Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors

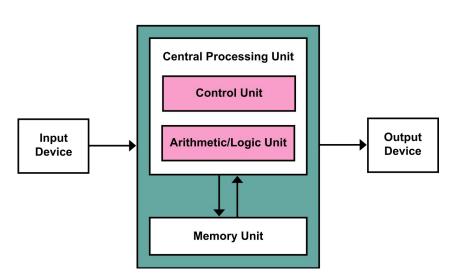
Andrew Larson, Michael Wang, Neel Dutta, Zechao Li

Introduction: The Brain as a Computer

- No two brains are identical
 - Yet, they can be functionally equivalent
- "Hardware" differs
- "Software" established over time
- Brain vs. Computer tradeoffs

The von Neumann Architecture

- Instructions and data are treated the same
- Modified von Neumann Architecture
 - Computing with large random patterns/high-dimensional random vectors
- Consists of:
 - o RAM
 - Input and output channels
 - CPU
 - Sequencing Unit
 - ALU



An Engineering View of Representation

- Representation
 - Computers use binary representation
- Different choices offer different tradeoffs
- Brain's representations are largely nonbinary
- Dimensionality in the context of numbers
 - Entity vs. Representation

Properties of Neural Representation

Hyperdimensionality

- The brain's circuits contain huge numbers of neurons and synapses
- Begs the need for high dimensional computing
- Hyperdimensional spaces have unique properties

Robustness

- Extremely tolerant of component failure
- Proportion of allowable errors increases with dimensionality

Randomness

- Internal wiring of circuits is left largely up to chance
- Authors start with random vectors in hyper dimensional space
- Randomness has been always in NN to some degree
- Tolerance to randomness ≠ Requiring randomness

Hyperdimensional Computer

Hyperdimensional computer

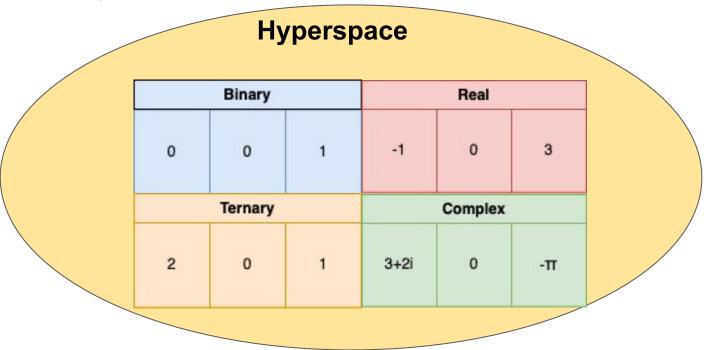
A possible solution to perform higher dimensional math computations

Modern day computers: low-dimensional binary vectors

Inherit concepts from modern day computing and apply to higher dimensions

Hyperdimensional representation

Hyperdimensional representational space unit: vector



Hyperdimensional representation

Vectors have several important properties

 These properties can be hard to imagine based on intuition

Vector Example

- Say we are given 10000 element bit vector
- Point: a possible vector in the hyperspace
 - o 2¹0000
- Distance: Number of places two points differ
 - Ex. <0, 0, 0...> and <1, 1, 1...>
 - Since all points differ, distance = 10000bits
- **Dimensionality**: 10000/10000 = 1

Vector Example continued

- For 10000 binary vector, mean distance is 5000
- Standard Deviation: $\sigma = \sqrt{(np(1-p))}$

$$= \sqrt{(10000)(0.5)(1-0.5)}$$

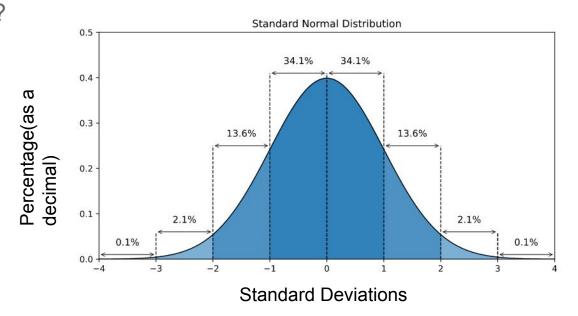
$$= \sqrt{2500} = 50$$

- Almost all points are 4700-5300 bits away
 - So called 600 bit wide "bulge"

# of Standard Deviations	% of Total
ī	68.27
2	95.45
3	99.73
4	99.9937
5	99.99994
6	99.999998

Hyperdimensional representation: distance

- Most points are more similar to each other than different
 - Distance between points is relatively the same
- Distance increases as we move away from midpoint
- Why does this matter?



Hyperdimensional representation: Robustness

- Distribution of points enables more robust model
 - Can tolerate large changes(>33%) without affecting the result
- Could we possibly falsely identify a vector that arrives at the wrong result?
 - Yes, but not as easy as you may think

Example: Robustness

 Suppose we are given 10000 bit binary vectors A and B that differ by 2500 bits with 3333 of points changed at random:

•
$$D = d + e - 2de$$

D = relative distance d = # of differing bits e = # of bits changed at random from noisy A to B

- $D_B = 2500 + 3333 2(2500)(3333) = on average 4166 bits away!$
- Adding noise increases distance from noisy A to B 4166>3333
 bits

Similarity

• **Distance**: Number of places two points differ

Points are considered "similar" when within 0.5 dimensionality

Lower Distance does not imply similarity

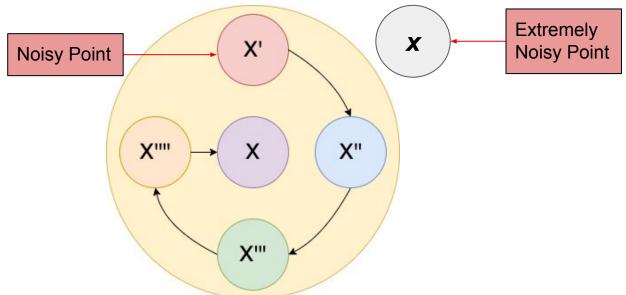
Similar patterned points can be unrelated

Hyperdimensional Memory

- Need a new way to store large vectors
- Current architecture not suited to scale for large bit vectors
- Solution: Autoassociative memory

Autoassociative memory

Retrieve original data X from noisy version X'



 Provides memory robustness, allowing noisy X' to still retrieve data iteratively

Alternative

- Heteroassociative: Retrieve data X by addressing memory with pattern A', or A
 - Problem: cannot deal with noise as well(pattern X' will have some noise)

Hyperdimensional Arithmetic

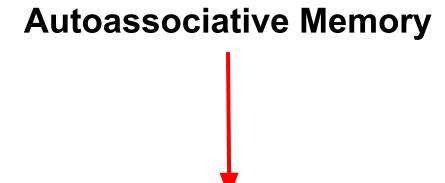
- ALU needs to focus on the principles rather than hardware
 - Functionality doesn't change compared to modern computing
- Homogeneous operations enable special operations:
 - Invertible, distributive property, preserves distance, dissimilar to input vectors
- These properties allow us to encode internal representations to form systems: cognitive code

Constructing a Cognitive Code

Constructing a Cognitive Code

A collection of building blocks based on most basic operations and representations.

Storage



Reversible Mappings — Near Orthogonality

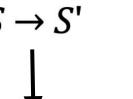
Nearest Neighbor Search

Example: Sets and Storage

Set Construction

$$\vec{S} = \vec{A} + \vec{B} + \vec{C} + \vec{D} + \vec{E} + \vec{F}$$

Reversible Mapping



Storage

torage

Retrieval

Noisy: \overrightarrow{S}'_n

Retrieve \vec{S}'

Inverse Mapping: $\overrightarrow{S}' \rightarrow \overrightarrow{S}$

Retrieve One: \overrightarrow{A} \overrightarrow{F}

Compute: $\vec{X} = \vec{S} - \vec{A}$

Retrieve: \vec{B}

Compute: $\vec{Y} = \vec{X} - \vec{B}$

• • • • •

XOR Multiplication and Permutations

XOR Multiplication

Randomness: $X_A \stackrel{\text{def}}{=} A * X \rightarrow d(X_A, X) = |A|$

Permutation Matrix II

Randomness, Distance Preservation

Sequences

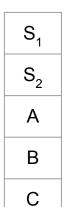
Goal: Flatten sequence ABC into single hypervector

Storing

Construct

 $S_1 = \Pi A + B$ $S_2 = \Pi B + C$

Fill In Memory



Traversing

- Given B
- 2. Compute ΠB
- 3. Probe with $\Pi B \rightarrow Get S_2$
- 4. Compute $Z = S_2 \Pi B$
- 5. Probe with $7 \rightarrow \text{Get C}$

Can Do Better

Cognitive Code: The Upshot

Blocks: Sets, Sequences, Bindings, Substitutions

- Whole point was to build system which functions like brain
 - Does brain even use these? Seems to be the case...

 Makes hyperdimensional computing system easier to reason about and use

3 Examples of Cognitive Connotations

1. Context Vectors

- High-dimensional vector that represents a word's context information
- Context can be context windows or documents on a single topic
- Context information collected in large matrixes of frequencies
 - Rows are context vectors
 - Transformations used to obtain better vectors
 - Latent semantic analysis (LSA)
 - Random vector method

	Doc1	Doc2	Doc # 200,000
Word1	1	0	 1
Word2	0	0	1
	(10000)		····
Word # 100,000	0	1	0

Context Vector Example:

- Example: A vocabulary of 100,000 words, a corpus of 200,000 documents,
 each has 500 words
- Latent Semantic Analysis (LSA):
 - o 100,000 rows x 200,000 cols
 - Drawback: High cost, impractical to scale
- Random Vector:
 - Each Document randomly activates 20 columns
 - Document's random index vector: 20 1s
 - o 100,000 rows x 10,000 cols

	Col1	Col2		Col # 10,000
Word1	1	0		1
Word2	0	0	30000	1
1446	(// // ////////////////////////////////			
Word # 100,000	0	1		0

Context Vector continued: Takeaways

- Words with similar meanings have similar context vectors
- Linguistically impoverished and crude, disregards grammar
- Large random patterns can capture regularities in data
- Random-vector method is suited for incremental on-line learning

2 & 3. Inference from holistic mapping; Learning from example

- Rules can be encoded in distributed representation, learnt from examples
- Example: **Rule:** 'If x is the mother of y and y is the father of z then x is the grandmother of z."

$$\circ \quad \mathsf{R}_{\mathsf{x}\mathsf{y}\mathsf{z}} = \mathsf{G}_{\mathsf{x}\mathsf{z}} * (\mathsf{M}_{\mathsf{x}\mathsf{y}} + \mathsf{F}_{\mathsf{y}\mathsf{z}})$$

 Apply on specific case: "Anna(a) is the mother of Bill(b)" and "Bill(b) is the father of Cid (c)"

$$\circ \quad \mathsf{R}_{\mathsf{x}\mathsf{y}\mathsf{z}} \,^* \, (\mathsf{M}_{\mathsf{a}\mathsf{b}} + \mathsf{F}_{\mathsf{b}\mathsf{c}}) = \mathsf{G}_{\mathsf{x}\mathsf{z}} \,^* \, (\mathsf{M}_{\mathsf{x}\mathsf{y}} + \mathsf{F}_{\mathsf{y}\mathsf{z}}) \,^* \, (\mathsf{M}_{\mathsf{a}\mathsf{b}} + \mathsf{F}_{\mathsf{b}\mathsf{c}}) \,^* \, \mathsf{Resulting vector } \mathsf{G}_{\mathsf{a}\mathsf{c}}^{\mathsf{a}}$$

"Dollar of United States" – {Peso: "Dollar of Mexico"}

Looking Forward

- Math can be used to abstract properties of neural systems similar to cognitive models
- Ideas presented hopefully lead to more comprehensive cognitive models
- Challenges:
 - Future computers will be more well equipped to handle vectors
 - Chips will not be identical duplicates
 - Finding mathematical system to mirror cognitive models

Questions?

Ideas / Questions

Possible to have hypervectors which are not nearly-orthogonal in autoassociative memory.

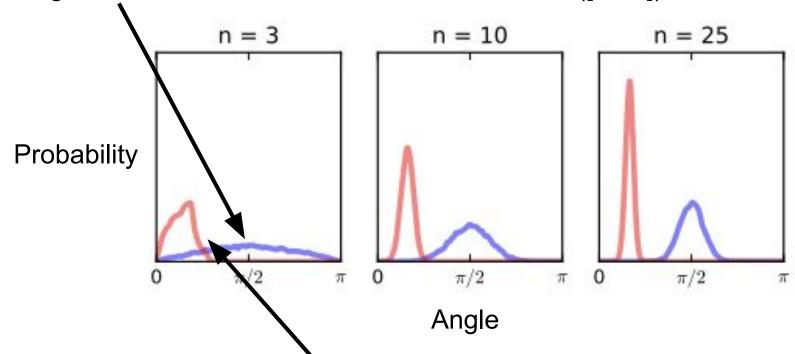
Assumption that a von Neumann architecture is a good starting point.

Do we necessarily need the building blocks mentioned in the cognitive code section?

Cool Idea: Holistic Representation

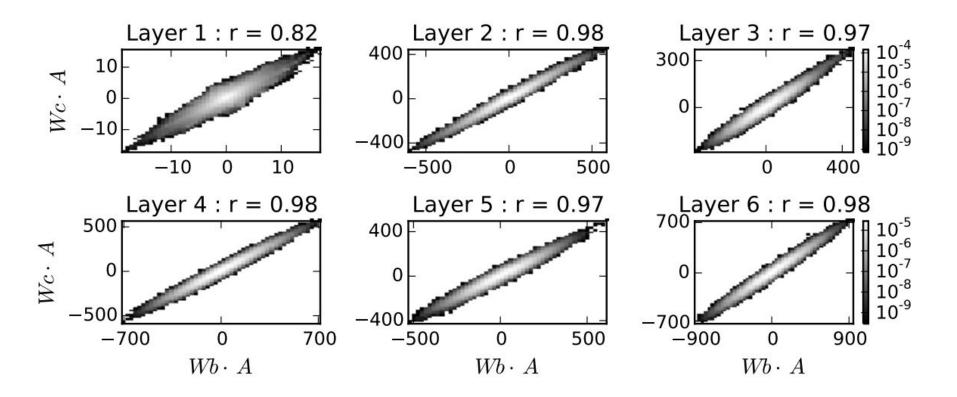
From High Dimensional Geometry of Binary Neural Networks

Angle between two continuous random vectors ([-1, 1])



Angle between random continuous vector ([-1, 1]) and binarized version

Dot Product Preserves Direction

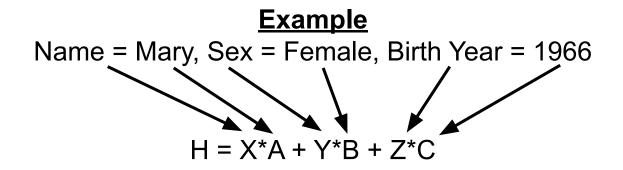


Bindings and Data Records

Binding
$$\rightarrow$$
 C = Π A * B

Data Record

Combines several variable-value pairs into a single record



3. What is the dollar of Mexico:

- Infer the literal meaning from figurative expression
- Prototyping: "Dollar of Mexico", first language
- Expanding structure: "Peso of France", second language

Looking Back

- Neural Net associative memories: cognitive models with high dimensionality
- Holographic reduced representation (HRR): reduced representation using circular convolution
- LSA vs random indexing
- So far only very general properties of hyperdimensional spaces are explored