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Random access memory (RAM) is tightly constrained in the least expensive, lowest-power embed-
ded systems such as sensor network nodes and portable consumer electronics. The most widely used
sensor network nodes have only 4 to 10KB of RAM and do not contain memory management units
(MMUs). It is difficult to implement complex applications under such tight memory constraints.
Nonetheless, price and power-consumption constraints make it unlikely that increases in RAM in
these systems will keep pace with the increasing memory requirements of applications.

We propose the use of automated compile-time and runtime techniques to increase the amount
of usable memory in MMU-less embedded systems. The proposed techniques do not increase hard-
ware cost, and require few or no changes to existing applications. We have developed runtime
library routines and compiler transformations to control and optimize the automatic migration of
application data between compressed and uncompressed memory regions, as well as a fast compres-
sion algorithm well suited to this application. These techniques were experimentally evaluated on
Crossbow TelosB sensor network nodes running a number of data-collection and signal-processing
applications. Our results indicate that available memory can be increased by up to 50% with less
than 10% performance degradation for most benchmarks.
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1. INTRODUCTION

Low-power, inexpensive embedded systems are of great importance in applica-
tions ranging from wireless sensor networks to consumer electronics. In these
systems, processing power and physical memory are tightly limited due to con-
straints on cost, size, and power consumption. Moreover, many microcontrollers
lack memory management units (MMUs). Although the proposed techniques
may be used in any memory-constrained embedded system without an MMU,
this article will focus on using them to increase usable memory in sensor net-
work nodes with no changes to hardware and with no or minimal changes to
applications.

Many recent ideas for improving the communication, security, and in-
network processing capabilities of sensor networks rely on sophisticated rout-
ing [Karlof and Wagner 2003], encryption [Ganesan et al. 2003], query process-
ing [Gehrke and Madden 2004], and signal processing [Li et al. 2002] algorithms
implemented on sensor network nodes. However, sensor network nodes have
tight memory constraints. For example, the popular Crossbow MICA2, MICAz,
and TelosB sensor network nodes have 4KB or 10KB of RAM, a substantial
portion of which is consumed by the operating system (OS) (e.g., TinyOS [Gay
et al. 2005] or MANTIS OS [Abrach et al. 2003]). Tight constraints on the cost
and power consumption of sensor network nodes make it unlikely for the size
of physical RAM to keep pace with the demands of increasingly sophisticated
in-network processing algorithms.

In order to reduce cost, sensor network nodes typically avoid the use of dedi-
cated dynamic random access memory (DRAM) integrated circuits; in extremely
low-price, low-power embedded systems, RAM is typically on the same die as the
processor. Unfortunately, it is not economical to fabricate the capacitors used
for high-density DRAM with the same process as processor logic. As a result,
static random access memory (SRAM) is used in sensor network nodes. Unlike
DRAM, SRAM generally requires six transistors per bit and has high power
consumption. Increasing the amount of physical memory in sensor network
nodes would increase die size, cost, and power consumption. Some researchers
have proposed addressing memory constraints using hardware techniques such
as compression units inserted between memory and processor. However, such
hardware implementations typically have difficulty adapting to the character-
istics of different application data. Moreover, they would increase the price of
sensor network nodes by requiring either additional integrated circuit packages
or microcontroller redesign. Barring new technologies that allow inexpensive,
high-density, low-power, high-performance RAM to be fabricated on the same
integrated circuits as logic, sensor network applications will continue to face
strict constraints on RAM in the future.

Software techniques that use data compression to increase usable memory
have advantages over hardware techniques. They do not require processor or
printed circuit board redesign and they allow the selection and modification
of compression algorithms, permitting good performance and compression ra-
tio (compressed data size divided by original data size) for the target appli-
cation. However, software techniques that require the redesign of applications
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are unlikely to be used by anyone but embedded systems programming experts.
Unfortunately, most sensor network application experts are not embedded sys-
tem programming experts. If memory expansion technologies are to be widely
deployed, they should not require changes to hardware and should require min-
imal or no changes to applications. Motivated by the previously described obser-
vations, we propose a new software-based online memory expansion technique,
named MEMMU, for use in wireless sensor networks.

The rest of this article is organized as follows. Section 2 summarizes related
work and contributions. Section 3 provides a motivational scenario that illus-
trates the importance of the proposed technique. Section 4 describes the library
and compiler techniques, optimization schemes, as well as the compression and
decompression algorithms designed to automatically increase usable memory in
sensor network nodes. Section 5 presents the experimental setup, describes the
workloads, and discusses the experimental results in detail. Finally, Section 6
concludes the article.

2. RELATED WORK AND CONTRIBUTIONS

The proposed library and compiler techniques to increase usable memory build
upon work in the areas of online data compression, wireless sensor networks,
and high-performance data compression algorithms.

2.1 Software Virtual Memory Management for MMU-Less Embedded Systems

Choudhuri and Givargis [2005] proposed a software virtual memory implemen-
tation for MMU-less embedded systems based on an application level virtual
memory library and a virtual memory aware assembler. They assume secondary
storage (e.g., EEPROM or flash) is present in the system. Their technique au-
tomatically manages data migration between RAM and secondary storage to
give applications access to more memory than provided by physical RAM. How-
ever, since accessing secondary storage is significantly slower than accessing
RAM, the performance penalty of this approach can be very high for some ap-
plications. In contrast, MEMMU requires no secondary storage. In addition,
its performance and power consumption penalties have been minimized via
compile-time and runtime optimization techniques.

2.2 Hardware-Based Code and Data Compression in Embedded Systems

A number of previous approaches incorporated compression into the memory
hierarchy for different goals. Main memory compression techniques [Tremaine
et al. 2001] insert a hardware compression/decompression unit between cache
and RAM. Data are stored uncompressed in cache, and are compressed online
when transferred to memory. Main memory compression techniques are used
to improve the system performance by providing virtually larger memory. Code
compression techniques [Lekatsas et al. 2000] store instructions in compressed
format in ROM and decompress them during execution. Compression is usually
performed off-line and can be slow, while decompression is done during execu-
tion, usually by special hardware, and must be very fast. Code compression
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techniques are often used to save space in ROM for embedded systems with
tight resource constraints.

2.3 Software-Based Memory Compression

Compressed caching [Douglis 1993; Wilson et al. 1999] introduces a software
cache to the virtual memory system. This cache uses part of the memory to
store data in compressed format. Swap compression [Tuduce and Gross 2005]
compresses swapped pages and stores them in a memory region that acts as a
cache between memory and disk. The primary objective of both techniques is
to improve system performance by decreasing the number of page faults that
must be serviced by hard disks. Both techniques require backing store (i.e., a
hard disk) when the compressed cache is filled up. In contrast, MEMMU does
not rely on any backing store.

CRAMES [Yang et al. 2005] is an OS controlled, online memory compression
framework designed for diskless embedded systems. It takes advantage of the
OS virtual memory infrastructure and stores least recently used (LRU) pages in
compressed format in physical RAM. CRAMES dynamically adjusts the size of
the compressed memory area, protecting applications capable of running with-
out it from performance or energy consumption penalties. Although CRAMES
does not require any special hardware for compression/decompression, it does
require an MMU. In contrast, MEMMU requires no MMU. MEMMU imple-
ments software memory management via its compile-time and runtime tech-
niques and uses numerous optimizations to maintain performance. This ca-
pability is necessary for most sensor network nodes and low-cost embedded
processors because the majority do not have MMUs.

Biswas et al. [2004] described a memory reuse method that relies upon static
liveness analysis. It compresses live globals in place and grows the stack or heap
into the freed region when they overflow. Their work aims at improving system
reliability by resolving runtime memory shortage errors as a consequence of the
difficulty in predicting the size requirement of dynamic memory objects such as
stack and heap. In contrast, MEMMU tries to solve a different problem: permit-
ting system operation when the lower bound on memory requirements already
surpass physical memory. Therefore, MEMMU has a much bigger memory ex-
pansion ratio.

Cooprider and Regehr [2007] proposed an RAM compression technique that
targets data elements that have values limited to small sets, which are deter-
mined using compile time analysis. In contrast, MEMMU uses online compres-
sion of data based on access patterns that are hard to determine at compile
time. As a result, MEMMU can be applied to sensor data, generally permitting
greater increases in usable memory. Note that Cooprider’s and Regehr’s tech-
nique, and MEMMU, are complementary; they compress different structures
and do not significantly interfere with each other.

2.4 Compression for Reducing Communication in Sensor Networks

In many sensor network applications, sensor nodes in the network must
frequently communicate with each other or with a central server. Sensor nodes
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have limited power sources and wireless communication accelerates battery
depletion [Pottie and Kaiser 2000]. In-network data aggregation [Madden
et al. 2002; Guestrin et al. 2004] and data reduction via wavelet transform or
distributed regression [Hellerstein and Wang 2004; Nath et al. 2004] can sig-
nificantly reduce the volume of data communicated. However, these techniques
are lossy, limiting their application. Recently, researchers have proposed to
reduce the amount of data communication via compression [Pereira et al. 2003;
Pradhan et al. 2002] in order to reduce radio energy consumption. Our work
differs from theirs in that MEMMU focuses on automated memory compression
for functionality improvement instead of communication reduction.

2.5 Software-Based Memory Compression Algorithms

LZO [Oberhumer] is a very fast general-purpose compression algorithm that
works well on many types of in-RAM data. However, the memory requirement
of LZO is at least 8KB, far exceeding the available memory of many low-end em-
bedded systems and sensor nodes. Rizzo et al. [1997] proposed a software-based
algorithm that compresses in-RAM data by only exploiting the high frequency of
zero-valued data. This algorithm trades off degraded compression ratio for im-
proved performance. Wilson et al. [1999] presented a software-based algorithm
called WKdm that uses a small dictionary of recently-seen words and attempts
to fully or partially match incoming data with an entry in the dictionary. Yang
et al. [2006] designed a software-based memory compression algorithm for em-
bedded systems named pattern-based partial match (PBPM). This algorithm
explores frequent patterns that occur within each word of memory and exploits
similarities among words.

Many software-based memory compression algorithms are not appropriate
for use on sensor network nodes due to large memory requirements or poor
performance. For those with sufficiently low overhead, we found none that pro-
vides a satisfactory compression ratio for sensor data. The main reasons for
this follow:

(1) Zero words are rare in many forms of sensor data.

(2) Many forms of sensor data change gradually with time. As a result, adjacent
data elements are often similar in magnitude but have very different bit pat-
terns. Therefore, conventional dictionary-based compression does not work
well. We evaluated a partial dictionary match algorithm [Yang et al. 2006]
in this application. The compression ratio was much worse than delta com-
pression. The partial dictionary match achieved an 86% compression ratio
for trace data, while the proposed delta compression algorithm achieved a
50% compression ratio. We suspect that part of the cause for the poor per-
formance of the dictionary-based algorithm was the high relative penalty
for storing dictionary indices when 16-bit words are used; the algorithm
performs well in another application in which 32-bit words are used.

(3) The block size used in compression is often restricted in low-cost MMU-less
devices, as we will explain later.

We propose a memory compression algorithm that operates with very high
performance on the 16-bit data generally found in the memory of MICAz and
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TelosB sensor network nodes. The average compression ratio for various types
of sensor data is approximately 50%.

2.6 Contributions

The proposed memory expansion technique, MEMMU, expands the mem-
ory available to applications by selectively compressing data that reside in
physical memory. MEMMU uses compile-time transformations and runtime li-
brary support to automatically manage online migration of data between com-
pressed and uncompressed memory regions in sensor network nodes.

MEMMU essentially provides a compressed RAM-resident virtual memory
system that is implemented completely in software via compiler transforma-
tions and library routines. Its use requires no hardware MMU, and requires
few or no manual changes to application software.

Our work makes four main contributions.

(1) It provides application developers with access to more usable RAM and re-
quires no or minor changes to application code and no changes to hardware.

(2) It does not require the presence of an MMU and has other design features
that enable its use in sensor network nodes with extremely tight memory
and performance constraints.

(3) It has been optimized to minimize impact on performance and power con-
sumption; experimental results indicate that in many applications, such as
data sampling and audio signal correlation computation, its performance
overhead is less than 10%.

(4) We have released MEMMU for free academic and nonprofit use
[MEMMU].

MEMMU was evaluated on TelosB wireless sensor network nodes. The
TelosB is an MMU-less, low-power, wireless module with integrated sensors,
radio, antenna, and an 8MHz Texas Instruments MSP430 microcontroller. The
TelosB has 10KB RAM and typically runs TinyOS.

3. MOTIVATING SCENARIO

In this section, we describe a motivating scenario that illustrates the purpose
and operation of MEMMU. Consider an application in which individual sensor
nodes react to particular events (e.g., low-frequency vibration) by triggering
high-rate audio data sampling. After the sampling is complete, data are fil-
tered and statistics (e.g., variance and mean) are computed and transferred to
an observer node. If the raw data are of interest to the observer node, they are
requested and transmitted through the network. In existing sensing architec-
tures, the size of the data buffer is tightly constrained. For example, on a Cross-
bow TelosB sensor node a maximum of 9.5KB RAM is available for buffering.
Moreover, sampling rate and duration cannot be increased without redesigning
the sensor node hardware or increasing the complexity of application imple-
mentation. If, instead, the automated data compression technique proposed in
this article is used, portions of sampled data will be automatically compressed
whenever they would otherwise exceed physical memory. During filtering (e.g.,
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convolution) data are automatically decompressed and recompressed to trade
off performance and usable memory. Commonly-accessed data are cached in
uncompressed format to maintain good performance. This is achieved without
changes to hardware and with no or minimal changes to application code. To
the application designer, it appears as if the sensor network node has more
memory than is physically present.

Many wireless sensor networks use a store-and-forward technique to dis-
tribute information. Therefore, the local memory of a node is used as a shared
resource to handle multiple messages traveling along different routes. In or-
der to avoid losing data during communication, a node must generally store
already-sent data until it receives an acknowledgment. As a result, the buffer
can easily be filled when the communication rate is high, leading to message
loss or even network deadlock. With MEMMU, usable local memory can be
increased thus reducing the probability of data loss.

4. MEMORY EXPANSION ON EMBEDDED SYSTEMS WITHOUT MMUS

This section describes the design of MEMMU, our technique for memory expan-
sion on embedded systems without MMUs. The main goal of MEMMU is to pro-
vide application designers with access to more usable RAM than is physically
available in MMU-less embedded systems without requiring changes to hard-
ware and with minimal or no changes to applications. We achieve this goal via
online compression and decompression of in-RAM data. In order to maximize
the increase in usable RAM and minimize the performance and energy penalties
resulting from the technique, it is necessary to solve the following problems:

(1) Determine which pages to compress and when to compress them to min-
imize performance and energy penalties. This is particularly challenging
for low-end embedded systems with tight memory constraints and without
MMUs.

(2) Control the organization of compressed and uncompressed memory regions
and the migration of data between them to maximize the increase in usable
memory while minimizing performance and energy consumption penalties.

(3) Design a compression algorithm for use in embedded systems that has low
performance overhead, low memory requirements, and a good compression
ratio for data commonly present in MMU-less embedded systems. For ex-
ample, data sensed, processed, and communicated in sensor network nodes
such as audio samples, light levels, temperatures, humidities, and, in some
cases, two-dimensional images.

MEMMU divides physical RAM into three regions: the reserved region, the
compressed region, and the uncompressed region. The reserved region is used to
store uncompressed data of the OS, data structures used by MEMMU, and small
data elements. The compressed region and the uncompressed region are both
used by applications. Application data are automatically migrated between the
compressed and the uncompressed regions. The size of each region is decided
by compile-time analysis of application memory requirements and estimated
compression ratio. The compressed region can be viewed as a high capacity but
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Fig. 1. Memory layout.

Fig. 2. Memory coalescing.

somewhat slower form of memory, and the uncompressed region can be viewed
as a small, high-performance data cache.

Figure 1 illustrates the memory layout of an embedded system using
MEMMU. From the perspective of application designers, all memory in the
left-most Virtual Memory column is available. Virtual memory is broken into
uniform-sized regions called pages. These pages are mapped to the uncom-
pressed or compressed region (shown to the right of Figure 1) via a software-
maintained page table. The page number is used as an index into the page table.
A memory management mechanism was designed to manage data compression,
decompression, and migration between the two regions.

4.1 Handle-Based Data Access

Data elements are accessed via their virtual address handles. The virtual page
number of a corresponding virtual address is obtained by dividing the virtual
address by the page size. The mapping from virtual page to RAM is stored in
a page table maintained as an array. For example, if the content of index n in
the array is m, and m is in the range of uncompressed pages, virtual page n is
mapped to page m in the uncompressed region. If m is greater than number of
uncompressed pages, n is mapped to a page in the compressed region.

When data are accessed via their virtual addresses within an application,
MEMMU first determines the status of the corresponding virtual page based
on the page table.

(1) If the virtual page maps to an uncompressed page, the physical address can
be directly obtained by adding the offset to the address of the uncompressed
page. The data element is then accessed via its physical address.
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Fig. 3. Write handle procedure.

(2) If the virtual page has not been accessed before (i.e., no mapping has yet
been determined for the virtual page) a mapping from this page to an avail-
able page in the uncompressed region is created. If there is no available
page in the uncompressed region, a victim page is moved to the compressed
region to make an uncompressed page available.

(3) If the virtual page maps to a compressed page, the page is decompressed and
moved to the uncompressed region. Again, if there is no available page in
the uncompressed region, a victim page is moved to the compressed region
to make space for an uncompressed page available.

In order to make the procedure transparent to users, and to avoid increas-
ing application development complexity, the routines for these operations are
stored in a runtime library and compiler transformations are used to convert
memory accesses within unmodified code to library calls. Figure 3 illustrates
the write handle procedure. The three vertical paths prior to the final store in-
struction correspond to the situations discussed previously. The left path shows
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the case in which a virtual page p0 maps to a page PT[p0] in the uncompressed
region. Its physical address is computed by adding offset to the physical page
address. In the other two paths, virtual page p0 maps to a compressed page.
More specifically, in the middle path, a free page p1 is available in the uncom-
pressed region. The compressed page is decompressed to p1 and a mapping from
p0 to p1 is created in the page table. Otherwise, if the uncompressed region is
full, as shown in the right path, a victim page p2 from the uncompressed region
is compressed. In that case, the physical page previously used by p2 is freed
and is now used to store decompressed p0. Finally, p0 is mapped to a physical
page in the uncompressed region and data are written to the physical address.

4.2 Memory Management and Page Replacement

When the uncompressed memory region is filled by an application, its pages are
incrementally moved to the compressed region to make space available in the
uncompressed region. When data in the compressed region are later accessed,
they are decompressed and moved back to the uncompressed region. Ideally,
pages that are unlikely to be used for a long time should be compressed to min-
imize the total number of compression and decompression events. MEMMU
approximates this behavior via an LRU victim page selection policy. The LRU
list is doubly linked. Every item in the LRU list stores the associated virtual
page handle. Handles are ordered by the sequence of handle references. When
a page that is already in the LRU list is accessed, it is relocated to the tail
of the list, otherwise the new page is appended to the list. The page at the
head of the LRU list is selected for compression. After a victim page is com-
pressed, the corresponding node is removed from the LRU list. Therefore, page
handles in the LRU list indicate pages currently residing in the uncompressed
region.

Managing the uncompressed memory region is straightforward since pages
have uniform sizes. On the contrary, managing the compressed region is
complex since page sizes differ. Dynamic memory allocation is used in the
compressed region to permit the immediate reuse of space when a page is de-
compressed and moved back to the uncompressed region. Compressed memory
management is akin to heap management. It imposes memory overhead for
keeping information such as page sizes and addresses (refer to Section 5 for
MEMMU’s memory overhead). This overhead is important in embedded sys-
tems that contain only a few kilobytes of RAM. We use the best fit policy, which
allocates the smallest free slot equal to or larger than the required size. Best fit
tends to produce the least fragmentation and minimizes the performance over-
head resulting from splitting and merging free slots. Pages that are moved from
the compressed region to the uncompressed region to read data and returned
to the compressed region without changes have the same compressed size. As
a result, they can often be returned to their prior locations in the compressed
region, in which they fit exactly. In this case, no free slot merging or splitting
will occur. Though best fit needs to scan the whole free slot list, the performance
overhead is low because the number of free slots, which is upper-bounded by
the number of compressed pages, is small.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 23, Publication date: April 2009.



MEMMU: Memory Expansion for MMU-Less Embedded Systems • 23:11

4.3 Preventing Fragmentation

Fragmentation is frequently a problem for dynamic memory allocation tech-
niques. Fragmentation can prevent a newly compressed page from fitting in
the compressed region, even though the total available memory in that region
is sufficient. This situation has the potential to terminate application execution.
MEMMU performs memory merging and coalescing to prevent fragmentation.

Free block merging takes place every time a page is decompressed and re-
moved from the compressed region. Free block handles are maintained in a
list in order of the physical address of the compressed areas. If a free block is
adjacent to its predecessor or successor, these adjacent blocks are merged. This
is a well-known memory management technique.

Coalescing occurs when the memory allocator fails to allocate a new block
from the free list. In this case, MEMMU locates pages in order of increasing
addresses and moves them to the top of the compressed region, or to the bottom
of the most-recently moved pages. This process continues until all compressed
pages have been moved. Upon completion, a single large free region remains.
Figure 2 illustrates this procedure. Rectangles A, B, and C represent three com-
pressed pages and shaded rectangles represent freed blocks. Initially, a request
for a size a little bigger than the first free block cannot be satisfied because
these free blocks are not continuous. After three iterations of moving A, B, and
C upward, all freed blocks are merged into one big free block, and the requested
block can be allocated from the big free block. This coalescing algorithm has
a time complexity of O

(

n2
)

, where n is the total number of compressed pages.
However, since in practice n is usually small, the cost of coalescing is low. For
example, a TelosB mote with 10KB RAM and a page size of 256bytes has 40
pages of RAM. In addition to the three pages used for the reserved region (one
page used by the operating system and two pages used by MEMMU), it may
need 18 compressed pages (n = 18) and 19 uncompressed pages to expand the
usable memory by (18/0.5 + 19)/(40 − 1) − 1 = 41%. Note that coalescing never
imposes a performance penalty unless it is the only remaining alternative per-
mitting the allocation of needed memory. It improves usable memory size for
multiple benchmark applications.

4.4 Interrupt Management

The primary target platform for MEMMU is wireless sensor network nodes,
which are typically memory-constrained, MMU-less embedded systems. On
sensor nodes, hardware interrupts often take place when newly-sensed data ar-
rive. There are two naive approaches to handle interrupts during page misses:
(1) disable them when accessing data in memory or (2) allow interrupts at any
time. Unfortunately, the first approach would result in interrupt misses when
interrupts occur during page misses; the second approach is also dangerous
because any access to a page in the compressed region during the execution of
an interrupt service routine triggered during a page miss would result in an
inconsistent compressed region state. In this section, we describe the potential
for missed interrupts in more detail and propose a solution.

Consider an environmental data sampling application in which missing
samples is not acceptable. Although the optimization techniques described in
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Section 4.5 can be used to reduce the overall execution time overhead, they can-
not reduce the worst-case data access delay. In the worst case, the pages of data
(except the control data structures stored in the reserved region) referenced in
the sampling event handler are all in the compressed region, but there is nei-
ther available space in the uncompressed region to decompress these pages nor
space in the compressed region to compress a victim page. In this situation, co-
alescing, compression, and decompression must be performed before each data
reference, that is,

worst case delay = N × (t coalesce + t comp. + t decomp.) (1)

where the t values are durations and N is the number of memory references
in the sampling event handler. For most applications, the action taken on a
sampling interrupt is merely storing the sensed data. Other tasks are posted to
process the data later. Therefore, the interrupt handler only has one memory
reference that may point to the compressed region. The worst-case coalescing
time is encountered when all blocks in the compressed region must be moved
upward. This latency can be bounded by the time required to copy the en-
tire compressed region plus the time required by the coalescing algorithm. We
measured the worst-case delay on a TelosB wireless sensor node described in
Section 2.6, assuming the compression algorithm introduced in Section 4.6 is
used. The time required to compress and decompress one 256byte page is 3.2ms.
The worst-case coalescing delay on a TelosB mote with a compressed region of
20 pages is 15.7ms. MEMMU should only be used for applications in which the
worst-case delay does not violate any hard timing constraints. If the data set
accessed in the interrupt handler is small, this delay can be avoided by storing
this data set in the reserved region. This is normally the case because the data
set is generally a small buffer.

In applications that compute only in response to sampling events, samples
will not be missed if the sampling period is longer than the worst-case com-
pression and decompression delay triggered by a sampling event. However,
constraining sampling rate is not always an acceptable solution because some
applications may require high sampling rates and even infrequent events may
occur during a page miss. To solve this problem, a ring buffer may be used.
The ring buffer sits in the reserved memory region. When data arrive, they are
immediately stored in the ring buffer and a process rbuf task is posted, which
moves older data in the ring buffer to the sample buffer. This technique pre-
vents data that arrive during page misses from being dropped. The ring buffer
should be large enough to hold the longest-possible sequence of missed sam-
ples. Our experiments indicate that an application sampling at 19,600bps (i.e.,
2,450 sample per second) requires a ring buffer of at most 20bytes. The use of a
ring buffer for high-frequency sampling applications is the only portion of the
proposed design flow that requires (minor) changes to user application code.
Note that MEMMU does not require the use of a ring buffer when sampling
rate is low or when missing some samples is acceptable. MEMMU provides
a ring buffer as a convenient and low-overhead method of preventing missed
interrupts when necessary. In order to use a ring buffer, one needs to set the
ring buffer length based on estimated worst-case delay, insert the write rbuf
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function call, and post the process rbuf task to transfer data from the ring
buffer to the application data structure.

4.5 Optimization Techniques

In previous sections, we described the basic design components of the MEMMU
memory expansion system. With basic, unoptimized MEMMU, every memory
access requires

(1) A runtime handle check to determine whether the address being accessed
is in the uncompressed region;

(2) Compression and decompression if the address is not in the uncompressed
region;

(3) An update to the LRU list; and

(4) Virtual to physical address translation, which includes reading the physical
page number from the page table, and operations such as shift and add.

This introduces high execution time overhead that is proportional to the total
number of memory accesses. Hence, the basic software virtual memory solu-
tion is not practical for many real applications on embedded systems. However,
optimization techniques can be used to significantly reduce the number of run-
time checks, LRU list updates, and address translations. In this section, we
describe several such compile-time optimization techniques. Many of these op-
timizations are related to existing compiler analysis and loop transformation
work [Muchnick 1997; Banerjee 1993; Mckinley et al. 1996]. The proposed op-
timization techniques are based on the analysis of explicit array access. This
will pose no problem for most sensor networking applications. For example, al-
most all of the contributed applications in the TinyOS source repository use ex-
plicit array access. These applications were contributed by numerous research
and industry teams. If applications include implicit array accesses via point-
ers, existing compiler techniques could be used to transform them to explicit
accesses [Franke and O’Boyle 2001; van Engelen and Gallivan 2001]. This com-
piler transformation is not currently supported by LLVM. However, it would be
trivial to use such a compiler pass in MEMMU if it becomes available.

(1) Small object optimization. If a small data element is used very frequently
in the application, it should be assigned to the reserved region at compile-
time to eliminate all related handle checks and address translations. The
increase in usable memory resulting from allowing the migration of small
globals, such as scalars, is generally not sufficient to offset the cost of man-
aging their migration. For example, in the image convolution application
shown in Figure 4(a), the small matrix of coefficients, K , is accessed in every
iteration of the loop (line 8) and the size of this matrix is small. After moving
it to the reserved region, we can eliminate (W −M +1)×(H−M +1)×M ×M

runtime checks and address translations related to this matrix. Using a
reserved region also prevent infrequently used data from occupying the un-
compressed region because they are stored in the same page with frequently
referenced data. The small object optimization is implemented by modifying
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Fig. 4. Example of (a) original and (b) transformed convolution application.

LLVM [Lattner and Adve 2004] to allocate all data structures smaller than
a threshold in the reserved region since their sizes add up only to a few
percent of the memory required by the application.

(2) Runtime handle check optimization. This technique is based on the observa-
tion that if a sequence of memory references access the same page, only the
first handle check is necessary since the referenced page is sure to be in the
uncompressed region on subsequent accesses. This optimization is specific
to sequential access patterns, although different increment and decrement
offsets are supported. By inserting checks to decide whether the data ele-
ment to be accessed next is in a different page from the previous one, the
number of handle checks for all accesses to the same page can be reduced to
one. Performance is improved because the inserted check is relatively faster
than reading an element from the array (page table). This can be especially
useful for a hardware-triggered sample arrival event that writes data into
the buffer, as illustrated by Figure 6. Data ready is a hardware-triggered
event. The if statement in the optimized code in Figure 6(b) filters all the
handle checks mapping to the same page that was checked in the previous
reference.
The runtime handle check optimization takes place in a compiler pass, in

which LLVM creates two global variables, current page number and previ-
ous page number, for each check handle and puts every check handle call
in an if statement. Check handle is called only when the current page num-
ber differs from the previous page number. This technique may introduce
overhead in some applications, such as an application that accesses inter-
leaved pages, because the current page number will always be different
from the previous page number. Therefore, it is only applied to programs
or sections of code that access one array with affine function of induction
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Fig. 5. Example of optimizations on an array accesses.

variables. Affine functions represent vector-valued functions of the form
f (x1, ..., xn) = A1x1 + ... + Anxn + b.

(3) Loop transformation and compile-time elimination of inner-loop checks. This
optimization scheme further reduces runtime handle checks via compile-
time loop transformations. It may be applied to loops whose array accesses
are affine functions of enclosing loop induction variables. Figure 5(a) illus-
trates an example of sequential references to an array. At most, PAGESIZE

references access the same page. Figure 5(b) illustrates the unoptimized so-
lution, which inserts a handle check before every memory reference (line
2) and replaces writes to memory with calls to the write handle routine
(line 3). The entire loop requires N handle checks. Figure 5(c) illustrates
an optimized solution. Loop transformation is used to break the original
loop into nested loops. Iterations of the inner-loop (line 4) access memory
inside a single page. Therefore, handle checks for the inner loop can be re-
placed by one check in the outer loop (line 3). The total number of handle
checks is reduced from N to N/ PAGESIZE. For the sake of simplicity, ar-
ray A shown in Figure 5 is page-aligned. This loop transformation is a type
of loop tiling [Muchnick 1997].
The loop transformation technique can also be applied in the following,
more general, circumstances.
(a) The loop accesses only one array and the offset is a linear function of

the loop induction variable. In the transformed code, every exit from
the inner loop implies that the next accessed address is in a different
page. When PAGESIZE is evenly divided by the stride, the number
of iterations of inner loop is constant: PAGESIZE divided by stride.
However, the number of inner-loop iterations varies if the PAGESIZE

is not evenly divided by the stride. In that case, variables start and end
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Fig. 6. Example code transformation of data ready(data) function.

Fig. 7. Loop transformation on sequential memory access with constant stride.

are used to control the iteration count for the inner loop by locating
the offset in the referenced page at the beginning or end of the inner
loop. Example code is shown in Figure 7. Start is calculated via modular
division of the first address by PAGESIZE; end is obtained via modular
division of the largest address by PAGESIZE for the last iteration and
by PAGESIZE for other iterations.

(b) The loop accesses n arrays with the same stride, and 2×n−1 is no larger
than the number of pages in the uncompressed region m. Figure 10
shows how a loop accessing arrays A, B, and C is transformed. The
numbers in the arrays correspond to virtual page indices. The original
loop carries out interleaved accesses to these arrays, from the top to the
bottom. The loop is divided based on the page boundaries in the array
in which a page boundary is first crossed. The arrows beside array C
indicate iterations of the transformed loop. The numbers to the right of
the arrows are the pages brought into the uncompressed region before
each iteration. For example, at the beginning of third iteration, pages
2, 8, and 14 are brought into the uncompressed region. Pages 7 and
13 should not be compressed because they will be accessed during the
second iteration. The dashed box in Figure 10 indicates all of the pages
accessed during one iteration. Clearly, regardless of the vertical position
of the box, it can overlap at most 2 × (n− 1) + 1 pages. Therefore, this is
the maximum number of pages required in the uncompressed region.

(c) If the loop accesses multiple arrays with different strides, only perform
transformation on the arrays that meet conditions (a) or (b).
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(4) Handle check hoisting. Hoisting handle checks is the process of replacing
multiple handle checks inside a loop with one handle check outside the
loop. This optimization requires that the total size of the accessed pages
is no larger than the size of the uncompressed region. It can be viewed as
prefetching pages before entering the loop and locking them in the uncom-
pressed region until an iteration of the loop finishes execution. The smallest
and largest addresses accessed for each memory object during one iteration
are obtained and the largest possible number of pages between them is
computed. Figure 4 gives an example of handle check hoisting. Figure 4(a)
is the original code for image convolution. Without handle check hoisting,
MEMMU requires (H − M + 1) × (W − M + 1) × (2 × M × M + 1) handle
checks. It can be decided at compile-time that the second inner loop (line 3),
which covers three rows of A and one row of B, is the largest loop that can
reside in the uncompressed region. Therefore, handle checks are hoisted to
the beginning of the second inner loop, as shown in Figure 4(b) line 3. This
eliminates at least (H−M +1)×(W −M +1)×(2×M ×M +1)−(H−M +1)×4
handle checks. Note that at most four pages may be covered in the second
loop, two for each array. To maximize performance while maintaining cor-
rectness, we start from the innermost loop, and expand outward until the
analyzed memory usage in the next loop cannot be accommodated in the
uncompressed region or we reach the outermost loop.

(5) Pointer dereferencing to reduce address translation. The purpose of the
pointer dereferencing optimization is related to that of strength reduc-
tion optimizations [Muchnick 1997]: replacing expensive operations with
less expensive operations. In particular, it replaces calls to write handle

and read handle functions that contain complicated operations for address
translation to pointer dereferencing with simple pointer computations. As-
sume the accessed virtual address is an affine function of a basic induction
variable i: a× i+b, a and b are constants. The physical address of the mem-
ory reference in question is phy addr = PT [(A + a × i + b)/PAGESIZE] +

(A+a× i +b)%PAGESIZE. PT[(A+a× i +b) computes the starting address
of the physical page, (A + a × i + b)%PAGESIZE computes the offset in the
page. Normally, this operation cannot be optimized by general strength re-
duction optimizations. However, if we know that the succeeding reference is
in the same page and the state of the page does not change between the ref-
erences, this operation can be reduced to phy addr = phy addr + a × i.diff,
where i.diff is the constant change for i during each iteration of the loop.
Therefore, pointer dereferencing is used after runtime handle check opti-
mization or loop transformation. During runtime handle check optimiza-
tion, each time a new page is accessed (i.e., inside the if statement) a base
pointer is computed; the following accesses in the same page dereference
the base pointer instead of referring to the page table. After loop transfor-
mation, before entering the inner loop, base pointers are computed, and
addresses accessed in the inner loop are computed by dereferencing the
base pointer. Figure 5(d) shows that this optimization scheme, which is
implemented in line 4, 6, and 7, can eliminate N − N/PAGESIZE ad-
dress translations. The pointer dereferencing optimization replaces calls

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 3, Article 23, Publication date: April 2009.



23:18 • L. S. Bai et al.

to the write handle and the read handle functions with direct access via a
pointer.

Each application may have a different set of effective optimizations, as shown
in Section 5.7. The following policy is followed by MEMMU to determine the
optimizations to use for a given application:

(1) Apply small object optimization during the instruction replacement pass
by leaving reads and writes of small data structures unchanged.

(2) Apply loop transformation to a loop if the referencing array index is a linear
function of the induction variable. Then apply pointer dereferencing.

(3) If the second step is not used for the application, then try handle check
hoisting.

(4) If neither the second nor third steps are used, and the loop only accesses a
single array sequentially, apply the runtime handle check optimization and
pointer dereferencing.

This policy implies a priority order on the proposed optimization techniques.
However, this selection order is a heuristic and may not be optimal. Each step
is provided in a separate compiler pass. Therefore, one might potentially run
the passes in another order to find out the optimal solution for a particular
application.

4.6 Delta Compression Algorithm

We developed a high-performance, lossless compression algorithm based on
delta compression for use in sensor network applications. This algorithm ex-
ploits the similarities between adjacent data elements. Despite its simplicity,
the algorithm has high performance and a good compression ratio for sensor
data in which adjacent samples are often correlated.

To design an appropriate compression algorithm for sensor data, the regular-
ities of the data must be well understood. For this purpose, we collected numer-
ous types of sensor data (e.g., sound, light, and temperature) from Crossbow
MICAz and TelosB sensor network nodes and analyzed their characteristics.
Intuitively, sensor data are likely to stay similar during a certain period of
time, and within a certain geographic range, hence showing high amounts of
temporal and spatial locality. For example, in sensor networks deployed for
seabird habitat monitoring [Polastre et al. 2004], sensor nodes may be placed
in petrel nests in underground burrows. The temperature and humidity sensed
from one sensor node usually changes smoothly during a day, except as a re-
sult of storms. In addition, the sensor data of temperature and humidity from
adjacent burrows are likely to be similar; these data are usually transmitted
within a cluster of nodes before they are sent to the base station. Thus, sensor
nodes commonly receive highly-redundant data.

A delta-based compression algorithm exploits regularity in data: The differ-
ence between two adjacent data elements (delta) usually requires fewer bits to
store than the original data [Engelson et al. 2000]. Our implementation of the
delta compression and decompression algorithms are presented in Figure 8.
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Fig. 8. Delta compression and decompression.

The algorithms are based on the observation that the majority of the deltas can
be stored within a predefined MAXBITS; if the delta cannot be stored within
MAXBITS, (i.e., there is a sudden change in sensed data) the raw data are
stored, and a MAGIC CODE is recorded to indicate this abnormality. The algo-
rithm also adapts to the compressibility of pages by means of early termination.
When the number of deltas that exceed MAXBITS is above a certain threshold,
causing the “compressed” page to exceed its original size, the algorithm termi-
nates and reports the compressed page size as zero, indicating that this page
is not compressed.

In order to identify the MAXBITS value that provides the best compression
ratio, we analyzed the sample sound data collected by the Crossbow MICAz
sensor node. Since the analog-to-digital converter (ADC) on the MICAz gener-
ates a 10-bit output, the compression algorithm reads in 2bytes (16bits) at a
time and computes the delta on a 2-bytes basis. Figure 9 shows that 95% of
the deltas can be represented using 6 bits. Therefore, in our implementation,
MAXBITS is set to six. Please note that this value may vary depending on the
underlying hardware of the sensor node (i.e., the bit width of the ADC).

4.7 Page State Preservation

The optimization techniques proposed in Section 4.5 improve performance by
eliminating runtime handle checks and address translations associated with
memory references to pages that have been brought into the uncompressed re-
gion. They depend on compile-time knowledge and assignment of page status.
However, in an event-driven system where an interrupt can preempt a task, an
interrupt handler can potentially cause the compression of a page that is being
used by a task. If the task resumes after the location of the page changes, an
error would occur. This makes the loop transformation and handle check hoist-
ing optimizations unusable. To resolve this problem, we lock pages for which
memory references are optimized in the uncompressed region. This is done by
introducing a 1-bit flag for each page in the LRU list to indicate whether it
is locked. Procedures lock handle and unlock handle are added to MEMMU
library to lock a page in the uncompressed region and release the lock. When
interrupt handlers can access memory objects outside the reserved region, loop
transformation and handle check hoisting need to replace check handle with
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Fig. 9. Histogram of sensor data delta values.

Fig. 10. Example of loop transform on multiple arrays.

lock handle and insert unlock handle after exiting from the optimized inner
loop. For example, in Figure 5(c) and (d), check handle(pnum) in line 3 will be
replaced with lock handle(pnum), and unlock handle(pnum) will be inserted
after line 6 and line 8, respectively. In TinyOS, tasks do not preempt each
other, so the page locking strategy is only required when interrupts can cause
data to be moved between the memory regions. In other words, if after applying
small object optimization and the ring buffer technique, interrupt handlers only
access memory objects in the reserved region, all the optimization techniques
discussed in Section 4.5 will still be effective. The page-state preservation strat-
egy can be generalized to multithreaded system by locking pages currently used
by each thread. However, the concurrent execution of many threads accessing
different pages may degrade the memory-expansion ratio by requiring a larger
uncompressed region to allow pages simultaneously used by threads to stay
uncompressed.
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Fig. 11. Overview of technique.

4.8 Summary

Figure 11 illustrates the procedure for using the MEMMU system to auto-
matically generate an executable from mid-level or high-level language source
code such as ANSI C. First, the memory requirements of the application are
analyzed. If these requirements are smaller than physical RAM, compression
is not necessary and therefore no transformations are performed. Otherwise
the application code is compiled to byte code by the LLVM compiler. After that,
memory load and store instructions are replaced with calls to our handle access
functions (i.e., check handle, read handle, and write handle). Other transfor-
mations are performed to enable the optimizations described in Section 4.5.
A call to a memory initialization routine is also inserted at the beginning of
the byte code. The modified byte code is then converted back to high-level lan-
guage via the LLVM back-end. Finally, the modified application is compiled
with the extended library containing our handle access functions to generate
an executable.

In the memory initialization routine, physical memory is divided into three
regions. The size of each region is computed based on the application memory
requirement and the estimated compression ratio of MEMMU (i.e., the average
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compression ratio for the many pages of data that may be in use at any point in
time). Since the runtime data compression ratio cannot be accurately decided at
compile-time, it is possible for the runtime compression ratio to be worse than
the predicted compression ratio, causing execution to stop when both memory
regions are full. Therefore, it is suggested that users determine the compression
ratio based on sample data of their application and set the MEMMU compres-
sion ratio appropriately. This process could potentially be automated by running
the selected compression algorithm on sample data sets.

For any compression algorithm, it is possible to construct an input that will
result in a compression ratio greater than 1. Similarly, given any predicted
application average compression ratio, it is possible to construct a sequence of
inputs on which compression will exceed the ratio. The frequency of encounter-
ing such a sequence of inputs in the field depends strongly on the application.
For many applications, such an event will be rare. For example, the compression
ratio for individual pages of the vibration data and temperature data shown
in Section 5.8 never exceed 78.1% and 44.5%, respectively, during 6 months of
measurement. Section 5.8 also shows that when the estimated compression ra-
tio is set to 1.05 × the average-page compression ratio, this results in a very low
probability of memory exhaustion for this application: 0.38% or 5.5 × 10−7%
every 30 minutes. Although it is important that the probability of memory
exhaustion be low, we believe that it need not be zero in many applications.
For example, if this probability is orders of magnitude lower than that of node
hardware failure [Szewczyk et al. 2004], its impact on system reliability will
be negligible. If an application required zero probability of memory exhaus-
tion, but the designers still want the functionality and ease-of-design benefits
MEMMU can bring, it would be possible to migrate data to secondary storage
in the rare event of memory exhaustion (e.g., by using the technique proposed
by Choudhuri and Givargis [2005]). Combined with MEMMU, this would elim-
inate the risk of memory overuse at the cost of extremely-rare performance
penalties when secondary storage must be used.

In our experiments, MEMMU is tested on TelosB motes running TinyOS [Gay
et al. 2005]. TinyOS and its applications are written in nesC [Gay et al. 2003].
NesC is an extension to the C programming language that supports the struc-
ture and execution model of TinyOS. Ncc is the NesC compiler for TinyOS.
TinyOS itself does not support dynamic memory allocation, so there are only
stack and global variables in the nesC program; this simplifies analysis of ap-
plication memory requirements.

LLVM does not have a nesC front-end. As a result, one of three possible flows
may be used. In the first, a mote development environment based on ANSI C,
such as MANTIS OS, may be directly used with LLVM. In the second, the ANSI
C computation-intensive portion of the application is manually extracted from
the nesC code, provided to LLVM for transformation, and reinserted in the nesC
code before compilation with ncc. We used this approach for the experiments
presented in Section 5. However, we have subsequently developed a fully au-
tomated flow. First, the nesC program is transformed to C by ncc. Then the C
program is transformed to byte code by llvm-gcc and MEMMU compiler passes
are applied. Finally, the LLVM C-back-end transforms the byte code back to a
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C program, and the C program is compiled to an executable by ncc. This flow is
complicated by the fact that ncc inserts inline assembly, which LLVM C-back-
end does not yet support. We have, therefore, developed a script to temporarily
associate inline assembly with dummy function calls, permitting restoration
after LLVM transformation passes.

5. EXPERIMENTAL RESULTS

This section presents the results of evaluating MEMMU using five represen-
tative wireless sensor network applications. These benchmarks were executed
on a TelosB wireless sensor node. The TelosB is an MMU-less, low-power, wire-
less module with integrated sensors, radio, antenna, and an 8MHz Texas In-
struments MSP430 microcontroller. The TelosB has 10KB RAM and typically
runs TinyOS. The benchmarks are tested with three system settings: running
the original applications without MEMMU, with an unoptimized version of
MEMMU, and with an optimized version of MEMMU. Four metrics were evalu-
ated: average power consumption, execution time, processing rate, and memory
usage. We measured total memory usage, memory used by MEMMU, and di-
vision between memory regions. Processing rate is defined as application data
size divided by execution time. Power measurements were taken using a Na-
tional Instruments 6034E data acquisition card attached to the PCI bus of a
host workstation running Linux. Power was computed based on the measured
voltage across a 10� resistor in series with the power supply. The average power
of duty cycle-based applications is calculated using the following equation.

Paverage =
P active × t active + P idle × t idle

t active + t idle

(2)

All of LLVM’s optimizations are turned off to ensure all the overheads and sav-
ings are entirely due to MEMMU. The experimental results show that, with the
exception of the image convolution benchmark, the execution time overheads
of all other benchmarks are below 10%. In Sections 5.1–5.5, we will describe
each benchmark and discuss the corresponding results in detail.

5.1 Sound Filtering

The first example application is sound filtering. When the hardware timer peri-
odically fires, the mote starts one-dimensional filtering on collected audio data.
The MSP430 microcontroller automatically puts itself into a low-power mode
when the task stack is empty and wakes up when the next timer event arrives.
As shown in Figure 12, the power waveform is similar to a square wave. For
this benchmark, we assume fixed application and input data sizes (buffer sizes)
and compare the memory usage to determine the amount of memory saved by
using MEMMU.

Table I shows results for this benchmark when running under three sys-
tem settings. The memory reduction achieved by MEMMU is 9,935 − 7,243 =

2,692 bytes, which is 27% of the original memory requirement. The saved mem-
ory is available to store other data, which may be larger than 2,692 bytes as
a result of compression. For this benchmark, small object optimization, loop
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Fig. 12. Power consumption of the sound-filtering benchmark using three settings.

Table I. Filtering Benchmark

RAM Buffer MEMMU Comp. Uncomp. Proc. Active Average
usage size usage region region time power power

(B) (B) (B) (B) (B) (s) (mW) (mW)

Orig. 9,935 9,728 0 0 0 1.24 6.77 3.94
Unopt. 7,243 9,728 518 3,840 2,560 2.31 6.97 5.92

Opt. 7,243 9,728 518 3,840 2,560 1.35 6.80 4.27

Table II. Overhead of MEMMU Functions

Function name Compress Decompress Swap in Swap out Check handle

Percentage of overhead (%) 67.07 0 17.32 15.44 0.17

transformation, and pointer dereferencing were applied. The processing time
and active power consumption overheads of unoptimized MEMMU are 86.3%
and 3.0%, while after optimization, the overheads are reduced to 8.9% and
0.4%, respectively. Figure 12 depicts the power consumption under the three
system settings. According to Equation 2, there are two causes of increased
average power consumption. First, the mote stays in active mode longer when
MEMMU is used. Second, active power consumption increases slightly as a
result of MEMMU’s computations.

Table II shows the performance overhead from calling MEMMU functions
when the optimized version of MEMMU is used. This breakdown in perfor-
mance overhead was determined by sampling the program counter at a period
of 100Hz during application execution using these data to compute the percent-
age of execution time spent in each function. Over half of the overhead comes
from compress; 17.32% and 15.44% may be attributed to swap in and swap out,
which contain the instructions to search for free pages and update the page list.
Check handle calls swap in and swap out if the checked page is compressed and
no free page in the uncompressed region is available. Swap in calls swap out if
there is no space in the uncompressed region. Swap out calls compress to com-
press a victim page. Note that decompression is very efficient. Therefore, the
overhead from decompression is close to 0.

We also use this benchmark to evaluate the changes in performance as the
memory required by the application increases (i.e., as the memory expansion
ratio of MEMMU increases). Figure 13 shows the increase in performance (pro-
cessing rate) as a function of data size in the filtering benchmark using the
optimized version of MEMMU. The total physical memory usage stays con-
stant. The left-most point shows the base case, in which the physical memory
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Fig. 13. Relation between performance and application data size.

Fig. 14. Energy overhead of MEMMU as a function of duty cycle.

is sufficient to run the application. In this case, MEMMU is not used. Each of
the other points in the figure corresponds to an optimal memory division that
minimizes the performance overhead, while meeting the memory requirement.
The results show that the performance penalty stays almost constant, despite
increasing application data size. Therefore, even though a larger compression
region is needed as application data sets grow, the performance overhead of
MEMMU is fairly stable.

5.2 Image Convolution

Our second example application is a convolution algorithm in which a large
matrix is convolved with a 3 × 3 coefficient kernel matrix. Note that 2-D convo-
lution is used for graphical images. In order to permit consistent input to allow
fair comparisons for each test case, the input images were generated by scaling
the same image to different sizes; a gray-scale image of a cloudy sky was used.
The input images were transferred to the mote via USB. Table III compares the
input and output image sizes, RAM usage, processing rate, execution time, and
average power consumption of the benchmark application under three settings.
The results indicate that using the same amount of physical RAM, MEMMU
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Table III. Convolution Benchmark

RAM Input Output MEMMU Comp. Uncomp. Proc. Proc. Active
usage image image usage region region time rate power

(B) (B) (B) (B) (B) (B) (s) (B/s) (mW)

Orig. 9,739 4,900 4,624 0 0 0 1.50 6,349 6.57
Unopt. 9,739 6,084 5,776 638 6400 2304 4.47 2,653 6.82

Opt. 9,739 6,084 5,776 638 6400 2304 2.88 4,118 6.75

Table IV. Light Sampling Benchmark

RAM Buffer MEMMU Comp. Uncomp. Proc. Proc. Active
usage size usage region region time rate power

(B) (B) (B) (B) (B) (s) (B/s) (mW)

Orig. 9,474 9,040 0 0 0 4.39 2,059 57.44
Unopt. 9,474 13,200 603 5,120 3,328 6.53 2,021 58.61

Opt. 9,474 13,200 603 5,120 3,328 6.47 2,040 58.11

allows the application to handle images that require more memory than is
physically available: The unmodified TelosB can only handle an input image
smaller than 4.8KB, while MEMMU allows the mote to process images that
are 25% larger (6KB). Since the delta compression algorithm is less efficient
for 8-bit images, the compression ratio in this case is 62.4%. We believe a lossy
compression algorithm designed for image data would permit a higher usable
memory improvement ratio.

Unfortunately, the increase in image size imposes a cost. Using MEMMU
results in a 58.2% decrease in processing rate and 3.8% increase in power con-
sumption. After applying small object optimization and handle check hoisting,
the processing rate penalty was reduced to 35.1% and the power consumption
penalty was reduced to 2.1%. Please note that the image convolution bench-
mark was the only benchmark for which MEMMU had a performance over-
head higher than 10% after optimization. The performance penalty reduction
is smaller compared to other applications because pointer dereferencing cannot
be used to reduce the penalty caused by address translation.

5.3 Data Sampling

The third example application is sensor data sampling. In this application, the
mote senses the light level every 1ms and stores the data to a buffer. When the
buffer is full, its contents are sent via the wireless transmitter. Small object opti-
mization, handle check hoisting, and pointer dereferencing were applied to this
benchmark. Table IV shows that with MEMMU, the buffer size is increased by
46.0% without increasing physical memory usage. The average power consump-
tion overheads are 2.0% and 1.1% for unoptimized and optimized MEMMU, re-
spectively. The processing time and processing rate measure the time and speed
of transmitting the data in the buffer. The processing rate is reduced by 1.8%
with unoptimized MEMMU. Optimizations reduced the performance overhead
to 0.9%.
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Table V. Covariance Matrix Computation Benchmark

RAM Buffer MEMMU Comp. Uncomp. Proc. Proc. Active
usage size usage region region time rate power

(B) (B) (B) (B) (B) (s) (B/s) (mW)

Orig. 9,643 9,430 0 0 0 0.47 19,895 5.22
Unopt. 9,643 13,056 602 5,120 3,584 1.44 9,067 5.40

Opt. 9,643 13,056 602 5,120 3,584 0.72 18,133 5.36

Table VI. Correlation Computation Benchmark

RAM Signal MEMMU Comp. Uncomp. Proc. Proc. Active
usage size usage region region time rate power

(B) (B) (B) (B) (B) (s) (B/s) (mW)

Orig. 6,669 6,460 0 0 0 7.98 810 5.34
Unopt. 6,669 9,728 543 4532 1536 28.3 344 5.36

Opt. 6,669 9,728 543 4532 1536 13.00 748 5.35

5.4 Covariance Matrix Computation

The fourth example application is covariance matrix computation. This appli-
cation is useful in statistical analysis and data reduction. For example, it is
the first stage of principal component analysis. Each vector contains a number
of scalars with different attributes (e.g., different types of sensor data). Small-
object optimization, runtime handle check optimization, and pointer derefer-
encing were applied to this benchmark. Table V shows that MEMMU permits
more vectors to be processed at a single time: the buffer size increases by 38.5%.
Although the performance penalty of unoptimized MEMMU is large (the pro-
cessing rate is decreased by 54.4%), optimizations reduce it greatly. The pro-
cessing rate using the optimized version of MEMMU is only 8.9% lower than
the original application. The average power consumption penalties of both un-
optimized and optimized MEMMU are below 4%.

5.5 Correlation Calculation

The last example application performs sound propagation delay estimation
based on correlation calculation. This application is used to determine the rela-
tive locations of sensors. Small object optimization, runtime handle check opti-
mization, and pointer dereferencing were applied to this benchmark. As shown
in Table VI, MEMMU increases the size of the input data by 50.6%. Although
the unoptimized version of MEMMU reduces the processing rate by 57.5%, the
optimized MEMMU reduces the processing rate by only 7.6%. The penalties to
average power consumption of both unoptimized and optimized MEMMU are
no more than 0.5%.

5.6 Overhead of Code Size

Table VIII shows the increase in code size for each benchmark. On average, ex-
ecutables generated with MEMMU transformations are 30% larger than those
directly compiled from the original source code. Nevertheless, the code size
increase does not lead to flash memory size increase in current architectures
because most sensor network nodes provide sufficient flash memory (e.g., the
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Table VII. Comparison of Optimization Techniques

Run time of benchmarks with different MEMMU optimizations (s)
Runtime Handle Runtime handle Loop trans.

Unopt. handle check Loop check & & pointer
Benchmark MEMMU check hoisting trans. pointer deref. deref.

Filtering 1.84 1.25 1.30 1.18 1.20 1.12
Sampling 5.39 5.38 N.A. N.A. 5.37 N.A.

Correlation 21.11 22.50 N.A. 22.53 15.20 12.94
Covariance 1.12 0.86 0.83 N.A. 0.53 N.A.
Convolution 2.88 2.63 1.97 N.A. N.A. N.A.

Table VIII. Code Size Overhead Introduced by MEMMU

Code size Filtering Convolution Sampling Covariance Correlation

Original (B) 16,020 16,725 15,282 16,400 16,919
With MEMMU (B) 20,888 21,882 18,630 21,631 22,019

Overhead (%) 30.4 30.8 21.9 31.9 30.1

TelosB has 48KB of program flash memory and the MicaZ has 128KB of pro-
gram flash memory). Therefore, the overhead of code size can be neglected
unless the amount of code memory becomes a tight constraint. This is not ex-
pected in the near future due to the high density of floating-gate technologies
such as EEPROMs and flash memory, relative to SRAM.

5.7 Comparisons on Different Optimization Techniques

To understand the relative benefits of the proposed optimization techniques, we
compare the improvement in performance by applying these approaches indi-
vidually and in combination to five benchmarks. Table VII shows the execution
time of the applications with unoptimized MEMMU and MEMMU augmented
with different optimization techniques. “N.A.” indicates that an optimization
technique cannot be applied to the corresponding benchmark. For instance,
loop transformation cannot be used for the sensor data sampling application
because the program is an implicit loop that executes the next iteration only
when a hardware-triggered event occurs; there is no explicit loop structure
in the code that can be transformed. Note that the runtime handle check op-
timization increases the execution time of the unoptimized MEMMU for the
correlation computation benchmark because this application carries out inter-
leaved access to two arrays. Generally, loop transformation with pointer deref-
erencing outperforms other optimization techniques because this combination
can achieve the largest reduction in the number of handle checks and address
translations.

5.8 Compression Ratio Estimation and Probability of Memory Exhaustion

As discussed in Section 4.8, the division between the compressed and the un-
compressed regions is based on an estimated compression ratio. Underesti-
mating the compression ratio will result in failure due to memory exhaustion.
We will now use a statistical technique to analyze the probability of running
out of memory for a real-world data set. The input data are vibration samples
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Fig. 15. Aggregated compression ratio analysis on vibration data.

gathered from a wireless sensor network deployed in a building for infrastruc-
ture health monitoring [Dowding et al. 2005]. We divide the data into 256-byte
pages and compress them with the delta compression algorithm, described in
Section 4.6. The probability density function (PDF) of the page compression
ratios is shown in Figure 15(a). The average compression ratio of an individual
page is 64.7% and the standard deviation is 0.058. For a compressed region
containing 30 compressed pages, we derive the average compression ratio by
convolving the PDF of the page compression ratio by the number of compressed
pages. Figure 15(b) shows the PDF of the aggregated compression ratio of pages
in the compressed region. It still has an average of 64.7%, but with a much
smaller standard deviation: 0.01. The standard deviation of the aggregated
compression ratio decreases as the number of compressed pages increases due
to the Law of Large Numbers. If we set the target compression ratio to 1.05 ×

the average compression ratio of individual pages (i.e., 67.9%), the probability
of the aggregated compression ratio exceeding our target compression ratio ev-
ery time the data in the compressed region change is 0.38%. This probability
drops to 1.74 × 10−6% if we set the target compression ratio to 1.1 × the average
compression ratio of individual pages. If we use the data sampling period, 30
minutes, to approximate the period of updating the compressed region, Mean
Time To Failure (MTTF) can be computed by dividing the sampling period by the
failure probability. The MTTF increases from 131.6 hours to 2.87 × 107 hours
when we slightly increase target compression ratio from 67.9% to 71.2%. The
same analysis is done with temperature data gathered from the same system.
Figure 16 shows the results. The average compression ratio for an individual
page is 38.6% and the standard deviation is 0.009. The standard deviation of
the average compression ratio is 0.002. The probability of running out of mem-
ory every 30 minutes is 5.5 × 10−7%, when the estimation compression ratio is
1.05× the average. The MTTF is 9.1 × 107 hours.

This analysis is based on the assumption that compression ratios of pages
in the compressed region are independent. Computing the correlation among
pages in the compressed region is challenging and complex due to the inter-
action among sampling and computation. However, we can get a fairly con-
servative estimate of the correlation by observing that, for most applications,
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Fig. 16. Aggregated compression ratio analysis on temperature data.

adjacent pages of sampled data have greater compression correlation than those
that are separated by more time. We computed the correlation of compression
ratios of neighboring pages, and they are quite low (0.125 and 0.122) for the
vibration and temperature monitoring applications.

5.9 Summary

To summarize, MEMMU reduces the physical memory requirements of appli-
cations by 27% or expands usable memory by up to 50%. The performance
overhead of unoptimized MEMMU ranges from 57.5% to 86.3%. For four of the
five benchmarks, optimization techniques reduce the performance overhead to
below 10%. However, the image convolution application is an exception. Its
performance overhead after optimization is 35.1% because the pointer deref-
erencing optimization technique cannot be used. There is a trade-off between
memory expansion proportion and performance. Larger usable memory is ob-
tained by using a larger compressed memory region, but this results in more
compression/decompression and data migration operations, reducing speed.

Please note that we were quite conservative in our evaluation of MEMMU.
The original goal of MEMMU is to expand memory allowing applications re-
quiring more memory than physically present to still run. However, if we were
to only test such large benchmarks, the outcome would often be “crash” for a
system without MEMMU and “finish execution” for a system with MEMMU.
Such an evaluation scheme would not illustrate the impact of MEMMU on per-
formance. Therefore, we reduced the data set size of the application running
without MEMMU and compared the data processing rates of the smaller ap-
plications with those of more demanding applications running with MEMMU.

The energy consumption overhead imposed by MEMMU depends on the duty
cycle and communication activity of the applications. Duty cycle is the fraction
of time that the wireless sensor mote is active. An upper-bound on the energy
overhead can be derived from our average active power overhead and runtime
overhead. This upper-bound is 12%. Many real-world applications have duty cy-
cles lower than 10% in order to maximize the life time of the system [Hartung
et al. 2006; Tolle et al. 2005]. In this case, the energy consumption overhead
of MEMMU decreases as the system spends more time in idle mode. Note that
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the most direct alternative to using MEMMU is using a sensor network node
with more RAM. This may be impossible, due to the limited types of nodes
available. However, even if it is possible, increasing memory quantity increases
its power consumption. An analysis with CACTI [Tarjan et al. 2006] indicates
that for a 180nm process, doubling the amount of memory from 10KB to 20KB
increases read and write energy consumption by 50% and 30%, respectively.
Leakage power is also increased, although leakage will only be a serious prob-
lem if future sensor network node processors are fabricated using finer process
technologies such as 90nm or 65nm. The power consumption during wireless
data transmission is approximately 10× as high as when the radio is turned off
for TelosB and 3.8× as high for MicaZ [Polastre et al. 2005]. For applications
that require periodic data transmission to a base station, or constant data ex-
change among nodes, the energy overhead of MEMMU will be negligible. Given
8% runtime overhead and 4% computation power overhead, Figure 14 shows
the energy overhead of MEMMU as a function of duty cycle assuming 2% of the
time is spent transmitting. For applications with duty cycles lower than 10%,
MEMMU has an energy overhead smaller than 4%.

6. CONCLUSIONS

We have described MEMMU, an efficient software-based technique to increase
usable memory in MMU-less embedded systems via automated online compres-
sion and decompression of in-RAM data. A number of compile-time and runtime
optimizations are used to minimize its impact on the performance and power
consumption. Different optimization approaches may impact performance in
different ways, depending on application memory reference patterns. An ef-
ficient delta-based compression algorithm was designed for sensor data com-
pression. MEMMU was evaluated using a number of representative wireless
sensor network applications. Experimental results indicate that the proposed
optimization techniques improve MEMMU’s performance and that MEMMU is
capable of increasing usable memory by 39%, on average, with less than 10%
performance and power consumption penalties for all but one application. We
have released MEMMU for free academic and nonprofit use [MEMMU].
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