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(b) Iterative, multi-round human vision system.
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(a) Conventional machine vision pipeline.

Image Sensor: typically

homogeneous RGGB or RCCC.

Demosaicing, binning,

denoising, gamma

correction, and compression.

Hardware Feature

Extraction Accelerator

or

Feature extraction on

raw captured data.

Runs CNN, LSTM or

other analysis algorithm.

May drop computation on less

important data, but already payed

Image Signal Processor transfer cost.

May render decision or (at high

energy cost) do feature extraction

and defer decision to cloud.

Minimalistic

Image Pre-Processor

Application Processor

(CPU and/or GPU)

Cloud
Decision /

Result

Image Sensor: capture only the

most important

data for decision accuracy.

Efficient gamma

correction

and binning.

Decide based on features.

 

Very high energy cost for

wireless data transfer.
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Captures most relevant

and rapidly changing data.

Learns important sample locations

from prior rounds.

Maintains state built from

prior still-relevant samples.

Determine and

transmit

relevant data.

Decide based on features.

 

Very high energy cost for

wireless data transfer.

Issue commands to

capture important data.

(c) Goal: multi-round, energy-efficient, low-latency

continuous learning machine vision.

Feature extraction on sparse captured

data with similar distribution to processed data.

Continuously learn features and important

data based on prior captures.
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Deadlines and announcements

25 Oct.: Midterm exam.

8 Nov.: Second (and last) project checkpoint.

Early December: Project presentations.

9 Dec.: Project deadline.

8am–10am 15 Dec.: Final exam.
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Testing

64-bit adder → 2128 input vectors.

Coverage is imperfect.

Control inputs.

Observability via outputs / probe points.

Single stuck-at fault model.

Scan chain.
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Formal Methods and Model Checking

Requires formal specification and property descriptions.

Exhaustively prove that certain properties hold for all input vectors.

Theorem providing, SAT solving, etc.

Computatuonally expensive.
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Reliability modeling
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Arbitrary reliability calculations

ARM x86 DSP
Stage success Probability

0.99 0.96 0.98
0 0 0 0 0.01 · 0.04 · 0.02 = 8× 10−6

0 0 1 1 0.01 · 0.04 · 0.98 = 0.00039
0 1 0 1 0.01 · 0.96 · 0.02 = 0.00019
0 1 1 1 0.01 · 0.96 · 0.98 = 0.0094
1 0 0 1 0.99 · 0.04 · 0.02 = 0.00079
1 0 1 1 0.99 · 0.04 · 0.98 = 0.039
1 1 0 1 0.99 · 0.96 · 0.02 = 0.019
1 1 1 1 0.99 · 0.96 · 0.98 = 0.93
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Shortcuts for parallel and series

Parallel: Psucceed,sys = 1−
∏

i∈N (1− Psucceed,i ).

Series: Psucceed,sys =
∏

i∈N Psucceed,i .
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Fault tree
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Fault tree exploration

Fault tree size in number of components?

Exhaustive exploration often computationally intractable.

Monte Carlo variants.
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Statistical modeling impractical

Assumption: statistical independence.

Usually wrong.

For security, very wrong.

Deceptive for IoT reliability estimation.

Implicit correlations through environment and social effects, etc.
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How can the problem be solved?

IoT security/reliability problem more akin to social/financial catastrophe
prediction than isolated embedded system analysis.

Stamp collecting vs. science of design.

How can the situation be improved?

Incentive structures?
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Ronen et al.

Single-company design: entire design known.

Model checking not used.

Implementation error in use of proximity detection.

Use of symmetric key with utterly unrealistic assumption about leak
probability.

IoT will grow into something much harder to secure.
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No formal design specification for entire system

Designed by many companies that won’t share specs or implementations.

Formal models and model checking impractical.

Any attempt at model checking requires arbitrary number of components
with unknown possible states.

Probably infeasible to specify.

State space explosion.

Highly (uselessly) conservative.
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Large-scale with heterogeneous components

Sensors.

Actuators.

Computers.

Transceivers.

All broaden the attack surface.
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