
A

Static NBTI Reduction Using Internal Node Control

DAVID R. BILD and ROBERT P. DICK, University of Michigan

GREGORY E. BOK, Nico Trading
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selection problem is NP-complete and present a linear-time heuristic that can quickly determine near-optimal placements.

This near-optimality is confirmed by comparing results for small benchmarks against optimal solutions from a mixed integer

linear programming formulation of our problem. We evaluate the heuristic on the ISCAS85 benchmarks and the Synopsys

DesignWare Library. Our heuristic reduces static NBTI-induced delay over a ten year period by 30–60% and can reduce total
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1. INTRODUCTION

Due to the scaling trends of CMOS technology, Negative Bias Temperature Instability (NBTI) is
emerging as a significant reliability concern for digital circuits. NBTI, which in current technologies
only significantly affects PMOS transistors stressed with a negative bias (Vgs = -Vdd), manifests
itself as an increase in threshold voltage that reduces switching speed [Alam and Mahapatra 2005].

At the atomic level, NBTI is caused by an electric-field-dependent disassociation of Si-H bonds at
the Si/SiO2 interface. The hydrogen diffuses into the gate oxide in a temperature-dependent reaction,
leading to the formation of interface traps, which are responsible for an increase in threshold voltage.
These mechanisms lead to an interesting recovery effect; when the stress is removed (Vgs = 0), the
reaction reverses, with some of the hydrogen diffusing back towards the interface and bonding with
the Si [Alam and Mahapatra 2005].
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Under constant stress, static NBTI effects quickly lead to performance degradation. However,
thanks to the previously described recovery effect, for circuits experiencing typical switching ac-
tivity, the negative impacts of dynamic NBTI degradation take longer to accumulate. For a 70 nm
Berkeley Predictive Technology Model, Paul et al. predict ∼10% increase in delay after 10 years of
operation for the ISCAS85 benchmarks [Paul et al. 2005; Brglez and Fujiwara 1985].

During normal circuit operation, standard switching activity causes alternating stress on the
PMOS transistors, and thus degradation is dominated by dynamic NBTI. However, many designs
employ sleep or clock-gating techniques in order to reduce dynamic power consumption. In such
schemes, idle functional units are put in standby or sleep mode by having their inputs frozen or their
clock transitions gated. This prevents extraneous transitions, reducing dynamic power consump-
tion. However, with the inputs stable for long periods of time, PMOS transistors with low inputs
may degrade due to static NBTI effects. In this scenario, static NBTI optimization is relevant.

In this paper, we propose and evaluate an internal node control technique to limit the effect of
this static NBTI stress. Internal node controls can be inserted at the outputs of individual gates in
order to force them to specific values during standby. Using this technique, static NBTI stress for
a PMOS transistor can be eliminated, for example, by forcing the output of the preceding gate to
Vdd. However, internal node control imposes a timing penalty; the additional circuitry required for
node control introduces a small delay. NBTI degradation on a timing-sensitive (i.e., critical path)
transistor can be eliminated by forcing non-critical path gates to circuit structure dependent values,
such that a low value is propagated to the NBTI-sensitive transistor.

We show that the problem of solving for the optimal set of insertion points leading to the minimal
degradation in circuit delay after some elapsed time is NP-complete and formulate it as a mixed
integer linear program. We present a linear-time heuristic that can quickly determine near-optimal
placements. This near-optimality is confirmed by comparing results for small benchmarks against
optimal solutions from an mixed integer linear programming formulation of our problem. We eval-
uate the heuristic on benchmarks from the ISCAS85 set and the Synopsys DesignWare Library. Our
heuristic reduces static NBTI-induced delay over a ten year period by 30–60% and can reduce total
path delay by an average 9.4% when NBTI degradation is severe. The INC placement and sleep
signal routing require only a 1.6% increase in area. PBTI, a similar mechanism affecting NMOS
transistors, is becoming a significant problem as well, so we further show that our INC heuristic
extends to the simultaneous reduction of NBTI and PBTI stresses, with similar results.

This paper is organized as follows. In Section 2, we describe models for the NBTI degradation
process and discuss related techniques for the mitigation and prevention of static NBTI effects.
In Section 3, we present our model of internal node control for static NBTI control and prove
that the problem is NP-complete. In Section 4 we describe the mixed integer linear programming
formulation for its optimal solution. In Section 5, we present the linear-time heuristic and give the
experimental results for both the ISCAS85 and DesignWare benchmarks. In Section 7 we evaluate a
multiple IVC vector extension to INC. Finally, in Section 8, we discuss the sensitivity of the benefits
of INC to both primary output slack distribution and circuit length.

2. BACKGROUND

This section first describes models for the NBTI physical degradation mechanism and explains
the model used in this work. It then describes related work on techniques that compensate for or
mitigate the degradation.

2.1. Overview of NBTI Models

Negative Bias Temperature Instability (NBTI) is a degradation mechanism affecting PMOS transis-
tors, which results in increased threshold voltage and thus slower switching speeds. The increase
in threshold voltage is generally thought to be caused by the generation of interface traps and ox-
ide charges in PMOS transistors under negative bias (Vgs = -Vdd). These interface traps, dangling
bonds, and oxide charges are attributed to an electric-field-dependent disassociation of Si–H bonds
at the Si–SiO2 interface. In the reaction-diffusion model, the currently accepted model for this mech-
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anism, the interface trap generation (reaction) results in free hydrogen that diffuses into the oxide
(diffusion) [Schroder 2007]. Both the reaction and diffusion regimes limit the rate of degradation.
The specific diffusion species (H, H2, or a mixture of the two) is not currently known, meaning that
there is still debate about the accuracy of the various diffusion models. When the stress is removed,
the hydrogen diffuses back towards the interface and can re-bond with the Si. This reversal of the
mechanism is known as the recovery effect. The recovery effect complicates attempts to measure
NBTI degradation because some of the degradation recovers between the time that the stress is
removed and the time that measurements are taken. Several recent review papers provide detailed
explanations and discussions of these models [Alam and Mahapatra 2005; Schroder 2007; Stathis
and Zafar 2006; Huard et al. 2006; Schroder and Babcock 2003].

The NBTI models mentioned in the preceding papers are useful for understanding the physical
mechanisms that lead to the degradation, but are too detailed, and thus too slow, for use in circuit-
level analysis. Cycle-based, transistor-level simulation is too time-consuming for use in reliability
analysis tools or reliability-aware CAD algorithms. Consequently, several researchers have devel-
oped analytical models for predicting NBTI degradation [Paul et al. 2005; Wang et al. 2007; Vat-
tikonda et al. 2006; Bhardwaj et al. 2006; Kumar et al. 2006; Kang et al. 2007; Saluja et al. 2008].
As mentioned in the previous paragraph, when the stress on a transistor is removed, the reaction
reverses and thus some of the degradation is also reversed. This recovery effect is so pronounced
for gates experiencing rapid switching that most analytical models differentiate between static and
dynamic stress. Static stress, as might occur in an idle functional unit and with which we are con-
cerned in this work, occurs when the transistor is stressed continuously for a long period of time.
Dynamic stress occurs when the stress is repeatedly and alternately applied, as would be common
in an operating functional unit.

Much of the analytical literature focuses on dynamic stress. Although models for static stress
exist, due to the difficulties in obtaining experimental data for extended-period static stress, they
are not accurate for long time periods. These models employ empirical constants that are found by
fitting against experimental data. This data is only available for short timescales (e.g., days) and
consequently the models fail to fully capture the limiting processes that slow the degradation rate
over time, resulting in overestimation of the stress when extrapolated to periods of 5–10 years. The
models can be used to determine the evolution of NBTI over time (i.e., the shape of the NBTI
degradation versus time relationship) by fixing the amount of degradation after some fixed period
(e.g., 10% increase in Vth after ten years) and solving for fitting parameters that match these two
boundary conditions (the other being the trivial 0% increase in Vth after zero years). In this work,
however, we are concerned with the aggregate static degradation (i.e., total change in delay after the
rated lifetime of the part) and thus employ the following model based on degradations reported in
the literature.

2.2. Aggregate Static NBTI Model

Our static NBTI model assumes a fixed percentage increase in delay for each gate stressed in idle
mode. We note three properties of our particular problem that make this simplification appropriate,
but first point out its primary advantage. Our results are parametrized in this one metric, so readers
with differing (possibly proprietary) NBTI models can easily estimate the impact of INC for their
processes without actually running our proposed algorithm with their models. This aggregate model
is appropriate, instead of one that explicitly models time, because our problem formulation has the
following properties.

(1) Our technique targets and reduces static NBTI stress only, so we need not model dynamic stress.
The performance of INC is independent of any dynamic stress.

(2) Our technique targets and reduces static NBTI stress in idle mode only. In our problem formu-
lation, signal inputs in idle mode are fixed at design time to control implementation overhead.
Thus, our static NBTI model, unlike one for dynamic stress, does not need to incorporate signal
probabilities; all nodes have fixed idle-mode values at design time.
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(3) The evolution of static NBTI stress over time is unimportant; thanks to its non-decreasing na-
ture, the aggregate Vth degradation at the rated lifetime of the part is the relevant metric.

These three properties together imply that we need not explicitly model the static stress as a func-
tion of active-to-standby ratio, input signal probabilities, or time, but can instead assume a fixed
degradation per stressed gate at the end of our 10-year target lifetime.

10-year degradation rates reported in the literature vary widely, in some cases due to the differ-
ing NBTI-sensitivities of various processes (e.g., high-k dielectrics or nitridization amounts affect
NBTI degradation rates [Li et al. 2004]) and in others due to the difficulty of estimating the degra-
dation rates for long time durations (e.g., the correct time exponent in the R-D model is still de-
bated [Schroder 2007]). Thus, we evaluate our technique at two different degradation percentages,
spanning the reported values. The first value, the lower bound, is a 10% increase in delay for each
stressed gate [Paul et al. 2005; Abella et al. 2007], which translates to an average 3.3% increase in
critical path delay for our benchmarks1. The second value, the upper bound, is a 50% increase in
delay for each stressed gate based on the average degradation reported over a set of representative
benchmarks [Wang et al. 2010], which translates to an average 16.3% increase in critical path delay
for our benchmarks.

The performance of our technique, measured as percent reduction in NBTI-induced delay, im-
proves as the NBTI degradation percentage increases. Thus, the results for the 10% stressed-gate
degradation assumption are conservative; larger degradation percentages result in greater degrada-
tion reduction. However, the impact of NBTI on total path delay is small (3.3% increase) so even
full mitigation has limited practical value. Under the 50% stressed-gate degradation assumption,
total path delays are significantly impacted (16.3% increase), so those results illustrate the prac-
tical value of the INC technique for process technologies and temperatures for which NBTI is a
significant problem. Section 6 presents additional explanation and full experimental results for both
degradation values.

2.3. Related Work

Several techniques have been proposed for dealing with the impacts of NBTI. These methods gen-
erally fall into two groups: those that simply compensate for the NBTI-induced timing degradation
and those that actively attempt to decrease and mitigate the degradation. In the following two sec-
tions, we summarize and discuss existing work of both types.

2.3.1. Compensating Techniques. Methods of this class, which includes guard banding, gate siz-
ing, Vdd tuning, and Vth tuning, have been used in industry to compensate for timing degradation.
Such techniques compensate for the effects of NBTI at the expense of timing, area, or power because
they do not reduce the NBTI-induced degradation.

In guard banding, the maximum clock frequency of a circuit is artificially limited, often by as
much as 10%, to compensate for possible future NBTI-induced delay [Abella et al. 2007]. This en-
sures that the processor will not fail due to NBTI degradation by sacrificing a significant percentage
of the initially-available performance. In gate sizing, the sizes of the transistors are increased, thus
increasing the initial speed of the circuit, so that the NBTI-degraded circuit will still meet the tim-
ing requirements. However, this technique imposes an 8%–12% area overhead and increases power
consumption [Vattikonda et al. 2006]. Similarly, in Vdd and Vth tuning, the voltage of the circuit
is adjusted to increase the initial operating speed [Vattikonda et al. 2006]. This technique has two
problems. First, increasing the operating voltage increases the rate of NBTI degradation, requiring
a further increase of Vdd. Second, increasing operating voltage increases the power consumption of
the circuit. Techniques that minimize the NBTI degradation are needed.

1 Not all gates on the critical path are stressed; only the stressed subset incur the 10% increase in delay resulting in a
substantially smaller increase in total path delay.
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2.3.2. Mitigating Techniques. Power gating and clock gating methods have been used to reduce
the power consumption of idle functional units [Tsai et al. 2004]. In power gating, a sleep transistor
that can be turned off to prevent any static or dynamic power consumption is added between the
power supply and the functional unit. In clock gating, the clock input to the idle functional unit is
disabled to prevent dynamic power consumption. This is often combined with Input Vector Control
(IVC) to reduce the leakage power consumption. Leakage power consumption is dependent on the
state of the inputs to a gate, and thus in IVC, the functional unit inputs are chosen to minimize the
total leakage.

Both techniques could be used for NBTI degradation reduction. Power gating both reduces leak-
age power and eliminates NBTI degradation, but compared to clock gating and IVC, suffers from
increased wake-up latency and must be activated for a minimum number of cycles in order to save
energy. Thus, clock-gating methods are more suitable for short sleep durations.

Traditional power gating architectures had a wake-up latency that was orders of magnitude longer
than for clock-gated designs [Tsai et al. 2004]. Recently, Calimera et al. proposed a method for se-
quentially activating optimally-sized sleep transistors to limit the current draw during wake-up. They
show that single-cycle reactivation is possible while limiting the wake-up current of a functional unit
to its maximum active current and claim that this avoids ground bounce problems [Calimera et al.
2009]. This certainly prevents dangerous IR-drops that could disrupt neighboring units, but does
not necessarily prevent dI/dt drops, which are dependent not on the magnitude of the current, but on
its time derivative. Activating an idle functional unit can result in dI/dt-related voltage emergencies
as the current draw switches from pure leakage to both leakage and dynamic [Joseph et al. 2003];
activating a unit which has been power-gated to reduce leakage leads to an even greater change in
current, even with the proposed limit on the maximum current. On-chip capacitance can eliminate
this problem for short events, e.g., single-cycle current bursts, but for the sustained current draw seen
in a freshly-activated functional unit, the dI/dt effects can still lead to voltage emergencies [Joseph
et al. 2003]. Thus, even if it is possible to charge the virtual ground in a single cycle, additional
idle cycles may be necessary to prevent dI/dt emergencies. Waking-up a clock-gated functional unit
does not require discharging the virtual ground capacitance, implying that it can be accomplished
quickly using a smaller change in current than power-gating and thus may be safer for more tem-
porally fine-grained control. In summary, despite recent advances in power gating technology, it
appears that clock gating continues to have advantages in the presence of dI/dt effects.

Although power-gating reduces leakage current, enabling the gating consumes additional energy
as the virtual ground voltage rises to Vdd. Thus, in order for power-gating to save energy, it must
be enabled for enough cycles that the savings due to reduced leakage are greater than the losses
from charging the virtual ground. Usami et al. state that for typical arithmetic functional units,
the break-even point occurs at about 40–100 clock cycles, depending on temperature [Usami et al.
2009]. Clock gating does not suffer from the virtual ground losses and thus is useful for shorter
sleep durations.

Power-gating is a useful technique for both reducing power consumption (static and dynamic)
and preventing NBTI degradation when the function unit durations are long. However, clock-gating
with IVC (and our proposed internal node control extension) is useful for much shorter duration
sleeping (down to one clock cycle). For functional units which are unused for a majority of clock
cycles, but are still used frequently (e.g., on average every twentieth instruction uses a particular
unit), clock-gating with IVC will outperform power-gating.

Wang et al. investigated the use of IVC to reduce NBTI degradation [Wang et al. 2007; Wang et al.
2009]. In practice, this control can be implemented either by placing MUXes on the inputs or by
using a scan-chain. They find that IVC can reduce the degradation by an average 30%, but note that
for many circuits, the input vector may only be able to control a few levels of the circuit’s internal
gates. Wang et al. predict that for future technologies, smaller gate sizings and higher temperatures
may increase the benefit of such techniques.

In contrast with IVC, internal node control (our proposed technique) permits much greater control
of all levels of the circuit, thereby allowing greater reduction in the NBTI-induced delay. Wang et
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(a) Node control to force output high.
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(b) Node control to force output low.

Figure 1. Static CMOS gates modified to include node control [Abdollahi et al. 2004]. Two additional transistors required.

al. independently and simultaneously published a related technique, gate replacement, at the same
conference where our initial work on internal node control was presented [Wang et al. 2009; Bild
et al. 2009]. Our proposed technique, internal node control (INC), is more general than gate re-
placement. With INC, any gate output can be forced either high or low by a sleep signal. With gate
replacement, certain combinations cannot be represented. For example, a two-input NOR gate with
a low sleep-mode output value can be represented by a three-input NOR gate with the third input
driven by an active-low sleep signal. However, a two-input NOR gate with a high sleep-mode out-
put value cannot be represented by a standard three-input gate. Wang et al. presented results for the
co-optimization of leakage power and NBTI degradation. Our work is distinguished by the optimal
MILP formulation, the subsequent comparison of the INC-placement heuristic to the optimal re-
sults, the analysis of multiple-vector INC, and the analysis of the sensitivity of INC to circuit size
and primary output slacks.

3. INTERNAL NODE CONTROL

Internal node control (INC) refers to setting the states of individual nodes or gate outputs at any
layer of the circuit to specific values. With this extension to IVC, further control and thus NBTI
mitigation is possible. INC can be implemented by the addition of node control circuitry at the
output of each controlled gate.

There are several important observations about INC insertion for NBTI minimization in CMOS.
We first describe two specific implementations of INC, one for static CMOS logic originally de-
veloped for static power consumption minimization and one for pass-transistor CMOS logic. We
then discuss the difficulty of removing NBTI stress from all PMOS transistors in a circuit and note
a property of NOR gates that lessens the associated cost. Next, we explain the structural proper-
ties of transistors requiring NBTI stress removal and give our problem definition. We show that the
problem is NP-complete via a reduction from circuit-SAT.

3.1. INC Implementation

Selectively forcing a node to a specific value requires modifying the driving gate. We describe two
techniques for doing this, one for static CMOS logic and one for pass-transistor CMOS logic. For
a typical standard cell flow, at least three versions of each cell must be included in the library—the
unmodified cell, one with INC to force the output low, and one with INC to force the output high.
Our INC methods are general to any static or pass-transistor logic cell and can be applied automati-
cally by a CAD tool to an existing library. Furthermore, this additional design and characterization
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Figure 2. General method to support INC for pass-transistor CMOS logic gates. Three additional transistors are used.
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B Out

(a) XOR without INC.

A

B
Sleep

Out

(b) XOR with INC.

Figure 3. Pass-transistor XOR gate modified to force the output high (given that, in the sleep state, A=1). Only two
additional transistors are used.

work is done only once, when the standard cell library is developed. Individual circuit designers
are not impacted. Many libraries already support similar special-purpose versions of their cells for
low-power designs and multi-threshold processes.

For static CMOS logic gates (i.e., negative unate functions), we use a technique from Abdollahi,
Fallah, and Pedram’s work on leakage minimization [Abdollahi et al. 2004]. To force the output
high, the output of the gate is connected to Vdd via a PMOS transistor in parallel with the existing
pull-up network, controlled by an active-low sleep signal and the pull-down network is gated by a
series NMOS. Note that this transistor is structurally equivalent to the sleep transistor used in some
leakage power reduction schemes (e.g., MTCMOS) [Roy et al. 2003]. To force an output low, a
similar modification is made, as illustrated in Figure 1. As mentioned in Section 2.3.2, for some
n-input cells, an n+1-input cell is equivalent to one of the INC cells, e.g., a 2-input NAND with
INC to force the output high is structurally equivalent to a 3-input NAND.

Pass-transistor logic is often used is standard cell libraries for non-unate primitives like XOR.
Figure 2 shows an INC implementation for such cells. The output is forced high by the additional
PMOS transistor and the pass-logic is gated from the output by an additional transmission gate.
To force an output low, replace the PMOS transistor with an NMOS pull-down transistor. This
technique requires three additional transistors, but is general.

More-creative approaches can also be used for pass-transistor gates, at greater cost during library
development. Note that with our INC technique, the gate inputs in the sleep state are fully deter-
mined at design time. Thus, an INC cell must only implement one of the rows of the cell’s truth
table with the sleep signal active (obviously, all rows with sleep inactive must be implemented).
This allows a typical XOR gate to be modified to include INC with only two additional transistors
and no additional capacitive output load, as shown in Figure 3. Similar designs could be manually
constructed for other primitives.

Unfortunately, the addition of this extra circuitry required for INC increases circuit delay. For a
65 nm Berkeley Predictive Technology Model, [PTM 2010; Cao et al. 2000], this technique results
in an ∼12.5% increase in delay for a simple inverter. The absolute delay increase is independent of
gate type, so the percentage decreases for larger gates.

The delay overhead is smaller for more-complex gates (e.g., a four-input versus a two-input gate),
suggesting that INC might be most effective on circuits mapped with preference for such gates.
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Figure 4. For a NOR gate, destressing the top PMOS destresses all sub-
sequent transistors in the stack.
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Figure 5. Inverter gadget appended to output of
circuit, for proof of NP-completeness.

This potential further optimization would require changes to the technology mapping stage (e.g.,
adjusting the cost functions employed by synthesis tools like Synopsys Design Compiler), so we
do not further pursue it here. INC is beneficial even without special mapping considerations. Of
course, a combined mapping/INC insertion methodology has the potential for even greater benefit
and could be pursued in the future.

3.2. Potential of INC for CMOS

For an inverting logic implementation technology such as static CMOS, if all of the inputs to a gate
are high, then the output will be low. Thus, it seems that in order to place non-stressing (high) values
on all PMOS inputs, internal node control must be implemented at the output of every gate. Recall,
however, that NBTI stress is due to negative bias between the source node and the transistor input
(Vgs = -Vdd); it is not just due to the low gate voltage. For gates with parallel pull-up networks
(e.g., inverters and NAND gates), the source node for each PMOS transistor is always at Vdd and
each transistor is stressed whenever the input is low. For gates with series pull-up networks (e.g.,
NOR gates), the source node voltage, except for the top transistor in the PMOS stack, is dependent
on the state of the transistors higher in the stack [Kumar et al. 2007]. Specifically, the source node
voltage for any transistor below an “off” transistor will be close to ground and thus, even for a low
input, Vgs will not approach -Vdd. This is illustrated in Figure 4. While this reduces (to one) the
number of high inputs needed to eliminate static NBTI stress in a NOR gate, it does not help with
the problem of inverting logic. A single high input to a NOR gate will force the output low and thus
will still potentially stress the subsequent gate.

To eliminate static NBTI stress on all the PMOS transistors in a circuit, the outputs of most
gates must be forced high. Gates feeding only into the lower PMOS transistors of NOR gates are
the exception. For a single gate, the delay increase due to INC is similar to the delay increase due
to NBTI stress. Consequently, covering every gate with INC will not lead to a net improvement
in delay. Focused mitigation is required. That is, it is necessary to find the set of nodes for INC
insertion that minimizes the overall circuit delay in the presence of NBTI.

The relevant transistors for NBTI stress removal are those on the critical path or those that, due to
NBTI degradation over circuit lifetime, may ultimately be on this path. That is, a critical transistor
is one with a timing slack less than its NBTI-induced increase in delay when considering the timing
impacts of the NBTI mitigation technique. If all of these transistors can be placed in unstressed
states, static NBTI will not increase system delay. Unfortunately, identifying these critical transistors
is hard because the application of the mitigation technique (in our case, INC) changes the set of gates
that are or could become critical. The slack for each gate depends on the delays of all the prior and
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Figure 6. Three example INC insertion scenarios. Gates affected by NBTI are drawn in red and labeled with an “S”.
Critical path lines are darkened. An INC insertion is shown by a square at the output of the affected gate.

subsequent gates along its path. Therefore, it is dependent on the NBTI stress and node control delay
of each of those gates as well. The addition of node control to a single gate can, in the worst case,
change the slack of every other gate in the circuit. These control nodes introduce additional delay
that, depending on their locations, may adversely affect the critical path. This interplay between
the mitigation technique and the critical gates implies that non-iterative static timing analysis-based
methods [Wang et al. 2007], will not work for INC. It is thus necessary to optimally trade off the
reduction in NBTI-induced delay and the increase in delay due to the addition of INC.

Figure 6 shows three example INC insertion scenarios. These are intended as examples of a sub-
circuit far removed from the primary inputs of the circuit containing it. IVC loses effectiveness
as circuit depth increases, and thus the input vectors for these examples are fixed and IVC is not
considered. The critical path in each circuit is shown in bold, and critical path gates stressed by
NBTI are labeled with an “S”. For simplicity, in these examples we assume that INC insertion does
not change the location of the critical path, but only its delay. More specifically, we assume sufficient
slack for INC insertion. Note that the MILP and heuristic solutions developed in Sections 4 and 5
seek the delay-optimal solution considering both NBTI and INC delays.

Figure 6(a) shows the insertion of node control inline with the critical path. In this case, the delay
added by the node control on the first gate must be less than the NBTI delay on the second gate for
there to be a net decrease in delay. Figure 6(b) illustrates the removal of NBTI from a NOR gate
using the previously explained observation about the series PMOS stack. The last example is more
complicated. In Figure 6(c), NBTI stress is removed from the second NAND gate by inserting an
INC node off the critical path such that the correct value propagates through to the critical gate. In
this scenario, the node control can be added to a gate with sufficient slack, even if that gate is several
gates removed from the critical path. Note that although the second NAND gate is stressed by NBTI
after INC insertion, the stress does not occur on a critical path input and therefore does not increase
total circuit delay. In Sections 4 and 5, we describe optimal and heuristic methods to select the gates
to modify with INC.

3.3. Problem Definition

We consider INC insertion as a post-synthesis step in the design process intended to reduce NBTI
guard bands. Figure 7 illustrates the design flows both with and without the use of INC. In the
traditional design flow, an NBTI guard band is subtracted from the target delay to determine the
synthesis delay constraint, under which the synthesis process optimizes area and power. With INC,
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Figure 7. Comparison of synthesis design flows with and without our INC-based NBTI reduction technique.

the flow is largely the same, but the guard band is reduced by first estimating the impact of INC
when determining the synthesis delay constraint and then applying INC after synthesis.

We formalize INC insertion for this design flow as the following optimization problem. The
input consists of the combinational circuit output by the synthesis routine, represented as a graph
of connected gates. For each gate, three delays are specified: : (i) the basic delay for an unmodified
gate, (ii) the increase in delay if INC is added, and (iii) the increase in delay after some period of
NBTI-stress, e.g., 10 years. The task is to find the input vector and node control insertion points that
minimize the critical path delay after it has been subjected to NBTI stress. In other words, the goal
is to minimize the increase in delay between the original unstressed circuit and the INC-modified,
stressed circuit.
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3.4. Alternate Problem Definition

The preceding formulation (the one used in this paper) assumes that area and power are essentially
fixed when INC is applied post-synthesis, and thus delay is the optimization objective. This formu-
lation has two advantages: (1) the impact of INC is easy to measure as the reduction in circuit delay
and (2) it integrates easily in existing design flows with existing synthesis tools. The first benefit
simplifies comparing alternative solutions in Section 6. It is, however, the second benefit that led us
to choose the constrained-area formulation.

It would be possible to instead constrain delay and optimize some combination of power and area
(instead of optimizing delay). However, this would require that the problem definition be broadened
to provide a mechanism for controlling area, e.g., changing the technology mapping solution. As
a result, this apparently straightforward change in optimization constraints and objectives would
couple multiple steps of the design process. Solving this new problem well would require integrating
the solutions to the technology mapping and INC insertion problems, requiring a global change to
the design flow that would interfere with practical use. However, future research on the alternate
formulation has the potential to yield better results.

3.5. INC Insertion is NP-Complete

We show that the decision version of this problem is NP-complete. In the decision problem, instead
of minimizing the critical path delay, a delay bound b is specified and the task is to determine
whether an input vector and set of INC placements exist such that the critical path delay is less than
or equal to b.

LEMMA 3.1. The problem of IVC selection and INC placement for NBTI minimization is in
NP .

PROOF. A solution can be easily checked in polynomial time by computing the associated criti-
cal path delay. Specifically, the delay can be determined in time linear to the number of gates via a
simple topological traversal of the circuit, computing gate output values and arrival times.

LEMMA 3.2. The problem of IVC selection and INC placement for NBTI minimization is NP-
hard.

PROOF. To prove that the problem is NP-hard, we use a reduction from circuit-SAT. In circuit-
SAT, the task is to decide, for a given Boolean circuit C with a single output, if there is an assignment
to the inputs such that the output is true [Garey and Johnson 1979]. We give a polynomial-time
transformation from an instance of circuit-SAT to our problem with specified bound b = 0.

For each gate in the circuit C, the intrinsic delay and NBTI delay are set to 0. This ensures that
for any inputs, the critical path delay is 0. The INC delays are set to a positive value (e.g., 1), thus
ensuring that a solution satisfying the bound b = 0 will not have any INC nodes and that the Boolean
function implemented by the circuit remains unmodified.

We add a gadget to the output of the circuit in such a way that the critical path delay is greater
than 0 if the output is false, and 0 if the output is true. Specifically, an inverter is inserted at the
output of the circuit, as shown in Figure 5. The basic delay is set to 0 and the NBTI delay is set
to a positive value (e.g., 1). The INC delay is unimportant but can be set to 0. If the output of the
original circuit C is true, the inserted inverter will not be stressed by NBTI, and the critical path
delay will be 0. If the output is false, the inverter will be stressed and the delay will be positive,
thereby exceeding the bound b = 0.

In short, any circuit-SAT problem instance can be solved as an instance of our problem using
this transformation. The circuit-SAT instance has an accepting input assignment if and only if the
transformed problem has an input assignment leading to a critical path delay of 0.

THEOREM 3.3. The problem of IVC selection and INC placement for NBTI minimization is
NP-complete.
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xp cn fn xn

0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Figure 8. Truth table for an inverter with INC. xp is the input, cn is the INC selection variable, fn is the forced value, and
valn is the output.

PROOF. This follows from Lemma 3.1 and Lemma 3.2.

4. OPTIMAL FORMULATION

To further formalize our problem description, we describe it as mixed integer linear program
(MILP) formulation that may be used to find optimal solutions. Additionally, this formulation is
used in Section 6 to show that our proposed heuristic produces near-optimal results.

A combinational circuit is modeled as a directed acyclic graph G = (V,E). V is a set of primary
inputs (I ⊂ V ), gate outputs (N ⊂ V ), and primary outputs (Q ⊂ V ). E is a set of directed edges
modeling connections between two gates. The gate outputs N , are further divided into three sets
NI , NR, and ND representing NOT, NOR, and NAND gates. Pv are the predecessors of gate v.

The intrinsic delay of a gate is dint(n). The increase in delay due to NBTI stress is dnbti(n), and
the increase in delay due to the addition of node control on the gate output is dinc(n).

The following variables are used. cn is a binary variable:

cn =

{

1 if INC is added to gate n
0 otherwise

fn is a binary variable representing the forced value of node n, if cn is 1. 0 ≤ xv ≤ 1 is the value
of node v. If cv is 1, then xv is fv . Otherwise, it is determined by the inputs to the gate. For v ∈ I ,
xv is explicitly constrained to be binary. tv is the earliest arrival time at node v.

We optimize the circuit delay by minimizing the maximum output arrival time:

minimize max
∀q∈Q

tq (1)

The Boolean function of the gates, combined with the node control, is modeled by a set of con-
straints that force each output xv to the proper value based on cv , fv , and the inputs to node v. These
constraints are equivalent to those specifying the convex hull of the function, where each input and
output represents one dimension. For example, the truth table for an inverter, shown in Figure 8,
leads to the following constraints. NAND and NOR gates are similarly determined.

∀n ∈ NI : cn + fn − xn ≤ 1
cn − fn + xn ≤ 1
−fn + xn + xp − 1 ≤ 0
−cn + xn + xp − 1 ≤ 0
−xp + fn − xn ≤ 0
−xp − cn − xn ≤ −1

The earliest arrival times are modeled by constraining a node v’s arrival time to be later than or
equal to all of its inputs’ arrival times plus any delays associated with the gate. The intrinsic delay
dint(v) of each gate is always included. The internal node control delay dinc(v) is only included
if cv is 1. The NBTI delay dnbti(v) is included when, based on the inputs, the gate is stressed. For
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(a) Unpartitioned directed acyclic graph.
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(b) Partitioned into two trees.

Figure 9. A circuit partitioned into rooted trees, with the dangling inputs labeled DIx.

NOT and NAND gates, the following constraint enforces this relationship.

∀n ∈ NI ∪ND, ∀p ∈ Pn : tn ≥ tp + dint(n) + (1− xp)dnbti(n) + cndinc(n)

As discussed in the previous section, if any input to a NOR gate is high, we assume that the whole
gate is unstressed. The variable 0 ≤ sn ≤ 1 is 1 if NOR gate n ∈ NR is stressed and 0 otherwise.
Thus, the following constraints implement the arrival time computation for NOR gates.

∀n ∈ NR, ∀p ∈ Pn : 1− sn ≥ xp

1− sn ≤
∑

r∈Pn

xr

tn ≥ tp + dint(n) + sndnbti(n) + cndinc(n)

Optimization Objective 1 ensures that the arrival times on the critical path are minimal.

5. HEURISTIC SOLUTION

The MILP-based optimal solution method is not practical for large circuits because this problem
is NP-complete. A heuristic solution that provides good, and ideally near-optimal, solutions in a
reasonable amount of time is necessary. In this section, we describe a linear-time algorithm for input
vector selection and internal node control placement. Our technique is inspired by work on leakage
power minimization by Cheng, Chen, and Wong [Cheng et al. 2008], but differs by appropriately
handling the non-additive cost function required for the INC placement problem.

5.1. Overview

Our heuristic (see Algorithm 1) takes advantage of the fact that the problem can be solved opti-
mally for rooted-tree structures in linear time. It first partitions a given circuit into rooted trees
by removing some connections between gates (line 1). This partitioning creates dangling inputs at
these gates whose input connections were removed, as illustrated in Figure 9. Values are assigned to
these dangling inputs (line 2) and the optimal values for the primary inputs and INC placements are
chosen for each partition (lines 4–6). The values for the dangling inputs are updated based on the
new outputs of their parent gates in the original circuit (line 7) and the solutions for the partitions
are recomputed based on these new dangling input values (line 3). This iteration continues until
the solution has converged (lines 8–10) or a pre-set number of iterations has been reached (line 3).
Convergence is identified when the values for the dangling inputs do not change between two con-
secutive iterations. To ensure convergence, when the re-visitation of a solution is detected, the circuit
is repartitioned (lines 11–13). Empirical results show that this repartitioning breaks oscillations and
leads to convergence.

5.2. Partitioning and Initial Solution

Solution quality is highly dependent on the method used to partition the circuit and the initial values
assigned to the dangling inputs. Tree-based partitioning has been proposed for several circuit design
problems in the past, including leakage power minimization and technology mapping [Cheng et al.
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Algorithm 1 INC Placement Heuristic Overview

Require: circuit G
Require: maximum number of iterations, N

1: partition circuit into trees
2: select initial values for dangling inputs
3: for i = 0 to N do
4: for all partitions do
5: choose IVC and INC using tree-optimal algorithm
6: end for
7: update dangling input values
8: if solution is the same as previous then
9: break {Solution has converged.}

10: end if
11: if oscillation is detected then
12: repartition the circuit
13: end if
14: end for
15: greedily remove INCs which do not affect delay
16: return input vector and INC placements

2008]. For these problems, the cost function (e.g., total leakage power and circuit area) is additive:
the overall cost is essentially the sum of the costs of the individual partitions. It is thus important
to maximize the sizes of the partitions in order to maximize the effectiveness of the tree-optimal
algorithm. The specific choice of which connections to remove, though, is not as critical.

For INC placement, the cost function is not additive: the critical path delay for the entire circuit
is not the sum of the critical path delays of each partition. Thus, in addition to maximizing the sizes
of the partitions, it is also important to keep the original critical path in a single partition. Of course,
for circuits with parallel critical paths, this will not always be possible. Our partitioning algorithm
avoids cutting these critical paths by using slack information to determine which connections to
remove. In a rooted-tree structured circuit, each gate has a fanout of 1. Thus, for each gate with
a fanout greater than 1, our partitioning algorithm keeps the connection with the smallest slack,
removing the others. Dangling inputs are inserted at the broken connections.

Computing the slack values for initial partitioning requires an initial IVC and INC assignment.
We choose these initial values by applying the tree-optimal algorithm to the unmodified directed
acyclic circuit. The circuit is not tree-structured and as a result, conflicts will occur in the backward
pass phase of the algorithm. At each gate with a fanout greater than 1, the child gates may require
differing output values from their shared parent. In these cases, the value required by the majority
of the children is chosen. In the case of a tie, 1 is chosen because, in general, it will prevent NBTI
stress on the child gates. After partitioning, the dangling inputs are set to the values from this initial
partitioning.

For circuits with reconvergent critical paths, it will not be possible to place both critical paths in
the same partition. This can occur, for example, in highly optimized circuits in which many paths
are critical or near-critical. To show that the heuristic still performs well in such cases, its perfor-
mance on large industrial scale benchmarks with many critical and near-critical paths is presented
in Section 6.1.

When oscillation is detected during the iterative solution process, the circuit is repartitioned.
Slack values are computed using the current solution, with dangling inputs reconnected to and tak-
ing the value of their original driving gates. Because the slack values are likely different from the
initial partitioning, this results in a different partitioning, breaking the oscillation and commonly
reassigning the possibly-different critical path to a single partition.
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Algorithm 2 Tree-Optimal Algorithm

Require: tree-structured circuit partition P
Require: arrival times and node values for dangling inputs {Forward Pass}

1: for all gates g in a topological ordering of P do
2: for all combinations of inputs i do
3: compute arrival time and output value using the arrival times of g’s parent gates
4: compute arrival time and output value if INC is added
5: end for
6: store i with a 0 output and the smallest arrival time
7: store i with a 1 output and the smallest arrival time
8: end for

{Backward Pass}
9: choose primary output value with smallest arrival time

10: for all gates g in a reverse topological ordering of P do
11: select the stored i with the output that matches the child’s selected i
12: end for
13: return the input values and the INC placements

5.3. Tree-Optimal Algorithm

The tree-optimal algorithm is shown in Algorithm 2. The algorithm takes as input a tree-structured
circuit partition and, for each of the dangling inputs, the arrival time and node value. For primary
inputs, the arrival time is assumed to be 0 and the node value is determined by the algorithm. The
algorithm consists of two phases, the forward pass and the backward pass. In the forward pass, two
pieces of information are computed for each gate, the input combination and INC state with a 0
output and the smallest arrival time, and the input combination and INC state with a 1 output and
smallest arrival time. Specifically, the gates are examined in topological order (line 1). For each
gate, each possible input combination is examined (line 2). The output value is computed and, using
the arrival times previously computed for the parent gates, the arrival time is computed (line 3).
The value and arrival time if INC are added is also computed (line 4). For each output value, 0
and 1, the input combination and INC state with the smallest arrival time is stored (lines 6–7). It
is possible for several input vectors to lead to the same minimum arrival time. In the case of such
ties, the number of non-stressing inputs is maximized by choosing the covering input vector. An
input vector x is said to cover input vector y if x has 1 values in each position that y does and at
least 1 additional position. For example, the vector “1011” covers the vector “1010”. The intuition
is that non-stressing values are preferred for NBTI minimization and thus are less likely to conflict
via the dangling inputs with assignments in other partitions. In the backward phase, a specific value
(and thus INC state) is chosen for each of the gates. Specifically, the primary output value and
corresponding input combination with the smallest arrival time is chosen (line 9). The remaining
gates are then examined in a reverse topological order (line 10). For each gate, the required output
value is specified by the chosen input combination for its child. The corresponding inputs are chosen
for the gate (line 11).

5.4. Runtime

The heuristic requires time linear in the number of gates. Partitioning is performed with a single
topological traversal. The tree-optimal algorithm requires one traversal for each phase. Although all
the input combinations for each gate must be examined, this is effectively constant time because the
number of inputs is restricted. Finally, the overall algorithm iterates multiple times, but empirical
results show that it converges rapidly and thus the maximum number of iterations can be limited to
a small constant. 15 iterations were used in all our reported results and were sufficient for problem
instances with widely varying sizes.
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Table I. Descriptions of the DesignWare Benchmarks

Circuit Function Architecture Timing Gate Heuristic

Constraint Count Runtime

(ps) (s)

add64_rpl
64-bit integer adder

ripple-carry 1100 1263 1.3
add64_cla carry-lookahead 1100 1249 1.0
add64_pparch parallel-prefix 1100 1172 2.0
addsub64_rpl

64-bit integer
adder/subtractor

ripple-carry 1200 1522 1.9
addsub64_cla carry-lookahead 1200 1487 2.7
addsub64_pparch parallel-prefix 1200 1476 1.7
mult32_csa

32-bit integer multiplier
carry-save 8500 15157 32.7

mult32_pparch parallel-prefix 2700 9736 20.5
ash64_mx2

64-bit arithmetic shifter
2:1 multiplexers 700 1617 2.1

ash64_str speed-optimized 900 1556 2.3
ash64_astr area-optimized 900 1556 2.3
bsh64_mx2

64-bit barrel shifter
2:1 multiplexers 600 981 0.7

bsh64_str speed-optimized 600 981 0.7
bsh64_astr area-optimized 600 981 0.7
fp_addsub64_rtl 64-bit floating point

adder/subtractor
area-optimized 5400 5705 11.2

fp_addsub64_str speed-optimized 5100 7362 14.2
fp_mult32_rtl 32-bit floating point

multiplier
only choice 4200 8845 17.7

crc64_str 64-bit CRC-32 cyclic re-
dundancy checker

only choice 3400 2275 4.1

6. EXPERIMENTAL RESULTS

We implemented the proposed heuristic in Python and evaluated it on both the ISCAS85 combi-
national benchmarks [Brglez and Fujiwara 1985] and a set of larger benchmarks from the Synopsys
DesignWare Library. After a brief explanation of the experimental setup, this remainder of this
section presents the results and analysis of this evaluation.

The ISCAS85 benchmarks are used because of their ubiquity and small size. Due to their rela-
tively small gate counts, the ISCAS85 benchmarks are appropriate for use with the optimal MILP
formulation and thus are used in Section 6.2 to show the near-optimality of the heuristic. However,
real industrial designs for which INC is most useful generally will be much larger. The Design-
Ware benchmarks are used to verify the effectiveness on INC on larger circuits and are described in
Table I. We have included all available architectures for designs with multiple architectures. Each
design was synthesized for the strictest timing deadline that could be met by Design Compiler.

The benchmarks circuits were mapped to a seven gate library {inv, nor2, nor3, nor4, nand2,
nand3, nand4} using Synopsys Design Compiler. For consistency, the gates were sized for a max-
imum fanout of three. Timing information for the gates (with and without node control) was ob-
tained through HSpice simulations using the 65 nm Berkeley Predictive Technology Model [Cao
et al. 2000; PTM 2010]. The timings for these self-developed gates, without node control, were
calibrated to similar gates in a TSMC 65 nm library to ensure that the timings were representative
of real-world libraries [TSMC 2006]. The static NBTI model presented in Section 2.1 is used to cal-
culate the static NBTI delay. Separate results are reported for the 3.3% and 16.3% path degradation
cases (corresponding to 10% and 50% stressed-gate degradation percentages).

All tests were done on a 3.0 GHz Intel Core2 Duo E8400 processor with 4 GB of RAM. The
runtimes are shown in the “Heuristic Runtime” column of Table I.

6.1. Heuristic Experimental Results

The results for all benchmarks are presented in Table II. Column “Baseline Delay” shows the circuit
delay before NBTI stress and without the addition of INC. Separate results for the 3.3% and 16.3%
path delay degradation percentages are shown side-by-side. For columns expressing a percentage
change in delay, the bottom three rows of Table II show the average change over the ISCAS85
benchmarks, DesignWare benchmarks, and all benchmarks, respectively.
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Table II. Heuristic Results

3.3% NBTI Path Degradation 16.3% NBTI Path Degradation

Circuit Baseline IVC INC Improvement IVC INC Improvement

Delay Delay Delay NBTI Total Delay Delay NBTI Total

(ps) (ps) (%) (ps) (%) (%) (ps) (%) (ps) (%) (%)

ISCAS85 Benchmarks

c432 1650.6 1701.3 3.1 1699.4 3.7 0.1 1910.5 15.8 1748.1 62.5 8.5
c499 1588.7 1641.9 3.4 1628.0 26.3 0.9 1858.9 17.0 1690.1 62.5 9.1
c880 1884.3 1938.3 2.9 1914.0 45.1 1.3 2172.6 15.3 1982.2 66.0 8.8
c1355 1505.1 1557.4 3.5 1547.7 18.5 0.6 1774.6 17.9 1594.2 66.9 10.2
c1908 2112.0 2176.9 3.1 2175.7 1.8 0.1 2440.5 15.6 2257.3 55.8 7.5
c2670 1607.1 1657.9 3.2 1629.1 56.8 1.7 1861.4 15.8 1643.5 85.7 11.7
c3540 2546.4 2624.7 3.1 2595.7 37.1 1.1 2975.0 16.8 2614.0 84.2 12.1
c5315 2396.9 2455.7 2.5 2435.8 33.9 0.8 2694.9 12.4 2454.1 80.0 8.9

DesignWare Benchmarks

add64_rpl 1097.0 1134.9 3.5 1131.8 8.2 0.3 1321.8 17.0 1267.7 24.1 4.1
add64_cla 1099.9 1135.4 3.2 1121.0 40.7 1.3 1437.5 23.5 1268.7 62.5 10.5
add64_pparch 1068.4 1101.9 3.1 1094.4 22.5 0.7 1256.5 15.0 1127.6 68.5 10.3
addsub64_rpl 1198.5 1240.8 3.5 1224.9 37.6 1.3 1434.2 16.4 1389.5 19.0 3.1
addsub64_cla 1198.5 1241.2 3.6 1243.5 -5.4 -0.2 1440.5 16.8 1313.8 52.4 8.8
addsub64_pparch 1195.9 1227.1 2.6 1215.5 37.0 0.9 1413.8 15.4 1322.6 67.4 6.5
mult32_csa 8476.2 8769.8 3.5 8636.6 45.4 1.5 10127.6 16.3 9218.5 55.1 9.0
mult32_pparch 2694.8 2785.1 3.4 2754.1 34.3 1.1 3231.7 16.6 3037.7 36.1 6.0
ash64_mx2 698.5 716.4 2.6 708.9 41.8 1.0 829.5 15.8 741.0 67.6 10.7

ash64_str* 899.8 927.0 3.0 925.8 4.3 0.1 1066.6 15.6 944.8 73.0 11.4

ash64_astr* 899.8 927.0 3.0 925.8 8.3 0.1 1066.6 15.6 944.8 73.0 11.4

bsh64_mx2† 579.4 601.0 3.7 590.2 50.0 1.8 687.5 15.7 597.0 83.7 13.2

bsh64_str† 579.4 601.0 3.7 590.2 50.0 1.8 687.5 15.7 597.0 83.7 13.2

bsh64_astr† 579.4 601.0 3.7 590.2 50.0 1.8 687.5 15.7 597.0 83.7 13.2
fp_addsub64_rtl 5398.0 5601.5 3.8 5538.8 30.8 1.1 6521.7 17.2 5832.2 61.4 10.6
fp_addsub64_str 5095.0 5273.3 3.5 5196.8 42.9 1.5 6096.0 16.4 5474.0 62.1 10.2
fp_mult32_rtl 4199.4 4359.0 3.8 4303.3 34.9 1.3 5041.8 16.7 4589.5 53.7 9.0
crc64_str 3394.7 3516.2 3.6 3459.0 47.1 1.6 4033.5 15.5 3786.5 38.7 6.1

Average

ISCAS85 3.1 27.9 0.8 15.8 70.5 9.6

DesignWare 3.4 32.3 1.1 16.5 59.2 9.3

All Circuits 3.3 30.9 1.0 16.3 62.7 9.4

* The synthesized netlist was nearly identical for both architectures.
† The synthesized netlist was nearly identical for all three architectures.

The “IVC Delay” columns present the delay considering NBTI stress and the application of near-
optimal Input Vector Control, the prior work against which we compare. In Section 6.2 we note that
minimum delay seen over a set of 10,000 random input vectors is close to the delay for the optimal
input vector. Thus, we use this minimum delay here as proxy for the theoretical optimal input vector.
These delays are reported both in absolute terms (ps) and as percentage increases in delay over the
baseline. The 3.3% (16.3%) path delay degradation corresponds to 10% (50%) per-stressed gate
delay increase.

The absolute delays when INC is added are shown in the “INC Delay” columns. The percent
improvement in delay with respect to IVC is shown in the “Improvement” columns and is computed
in two different ways: percent reduction in NBTI-induced delay (Column “NBTI”)

%improve,nbti = −100×
(Dinc −Dbase)− (Divc −Dbase)

(Divc −Dbase)
(2)

and percent reduction in total path delay (Column “Total”)

%improve,total = −100×
Dinc −Divc

Divc

. (3)
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We expect the percent improvement in NBTI-induced delay to increase when the NBTI-induced
delay grows relative to the INC overhead delay. This hypothesis is confirmed, with the results show-
ing an average 30.9% decrease for the 3.3% NBTI path degradation and a 62.7% decrease for the
16.3% degradation. These improvements indicate the effectiveness of INC; one-third to over one-
half of the NBTI-induced delay not handled by IVC is prevented by the addition of INC.

The percent improvement in total path delay averages 1.0% for the 3.3% degradation case. This
is expected because the NBTI degradation is such a small percentage. For the 16.3% degradation
case, the results are more significant. The total path delay is reduced by 9.4%, which is equivalent
to one speed bin for a typical microprocessor.

The INC heuristic reduces the delay compared with near-optimal IVC for all benchmarks except
“addsub64_cla”, which shows a 5% increase in NBTI delay over just IVC for the 3.3% degrada-
tion case. On the other extreme, the three “bsh_X” shifter circuits show a 50% decrease in NBTI
delay for the 3.3% case and a 83.7% decrease for the 16.3% case. There is significant variation
across benchmarks. For example, the ISCAS85 benchmarks with the 3.3% degradation estimate
have NBTI-induced delay reductions ranging from 3.7% to 56.8%. Section 8 discusses two poten-
tial causes of this variation.

These results show that INC can significantly reduce the amount of NBTI-induced performance
degradation on idle-mode functional units. They also show that the impact on total delay is substan-
tial when NBTI-induced delay is significant. Our proposed heuristic is effective for INC placement
and efficient even for large-scale circuits.

6.2. Comparison with Optimal Solutions

The preceding results indicate the effectiveness of INC but, as heuristic solutions, do not indicate
whether better INC placements, and thus further reductions, are possible. To answer this question,
we obtained optimal solutions for the ISCAS85 benchmarks using the MILP formulation in Sec-
tion 4. In this section, we use those results to show that, for small problem instances, the heuristic
produces near-optimal solutions. We also show that the theoretical minimal IVC delay is closely
approximated by the minimum delay observed over a set of 10,000 random input vectors.

The INC problem is NP-complete, so determining optimal values is feasible only for small
problem instances; even for those it is time-consuming. Consequently, we present optimal results
only for the ISCAS85 benchmarks for the conservative 3.3% path degradation (10% stressed-gate
delay degradation) estimate. The MILP formulation (Section 4) was solved using the open-source
software SYMPHONY [Ralphs and Guzelsoy 2005] for two different cases.

(1) To determine the delay using optimal input vector control only, the solver was run with INC
disabled (i.e., the node control selection variables were forced to 0).

(2) The solver was also run with internal node control enabled.

The resulting problem instances are rather large for an MILP solver. Therefore, we stopped the
solver when the upper and lower bounds for the optimal delay were within 0.2% of each other.
Some benchmarks did meet the 0.2% stop gap after several days of execution. Thus, we also termi-
nated execution after 24 hours and report the lower and upper bounds determined by the solver. For
instances that were successfully solved, these bounds are equal.

The results are presented in Table III. For columns representing a percent difference, the average
difference across all benchmarks is presented in the last row.

The columns under the “IVC Delay” heading show the minimum delay over a set of 10,000
random input vectors (“Random Set” columns), the lower and upper bounds2 on the optimal delay
for the IVC technique (“Optimal” columns), and the percent difference between the random set
estimate and optimal (“Change” columns). The random set estimates are on average only 0.12%
higher than the MILP upper bound and can be computed much more quickly. The lower bounds

2 The upper bound is the delay for the best solution found by the MILP solver. The lower bound is the highest value above
which the solver proved that the true minimum must lie. There may not exist a solution with the lower bound delay.
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Table III. Comparison with Optimal Results for ISCAS85 Circuits

Circuit IVC Delay INC Delay
Random Set Optimal (ps) Change (%) Heuristic Optimal (ps) Change (%)

(ps) LB UB LB UB (ps) LB UB LB UB

c432 1701.3 1697.9 1701.3 0.20 0.00 1699.4 1690.7 1691.8 0.51 0.45

c499* 1641.9 1633.0 1641.2 0.55 0.04 1628.0 1626.7 1629.6 0.08 -0.10
c880 1938.3 1926.7 1927.9 0.60 0.54 1914.0 1911.4 1914.0 0.14 0.00

c1355* 1557.4 1546.8 1555.5 0.69 0.12 1547.7 1534.6 1541.5 0.85 0.40
c1908 2176.9 2175.0 2176.1 0.09 0.04 2175.7 2171.3 2175.7 0.20 0.00

c2670* 1657.9 1651.3 1657.1 0.40 0.05 1629.1 1627.5 1629.1 0.10 0.00

c3540* 2624.7 2615.6 2624.7 0.35 0.00 2595.7 2595.7 2598.4 0.00 -0.10
c5315 2455.7 2448.2 2450.9 0.31 0.20 2435.8 2435.6 2435.8 0.01 0.00

Average 0.40 0.12 0.24 0.08

* Solver was stopped after 24 hours but before the 0.2% stop gap was reached.

reported by the MILP solver may not be tight, so the average 0.40% difference with the MILP
lower bound is a conservative estimate of the quality of the random set estimate. In the worst case,
benchmark c1355, the heuristic solution is still less than 1% slower than the conservative optimal
lower bound. Based on these comparisons, we conclude that the random set estimate for IVC is
nearly optimal.

The columns under the “INC Delay” headings show similar data for the INC heuristic. In this
case, we see that our heuristic produces solutions with delays 0.08% higher on average than the best
solutions found by the MILP solver and only 0.24% higher than the conservative lower bound. We
conclude that for circuits amenable to optimal solution by the MILP solver, our heuristic produces
near-optimal results.

6.3. Consideration of PBTI

Our presentation has focused on mitigating NBTI stress, traditionally a more significant problem
than its PBTI counterpart [Li et al. 2004]. However, PBTI is also becoming important with the
adoption of high-K gates [Zafar et al. 2006], so we show that INC is applicable to the joint reduction
of NBTI and PBTI stress. This claim might seem counter-intuitive—placing high values on internal
nodes to reduce NBTI degradation would increase PBTI degradation—but our heuristic for INC is
more general. It seeks the input vector and INC placements that minimize the aged-circuit delay,
whether the delay is due to NBTI, PBTI, or some combination thereof.

Table IV compares the reductions in delay from our INC heuristic for the benchmark circuits
considering NBTI only and considering both NBTI and PBTI. The PBTI degradation is modeled as
50% of the NBTI degradation, based on prior publications [Kumar et al. 2011]. The absolute circuit
delays are obviously higher when considering PBTI, but the resulting improvements in delay versus
IVC alone are similar for both cases—30.9% versus 28.0% average improvement,—indicating the
effectiveness of our technique for simultaneous NBTI and PBTI mitigation.

6.4. Scaling with Severity of NBTI

The previous sections presented the relative impact of INC for a conservative value of total NBTI
degradation, 3.3% increase in path delay over 10 years (10% increase per stressed gate). This relative
improvement is dependent on the overhead of the INC technique, the inverse of which is given by the
NBTI delay expressed as percentage of INC delay. Figure 10 shows this relationship averaged over
the full set of DesignWare benchmarks. For typical INC delays, the range of NBTI delay percentages
(50% to 1,300%) represent path NBTI degradations ranging from 2% to 40% (i.e., gate-level NBTI
degradations ranging from 5% to 90%). The relative improvement ranges from less than 25% to
over 60%.

Figure 11 shows the impact of INC on total path delay, once again averaged over the full Design-
Ware benchmark set. The tested NBTI degradations range from less than 2% to over 40% increase
in total path delay, representing the range of values reported in the literature [Paul et al. 2005; Wang
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Table IV. Heuristic Results When Modeling PBTI

NBTI Only NBTI+PBTI

Circuit Improvement Improvement

NBTI (%) Total (%) BTI (%) Total (%)

ISCAS85 Benchmarks

c432 3.7 0.1 15.0 0.7
c499 26.3 0.9 28.8 1.4
c880 45.1 1.3 44.9 1.8
c1355 18.5 0.6 27.9 1.4
c1908 1.8 0.1 2.6 0.1
c2670 56.8 1.7 53.1 2.3
c3540 37.1 1.1 41.7 2.0
c5315 33.9 0.8 36.2 1.3

DesignWare Benchmarks

add64_rpl 8.2 0.3 -2.1 -0.1
add64_cla 40.7 1.3 33.0 1.7
add64_pparch 22.5 0.7 10.2 0.5
addsub64_rpl 37.6 1.3 31.4 1.5
addsub64_cla -5.4 -0.2 29.5 1.6
addsub64_pparch 37.0 0.9 15.5 0.6
mult32_csa 45.4 1.5 52.8 2.7
mult32_pparch 34.3 1.1 31.1 1.5
ash64_mx2 41.8 1.0 1.3 0.1

ash64_str* 4.3 0.1 25.0 1.2

ash64_astr* 8.3 0.1 25.0 1.2

bsh64_mx2† 50.0 1.8 32.3 1.8

bsh64_str† 50.0 1.8 32.3 1.8

bsh64_astr† 50.0 1.8 32.3 1.8
fp_addsub64_rtl 30.8 1.1 29.5 1.6
fp_addsub64_str 42.9 1.5 34.1 1.8
fp_mult32_rtl 34.9 1.3 27.6 1.5
crc64_str 47.1 1.6 37.4 1.9

Average

ISCAS85 27.9 0.8 31.3 1.4

DesignWare 32.3 1.1 26.6 1.4

All Circuits 30.9 1.0 28.0 1.4

* The synthesized netlist was nearly identical for both architec-
tures.

† The synthesized netlist was nearly identical for all three archi-
tectures.
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Table V. Area Impact of INC Considering Place-and-Route

Benchmark Stressed Delay (ps) Area (µm2) Area

no INC with INC no INC with INC Increase (%)

mult32_csa 8869 8729 67026 68540 2.3
mult32_pparch 2717 2668 46556 46990 0.9
fp_mult32_rtl 4382 4303 47938 48658 1.5
fp_addsub64_rtl 5621 5537 29808 30225 1.4
fp_addsub64_str 5317 5217 34345 35023 2.0
crc64_str 3437 3374 14026 14875 6.1

et al. 2010]. INC reduces the total path delay by over 15% for the most severe NBTI degradation, a
significant improvement in post-stress circuit speed.

6.5. Power and Area Overhead

Internal node controls are only added to a small percentage of the gates; 3% on average for our
benchmarks. The percent increase in transistor count ranged from 0.4%–3.5% with an average of
1.6%, in contrast to the 8–12% overhead required for gate sizing [Vattikonda et al. 2006]. This small
increase suggests that INC does not have significant power or area overhead.

The average dynamic power consumption overhead will be less than 1.6%. There is an average
1.6% increase in transistor count, but only half of these, specifically the pull-up or pull-down tran-
sistors, present significant switching capacitance. The sleep transistor drain voltages will not change
significantly due to stack effect, and thus will not appreciably increase dynamic power.

The leakage power consumption during active mode will also increase slightly. Each pull-up
transistor provides an additional leakage path when the gate output is low. The converse is true for
pull-down transistors. When this transistor is parallel to a transistor stack, it eliminates the leakage
reduction due to stack effect. However, because on average only 3% of gates are modified with INC,
this increase is negligible.

In sleep mode, the leakage power is also influenced by the chosen input vector. In this work we
focus strictly on minimizing NBTI degradation using IVC and INC. These techniques have been
previously studied for sleep-mode leakage power minimization and could be applied to simultane-
ously reduce NBTI-induced delay and leakage power. This could be achieved by first minimizing
delay (leakage) and then minimizing leakage (delay) secondarily, with the optimal delay (leakage)
as a constraint, or by minimizing some function of delay and leakage. The most desirable combina-
tion of reduction in leakage power and NBTI will depend upon a designer’s preferences, and will
fall in somewhere between the proposed technique and Abdollahi, Fallah, and Pedram’s leakage
minimization technique [Abdollahi et al. 2004].

The area impact of the increased transistor count is quite small, less than 1.6% on average. How-
ever, the global (within the functional unit) sleep signal has the potential to increase routing con-
gestion and thus area. Such congestion may be a problem for fine-grained power gating techniques,
where the signal must be routed to a large percentage of the gates. To determine whether INC has
a similar problem, we compared the areas of placed-and-routed implementations of one of the six
largest DesignWare benchmarks, both with and without INC. The results are shown in Table V.
The average total increase in area is 2.4%, much of which is attributable to the increased transistor
count, indicating that routing congestion is not a problem for INC. INC does not lead to routing
congestion or require an additional routing layer because the sleep signal is routed to only a small
fraction of gates, has loose timing and skew requirements (unlike a clock net), and has low drive
strength requirements (unlike a power net). Consequently, it can be routed in local and intermediate
metal layers (e.g., M2–M4) along with the rest of the logic signals with almost no area overhead.

With its low area and power consumption overhead and good degradation reduction capabilities,
INC is an efficient method for NBTI mitigation.
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Figure 12. Upper and lower bounds for multi-cycle INC for the ISCAS85 benchmarks.

7. MULTIPLE-VECTOR INC

In the preceding analysis, we have assumed that only a single input vector and set of INC place-
ments are chosen for a given functional unit. Consequently, the same set of PMOS transistors are
stressed whenever the unit is idle and the sleep mode activated. If several input vectors were chosen
and alternately applied when the unit is idle, it is possible that the NBTI stress could be spread
among transistors on multiple paths, resulting in a smaller increase in delay. This idea was proposed
by Abella, Vera, and Gonzalez, but they did not perform analysis of the potential benefits of the
technique and left development of input vector selection algorithms for future work [Abella et al.
2007]. In this section, we investigate the potential of multiple-vector INC for the ISCAS85 bench-
marks. We find that in most cases, the use of multiple input vectors does not decrease the critical
path delay. In the few cases where some benefit is seen, the decrease in delay is small enough that
it is unlikely to justify the increase in area required to implement the multiple vector strategy. We
explain our findings for the sake of researchers and designers who might work on related problems
in the future.

Internal node control requires the selection of both an input vector and a set of INC placements.
A set of input vectors and sets of INC placements could be cycled through to potentially reduce the
NBTI degradation. However, the implementation of such a technique does have drawbacks. In the
case of multiple input vectors, all the vectors must be stored and MUXes or scan-chain logic are
needed to route the chosen input vector to the functional unit. In the case of INC, additional gates
must be modified to support INC and multiple sleep signals must be routed across the functional
unit, further increasing area, delay, and leakage power. In both cases, a small state machine must be
included to select the current input vector and sleep signal.

For the remainder of this discussion, the application of a particular input vector and INC assign-
ment pair is referred to as a cycle, and thus the total number of pairs chosen is the number of cycles.
For example, a 4-cycle solution refers to a rotation among four input vector and INC assignment
pairs. We assume that with any reasonable strategy for cycling among the input vectors, in the long
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run all the vectors will be used for approximately the same amount of time. Thus, the NBTI delay
for an individual gate is computed as the fraction of the cycles for which the gate is stressed times
the delay if the gate were stressed for the entire 10 year period. Note that the cycles are not limited
to distinct pairs; a particular pair can be used more frequently than another pair by assigning it to
more cycles.

We modified our MILP formulation to support an arbitrary number of cycles and ran it for 2,
3, and 4 cycles on the ISCAS85 benchmarks. Figure 12 presents the results. As with the single-
cycle problem instances presented earlier, the solver was not able to find true optimal solutions in
a reasonable amount of time, and therefore we present the lower and upper-bounded ranges for
optimal. For each benchmark, the results for 1, 2, 3, and 4 cycles are shown side-by-side. The range
in which the optimal solution lies for each problem instance is represented by a bar extending from
the lower bound to the upper bound. The upper bound for any multi-cycle problem instance can be
no higher than the upper bound for the corresponding single-cycle problem instance because there is
no requirement that the vectors be distinct. Thus, for instances where the upper bound proved by the
MILP solver is greater than the corresponding single-cycle upper bound, we report the single-cycle
upper bound in its place.

As can be seen from Figure 12, the use of multiple input vectors does not significantly de-
crease the circuit delay. Only benchmark c499 shows a significant decrease in the lower bounds
for the multiple-vector cases. Even in this case, there may still not be any real improvement because
the single-vector range still overlaps with multiple-vector ranges. It is likely that the potential for
slightly improving the delay of c499 is due to its many parallel critical paths; the use of multi-
ple input vectors may allow some degradation balancing between them. For the other benchmarks,
which have few critical paths, the use of multiple vectors has little impact. Although the idea sounds
promising, it appears to have little impact. Therefore, we recommend using the single cycle tech-
nique described in the preceding sections.

8. SENSITIVITY ANALYSIS

As shown in the previous sections, internal node control substantially reduces NBTI degradation
on average. However, there is great variability among the benchmarks, with reductions ranging
from 1.8% to 56.8% for the ISCAS85 circuits and 4.3% to 50.0% for the DesignWare benchmarks.
In this section, we analyze two sources of variance, tightness of the synthesis timing constraint and
combinational logic path length.

8.1. Tightness of Synthesis Constraint

The tightness of the synthesis timing constraint can impact the effectiveness of INC because it af-
fects the distribution of slack among paths. For example, Figure 13 shows the histograms of primary
output slacks for the add64_rpl benchmark for timing constraints ranging from 1.1 ns to 2.0 ns. For
the tightest constraint, the large majority of the outputs have little slack, while for the loosest con-
straint, many of the outputs have slacks that are large fractions of the total delay. This observation
suggests that the effectiveness of INC may be correlated with the tightness of the timing constraint
because adding internal node control incurs some additional delay. More gates on non-critical paths
can be modified with INC without increasing the overall delay. In this section we analyze this effect
and show that our technique is useful even under tight timing constraints. We also highlight the
importance of including path slacks when reporting experimental results for techniques that incur
some additional path delay, e.g., INC.

We synthesized each benchmark for ten different timing constraints in 0.1 ns intervals, starting
from the tightest successful constraint and, using the heuristic, determined the percent reduction
in NBTI-induced delay.Figure 14 shows scatter plots for the add64, addsub64, and mult32 bench-
marks3. Plots are not shown for the ash64, bsh64, fp_addsub64, fp_mult32, and crc64 benchmarks

3 We show the scatter plots instead of reporting correlation coefficients, which can be significantly affected by outliers due
to the small data set size.
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(a) 1.1 ns delay constraint.
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(b) 1.2 ns delay constraint.
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(c) 1.4 ns delay constraint.

N
u
m

b
e
r 

o
f 
O

u
tp

u
ts

Slack (ns)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(d) 1.6 ns delay constraint.

N
u
m

b
e
r 

o
f 
O

u
tp

u
ts

Slack (ns)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

(e) 1.8 ns delay constraint.
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(f) 2.0 ns delay constraint.

Figure 13. Histograms of primary output slacks for benchmark add64_rpl with timing constraints ranging from 1.1 ns to
2.0 ns.
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(b) add64_cla
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(c) add64_pparch
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(d) addsub64_rpl
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(e) addsub64_cla

 0

 20

 40

 60

 80

 100

 1.2  1.4  1.6  1.8  2  2.2

%
 I
m

p
ro

v
e
m

e
n
t

Delay Constraint (ns)

(f) addsub64_pparch
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Figure 14. Timing constraint correlation results for large benchmarks.
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because their output slack distributions were not dependent on the timing constraints and thus the
delay reductions were not correlated with the constraints.

The results are mixed. Benchmarks add64_cla, addsub64_cla, and mult32_csa show positive cor-
relation, with p-values of 0.242, 0.046, and 0.004, respectively. Benchmarks add64_pparch and
addsub64_pparch show slight negative correlation, with p-values of 0.409 and 0.036, respectively.
Finally, add64_rpl, addsub64_rpl, and mult32_pparch show little or no correlation, with p-values
of 0.954, 0.682, and 0.448. The p-value indicates the probability that the same correlation would
be observed in samples from a population with no correlation. Thus, using the traditional 95% sig-
nificance level, a p-value less than 0.05 indicates that the correlation is statistically significant. As
mentioned in the previous paragraph, outliers due to the discrete nature of the circuits and imper-
fections in the heuristic can increase the p-value.

For the addition-type circuits, the results are divided by architecture, with the carry-lookahead
circuits showing strong correlation, the parallel-prefix circuits showing slight negative correlation,
and the ripple-carry circuits showing no correlation. The carry-select multiplication circuit shows
positive correlation, while the parallel-prefix shows little correlation. The negative correlation for
the parallel-prefix adders could be inherent in the circuit structure or could be due to the heuristic.
The circuits are too large for optimal solutions to be determined using the MILP solver, so it is not
guaranteed that this trend exists for the optimal solutions.

From this, we conclude that the benefit of the proposed technique often depends on slack distri-
butions. However, this dependence is highly dependent on design style. It is therefore important to
include slack information when evaluating and discussing INC and other similar techniques.

8.2. Combinational Logic Path Length

The number of gates in the critical path may affect the variance in the results, especially for bench-
mark sets with relatively short critical paths, such as the ISCAS85 set. Due to the short critical paths
of these circuits, the removal of NBTI from a single gate on the critical path has a large impact on
the percentage improvement. In the best case, INC removes NBTI stress from all critical path gates.
Thus, for circuits such as these with critical path lengths of 10 to 20 gates, each gate represents 5%
to 10% of the total delay. Therefore, removing NBTI stress from one additional gate can add 5–10
percentage points to the delay improvement.

Although INC leads to only small NBTI delay reductions for some of the ISCAS85 benchmarks
(e.g., a 3.2% decrease for c1908) and showed great variance across the set (e.g., up to a 55.0%
improvement for c2670), we suspect that, as mentioned in the preceding paragraph, sets of larger
circuits will show higher minimum reductions and lower variance. In this section, we provide ex-
perimental evidence indicating that INC may work better for larger circuits than is suggested by the
results on the small ISCAS85 benchmarks.

We provide an intuitive argument and experimental results consistent with this intuition. This ex-
planation is not a proof, but merely supporting evidence that our INC technique is more-consistently
effective on larger circuits. We treat the removal of NBTI stress from each gate as independent
events. In reality, there is some dependence between successive gates. However, this dependence is
limited to a few levels of logic because of the filtering effect of this logic, and thus we can safely as-
sume independence. Under this assumption, the variance in the number of gates with NBTI removed
will be smaller for longer paths.

We tested this hypothesis by developing two sets of random circuits, one with short critical paths
and one with long critical paths. To make the random circuits as realistic as possible, we employed
the CGEN circuit parametrization and generation package [Kundarewich 2002; Kundarewich and
Rose 2004]. CGEN was designed to help CAD researchers develop randomized circuits with struc-
tures approximating those in real designs to test their algorithms. The package includes two utilities.
The first is used to characterize a circuit by extracting characteristics such as circuit shape, average
fan-in, and average fan-out. The second utility takes a set of these parameters as input and generates
a random circuit with similar characteristics.
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Table VI. Analysis of Improvement Dependent on
Path Length

Circuit Set Average (%) Standard Deviation (%)

Short 22.4 19.8
Long 42.0 9.3

We characterized ISCAS85 benchmark c880 and generated 50 random circuits for the short crit-
ical path circuit set. To create a long critical path circuit to characterize, we linked four instances of
the c880 circuit serially, arbitrarily connecting the outputs of one stage to the inputs of the next. 50
random circuits were generated from the characterization of this circuit to create the long critical
path circuit set. Each of these circuits was then solved for the IVC and INC cases as described in
Section 6.2. Due to the size of the long circuits, the MILP solver was set to stop when the upper and
lower bounds were within 0.5% of each other.

The results of this test are shown in Table VI. We find that the long circuits have a standard
deviation in improvement of 9.3%, about half the 19.8% deviation of the short circuits. This result is
in line with our hypothesis and provides evidence that our INC technique has better, more-consistent
results for longer paths.

9. CONCLUSION

We have proposed the use of internal node control to minimize the impact of static NBTI on
circuits with frequently-idle functional units. Placement of internal node controls, which allows the
outputs of an INC-modified gate to be forced to a specific value during sleep mode, lead to a 30–
60% decrease in static NBTI-induced delay and can decrease total path delay by 9.4% when NBTI
degradation is severe.

The problem is NP-complete, so we developed a linear-time heuristic that quickly produces
good solutions. The problem is tractable for tree-structured circuits, so the heuristic first partitions
a circuit into trees by removing edges. By ensuring that the gates on the critical path in the original
circuit remain in the same partition, the optimal solutions to these partitions can be used to provide
good solutions for the overall circuit. The heuristic solutions were within 0.24% of optimal post-
wear delay on average and resulted in only a 1.6% increase in area. Using the optimal formulation,
we that using multiple input vectors does not lead to significant reduction in the degradation. A
single static input vector, combined with internal node control, is sufficient.
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