● 4KB on chip SPM.

● Encc compiler generates the binary code for ARM7 which is

simulated by ARMulator to generate trace file.

● Knapsack algorithm is used for assigning code and data

blocks for SPM.

● CACTI model is used to predict area and energy for Cache

and SPM

University of Michigan

Selection of memory objects for Scratch Pad

● A set of functions, basic blocks and/or variables is assigned to the scratch pad on a static basis.

● Algorithm in the compiler first identifies and evaluates frequent program and data memory
objects.

● Program memory objects - Functions and basic blocks are identified to be assigned to SPM.

● Energy consumption is computed by multiplying energy consumption of a single execution with
number of executions of the memory objects, E = n * E

instr_fetch

● Data memory objects - Along with program, variables can also be assigned to SPM.

● The number of accesses of the variable is the number of static references in the block times
number of block executions, E = n * E

data_word

● The best set of memory objects which fit into the scratch pad and save the highest amount of
energy now has to be identified.

● Maximizing the total gain is a problem that can be modeled as a knapsack problem.

University of Michigan

Performance Results

University of Michigan

Area-Time Results
Parameters -

● 2-way set associative cache
● Performance measured by CPU

cycles
● Data for bubble-sort

Average reduction in Scratchpad (SPM)
compared to Caches -

● Area - 34%
● Time - 18%
● Area-time product - 46%

University of Michigan

Energy Results
Energy per access -

● Cache (2KB) - 4.57 nJ
● SPM (2KB) - 1.53 nJ

Average reduction - 40%

University of Michigan

Conclusion & Future Work

● For small size (less than 600B), ambiguous results
● For large size, SPM static allocation > cache dynamic (in terms of area,

energy, time)

● DRAM main memory should be studied
● Needs real measurements
● Clock period of SPM vs cache (currently, CPU cycles)
● Cost/performance direct mapped caches

University of Michigan

Unanswered Questions
● Results based on few algorithms. Use benchmarks? Real world more

complex

● Static memory allocation. Possible/Optimal for all programs? If not, do
programmers allocate? Binary compatibility?

● Paper published in 2002. Now, multiprocessors. Common SPM? No
coherence issue

● Write through cache. What about write back?

● No OS? No VM? Virtually or physically indexed SPM? Context
switching?

● Mix of both cache & SPM

University of Michigan

Thank you!

