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Abstract—Microprocessor designers have been torn between
tight constraints on the amount of on-chip cache memory and
the high latency of off-chip memory, such as dynamic random
access memory. Accessing off-chip memory generally takes an
order of magnitude more time than accessing on-chip cache, and
two orders of magnitude more time than executing an instruction.
Computer systems and microarchitecture researchers have pro-
posed using hardware data compression units within the memory
hierarchies of microprocessors in order to improve performance,
energy efficiency, and functionality. However, most past work,
and all work on cache compression, has made unsubstantiated
assumptions about the performance, power consumption, and
area overheads of the proposed compression algorithms and
hardware. It is not possible to determine whether compression
at levels of the memory hierarchy closest to the processor is
beneficial without understanding its costs. Furthermore, as we
show in this paper, raw compression ratio is not always the most
important metric.

In this work, we present a lossless compression algorithm that
has been designed for fast on-line data compression, and cache
compression in particular. The algorithm has a number of novel
features tailored for this application, including combining pairs
of compressed lines into one cache line and allowing parallel
compression of multiple words while using a single dictionary
and without degradation in compression ratio. We reduced the
proposed algorithm to a register transfer level hardware im-
plementation, permitting performance, power consumption, and
area estimation. Experiments comparing our work to previous
work are described.

Index Terms–Cache compression, effective system-wide com-
pression ratio, pair matching, parallel compression, hardware
implementation

I. INTRODUCTION

This paper addresses the increasingly important issue of control-
ling off-chip communication in computer systems in order to maintain
good performance and energy efficiency. Microprocessor speeds have
been increasing faster than off-chip memory latency, raising a “wall”
between processor and memory. The ongoing move to chip-level
multiprocessors (CMPs) is further increasing the problem; more
processors require more accesses to memory, but the performance
of the processor–memory bus is not keeping pace. Techniques that
reduce off-chip communication without degrading performance have
the potential to solve this problem. Cache compression is one such
technique; data in last-level on-chip caches, e.g., L2 caches, are
compressed, resulting in larger usable caches. In the past, researchers
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have reported that cache compression can improve the performance
of uniprocessors by up to 17% for memory-intensive commercial
workloads [1] and up to 225% for memory-intensive scientific
workloads [2]. Researchers have also found that cache compression
and prefetching techniques can improve CMP throughput by 10%–
51% [3]. However, past work did not demonstrate whether the
proposed compression/decompression hardware is appropriate for
cache compression, considering the performance, area, and power
consumption requirements. This analysis is also essential to permit
the performance impact of using cache compression to be estimated.

Cache compression presents several challenges. First, decompres-
sion and compression must be extremely fast: a significant increase
in cache hit latency will overwhelm the advantages of reduced
cache miss rate. This requires an efficient on-chip decompression
hardware implementation. Second, the hardware should occupy little
area compared to the corresponding decrease in the physical size
of the cache, and should not substantially increase the total chip
power consumption. Third, the algorithm should losslessly compress
small blocks, e.g., 64-byte cache lines, while maintaining a good
compression ratio (throughout this paper we use the term compression
ratio to denote the ratio of the compressed data size over the original
data size). Conventional compression algorithm quality metrics, such
as block compression ratio, are not appropriate for judging quality
in this domain. Instead, one must consider the effective system-wide
compression ratio (defined precisely in Section IV-C). This paper
will point out a number of other relevant quality metrics for cache
compression algorithms, some of which are new. Finally, cache com-
pression should not increase power consumption substantially. The
above requirements prevent the use of high-overhead compression
algorithms such as the PPM family of algorithms [4] or Burrows-
Wheeler transforms [5]. A faster and lower-overhead technique is
required.

II. RELATED WORK AND CONTRIBUTIONS

Researchers have commonly made assumptions about the implica-
tions of using existing compression algorithms for cache compression
and the design of special-purpose cache compression hardware.

A number of researchers have assumed the use of general-purpose
main memory compression hardware for cache compression. IBM’s
MXT (Memory Expansion Technology) [6] is a hardware memory
compression/decompression technique that improves the performance
of servers via increasing the usable size of off-chip main memory.
Data are compressed in main memory and decompressed when
moved from main memory to the off-chip shared L3 cache. Memory
management hardware dynamically allocates storage in small sectors
to accommodate storing variable-size compressed data block without
the need for garbage collection. IBM reports compression ratios
(compressed size divided by uncompressed size) ranging from 16%
to 50%. X-Match is a dictionary-based compression algorithm that



2

has been implemented on an FPGA [7]. It matches 32-bit words
using a content addressable memory that allows partial matching with
dictionary entries and outputs variable-size encoded data that depends
on the type of match. To improve coding efficiency, it also uses
a move-to-front coding strategy and represents smaller indices with
fewer bits. Although appropriate for compressing main memory, such
hardware usually has a very large block size (1 KB for MXT and up
to 32 KB for X-Match), which is inappropriate for compressing cache
lines. It is shown that for X-Match and two variants of Lempel-Ziv
algorithm, i.e., LZ1 and LZ2, the compression ratio for memory data
deteriorates as the block size becomes smaller [7]. For example, when
the block size decreases from 1 KB to 256 B, the compression ratio
for LZ1 and X-Match increase by 11% and 3%. It can be inferred
that the amount of increase in compression ratio could be even larger
when the block size decreases from 256 B to 64 B. In addition, such
hardware has performance, area, or power consumption costs that
contradict its use in cache compression. For example, if the MXT
hardware were scaled to a 65 nm fabrication process and integrated
within a 1 GHz processor, the decompression latency would be 16
processor cycles, about twice the normal L2 cache hit latency.

Other work proposes special-purpose cache compression hardware
and evaluates only the compression ratio, disregarding other impor-
tant criteria such as area and power consumption costs. Frequent
pattern compression (FPC) [8] compresses cache lines at the L2 level
by storing common word patterns in a compressed format. Patterns
are differentiated by a 3-bit prefix. Cache lines are compressed to
predetermined sizes that never exceed their original size to reduce
decompression overhead. Based on logical effort analysis [9], for a
64-byte cache line, compression can be completed in three cycles and
decompression in five cycles, assuming 12 fan-out-four (FO4) gate
delays per cycle. To the best of our knowledge, there is no register-
transfer-level hardware implementation or FPGA implementation of
FPC, and therefore its exact performance, power consumption, and
area overheads are unknown. Although the area cost for FPC [8] is not
discussed, our analysis shows that FPC would have an area overhead
of at least 290 K gates, almost eight times the area of the approach
proposed in this paper, to achieve the claimed 5-cycle decompression
latency. This will be examined in detail in Section VI-C3.

In short, assuming desirable cache compression hardware with
adequate performance and low area and power overheads is common
in cache compression research [2], [10]–[15]. It is also under-
standable, as the microarchitecture community is more interested in
microarchitectural applications than compression. However, without a
cache compression algorithm and hardware implementation designed
and evaluated for effective system-wide compression ratio, hardware
overheads, and interaction with other portions of the cache compres-
sion system, one can not reliably determine whether the proposed
architectural schemes are beneficial.

In this work, we propose and develop a lossless compression
algorithm, named C-Pack, for on-chip cache compression. The main
contributions of our work follow:

1) C-Pack targets on-chip cache compression. It permits a good
compression ratio even when used on small cache lines.
The performance, area, and power consumption overheads
are low enough for practical use. This contrasts with other
schemes such as X-match which require complicated hardware
to achieve an equivalent effective system-wide compression
ratio [7].

2) We are the first to fully design, optimize, and report per-
formance and power consumption of a cache compression
algorithm when implemented using a design flow appropriate
for on-chip integration with a microprocessor. Prior work in
cache compression does not adequately evaluate the overheads
imposed by the assumed cache compression algorithms.

3) We demonstrate when line compression ratio reaches 50%,
further improving it has little impact on effective system-wide
compression ratio.

4) C-Pack is twice as fast as the best existing hardware implemen-
tations potentially suitable for cache compression. For FPC to
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Fig. 1. System architecture in which cache compression is used.

match this performance, it would require at least 8× the area
of C-Pack.

5) We address the challenges in design of high-performance cache
compression hardware while maintaining some generality, i.e.,
our hardware can be easily adapted to other high-performance
lossless compression applications.

III. CACHE COMPRESSION ARCHITECTURE

In this section, we describe the architecture of a CMP system in
which the cache compression technique is used. We consider private
on-chip L2 caches, because in contrast to a shared L2 cache, the
design styles of private L2 caches remain consistent when the number
of processor cores increases. We also examine how to integrate data
prefetching techniques into the system.

Figure 1 gives an overview of a CMP system with n processor
cores. Each processor has private L1 and L2 caches. The L2 cache
is divided into two regions: an uncompressed region (L2 in the
figure) and a compressed region (L2C in the figure). For each pro-
cessor, the sizes of the uncompressed region and compression region
can be determined statically or adjusted to the processor’s needs
dynamically. In extreme cases, the whole L2 cache is compressed
due to capacity requirements, or uncompressed to minimize access
latency. We assume a three-level cache hierarchy consisting of L1
cache, uncompressed L2 region, and compressed L2 region. The L1
cache communicates with the uncompressed region of the L2 cache,
which in turn exchanges data with the compressed region through
the compressor and decompressor, i.e., an uncompressed line can be
compressed in the compressor and placed in the compressed region,
and vice versa. Compressed L2 is essentially a virtual layer in the
memory hierarchy with larger size, but higher access latency, than
uncompressed L2. Note that no architectural changes are needed
to use the proposed techniques for a shared L2 cache. The only
difference is that both regions contain cache lines from different
processors instead of a single processor, as is the case in a private
L2 cache.

IV. C-PACK COMPRESSION ALGORITHM

This section gives an overview of the proposed C-Pack compres-
sion algorithm. We first briefly describe the algorithm and several
important features that permit an efficient hardware implementation,
many of which would be contradicted for a software implementation.
We also discuss the design trade-offs and validate the effectiveness
of C-Pack in a compressed-cache architecture.

A. Design Constraints and Challenges

We first point out several design constraints and challenges par-
ticular to the cache compression problem:
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TABLE I
PATTERN ENCODING FOR C-PACK

Code Pattern Output Length (b) Freq. (%)

00 zzzz (00) 2 39.7

01 xxxx (01)BBBB 34 32.1

10 mmmm (10)bbbb 6 7.6

1100 mmxx (1100)bbbbBB 24 6.1

1101 zzzx (1101)B 12 7.3

1110 mmmx (1110)bbbbB 16 7.2

1) Cache compression requires hardware that can de/compress a
word in only a few CPU clock cycles. This rules out soft-
ware implementations and has great influence on compression
algorithm design.

2) Cache compression algorithms must be lossless to maintain
correct microprocessor operation.

3) The block size for cache compression applications is smaller
than for other compression applications such as file and main
memory compression. Therefore, achieving a low compression
ratio is challenging.

4) The complexity of managing the locations of cache lines after
compression influences feasibility. Allowing arbitrary, i.e., bit-
aligned, locations would complicate cache design to the point
of infeasibility. A scheme that permits a pair of compressed
lines to fit within an uncompressed line is advantageous.

B. C-Pack Algorithm Overview

C-Pack (for Cache Packer) is a lossless compression algorithm
designed specifically for high-performance hardware-based on-chip
cache compression. It achieves a good compression ratio when used
to compress data commonly found in microprocessor low-level on-
chip caches, e.g., L2 caches. Its design was strongly influenced
by prior work on pattern-based partial dictionary match compres-
sion [16]. However, this prior work was designed for software-
based main memory compression and did not consider hardware
implementation.

C-Pack achieves compression by two means: (1) it uses statically
decided, compact encodings for frequently appearing data words and
(2) it encodes using a dynamically updated dictionary allowing adap-
tation to other frequently appearing words. The dictionary supports
partial word matching as well as full word matching. The patterns
and coding schemes used by C-Pack are summarized in Table I,
which also reports the actual frequency of each pattern observed in
the cache trace data file mentioned in Section IV-D. The ‘Pattern’
column describes frequently appearing patterns, where ‘z’ represents
a zero byte, ‘m’ represents a byte matched against a dictionary entry,
and ‘x’ represents an unmatched byte. In the ‘Output’ column, ‘B’
represents a byte and ‘b’ represents a bit.

The C-Pack compression and decompression algorithms are il-
lustrated in Figure 2. We use an input of two words per cycle
as an example in Figure 2. However, the algorithm can be easily
extended to cases with one, or more than two, words per cycle.
During one iteration, each word is first compared with patterns
“zzzz” and “zzzx”. If there is a match, the compression output is
produced by combining the corresponding code and unmatched bytes
as indicated in Table I. Otherwise, the compressor compares the word
with all dictionary entries and finds the one with the most matched
bytes. The compression result is then obtained by combining code,
dictionary entry index, and unmatched bytes, if any. Words that fail
pattern matching are pushed into the dictionary. Figure 3 shows the
compression results for several different input words. In each output,
the code and the dictionary index, if any, are enclosed in parentheses.
Although we used a 4-word dictionary in Figure 3 for illustration,
the dictionary size is set to 64 B in our implementation. Note that the
dictionary is updated after each word insertion, which is not shown
in Figure 3.

During decompression, the decompressor first reads compressed
words and extracts the codes for analyzing the patterns of each word,
which are then compared against the codes defined in Table I. If
the code indicates a pattern match, the original word is recovered
by combining zeroes and unmatched bytes, if any. Otherwise, the
decompression output is given by combining bytes from the input
word with bytes from dictionary entries, if the code indicates a
dictionary match.

The C-Pack algorithm is designed specifically for hardware im-
plementation. It takes advantage of simultaneous comparison of
an input word with multiple potential patterns and dictionary en-
tries. This allows rapid execution with good compression ratio in
a hardware implementation, but may not be suitable for a soft-
ware implementation. In general, software must process operations
sequentially. For example, matching against multiple patterns can
be prohibitively expensive for software implementations when the
number of patterns or dictionary entries is large. C-Pack’s inherently
parallel design allows an efficient hardware implementation, in which
pattern matching, dictionary matching, and processing multiple words
are all done simultaneously. In addition, we chose various design
parameters such as dictionary replacement policy and coding scheme
to reduce hardware complexity, even if our choices slightly degrades
the effective system-wide compression ratio. Details are described in
Section IV-D.

In the proposed implementation of C-Pack, two words are pro-
cessed in parallel per cycle. Achieving this, while still permitting
an accurate dictionary match for the second word, is challenging.
Let us consider compressing two similar words that have not been
encountered by the compression algorithm recently, assuming the
dictionary uses first-in first-out (FIFO) as its replacement policy.
The appropriate dictionary content when processing the second word
depends on whether the first word matched a static pattern. If so,
the first word will not appear in the dictionary. Otherwise, it will
be in the dictionary, and its presence can be used to encode the
second word. Therefore, the second word should be compared with
the first word and all but the first dictionary entry in parallel. This
improves compression ratio compared to the more naı̈ve approach of
not checking with the first word. Therefore, we can compress two
words in parallel without compression ratio degradation.

C. Effective System-Wide Compression Ratio and Pair-

Matching Compressed Line Organization

Compressed cache organization is a difficult task because different
compressed cache lines may have different lengths. Researchers have
proposed numerous variants of line segmentation techniques [1], [2],
[10] to handle this problem. The main idea is to divide compressed
cache lines into fixed-size segments and use indirect indexing to
locate all the segments for a compressed line. Hallnor et al. [2]
proposed IIC-C, i.e., indirect index cache with compression. The pro-
posed cache design decouples accesses across the whole cache, thus
allowing a fully-associative placement. Each tag contains multiple
pointers to smaller fixed-size data blocks to represent a single cache
block. However, the tag storage overhead of IIC-C is significant, e.g.,
21% given a 64 B line size and 512 KB cache size, compared to less
than 8% for our proposed pair-matching based cache organization. In
addition, the hardware overhead for addressing a compressed line is
not discussed in the paper. The access latency in IIC-C is attributed to
three primary sources, namely additional hit latency due to sequential
tag and data array access, tag lookup induced additional hit and miss
latency, and additional miss latency due to the overhead of software
management. However, the authors do not report worst-case latency.
Lee et al. [10] proposed selective compressed caches using a similar
idea. Only the cache lines with a compression ratio of less than 0.5
are compressed so that two compressed cache lines can fit in the
space required for one uncompressed cache line. However, this will
inevitably result in a larger system-wide compression ratio compared
to that of pair-matching based cache because each compression
ratio, not the average, must be less than 0.5, for compression to
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occur. The hardware overhead and worst-case access latency for
addressing a compressed cache line is not discussed. Alameldeen
et al. [1] proposed decoupled variable-segment cache, where the
L2 cache dynamically allocates compressed or uncompressed lines
depending on whether compression eliminates a miss or incurs an
unnecessary decompression overhead. However, this approach has
significant performance and area overhead, discussed later in this
section.

We propose the idea of pair-matching to organize compressed
cache lines. In a pair-matching based cache, the location of a newly
compressed line depends on not only its own compression ratio but
also the compression ratio of its “partner”. More specifically, the
compressed line locator first tries to locate the cache line (within
the set) with sufficient unused space for the compressed line without
replacing any existing compressed lines. If no such line exists, one or
two compressed lines are evicted to store the new line. A compressed
line can be placed in the same line with a partner only if the sum
of their compression ratios is less than 100%. Note that successful
placement of a line does not require that it have a compression
ratio smaller than 50%. It is only necessary that the line, combined
with a “partner line” be as small as an uncompressed line. To
reduce hardware complexity, the candidate partner lines are only
selected from the same set of the cache. Compared to segmentation
techniques which allow arbitrary positions, pair-matching simplifies
designing hardware to manage the locations of the compressed lines.

More specifically, line extraction in a pair-matching based cache
only requires parallel address tag match and takes a single cycle
to accomplish. For line insertion, neither LRU list search nor set
compaction is involved.

Figure 4 illustrates the structure of an 8-way associative pair-
matching based cache. Since any line may store two compressed
lines, each line has two valid bits and tag fields to indicate status and
indexing. When compressed, two lines share a common data field.
There are two additional size fields to indicate the compressed sizes
of the two lines. Whether a line is compressed or not is indicated by
its size field. A size of zero is used to indicate uncompressed lines.
For compressed lines, size is set to the line size for an empty line,
and the actual compressed size for a valid line. For a 64-byte line
in a 32-bit architecture the tag is no longer than 32 bits, hence the
worst-case overhead is less than 32 (tag) + 1 (valid) + 2 × 7 (size)
bits, i.e., 6 bytes.

As we can see in Figure 4, the compressed line locator uses
the bitlines for valid bits and compressed line sizes to locate a
newly compressed line. Note that only one compressed line locator is
required for the entire compressed cache. This is because for a given
address, only the cache lines in the set which the specific address
is mapped to are activated thanks to the set decoder. Each bitline
is connected to a sense amplifier, which usually requires several
gates [17], for signal amplification and delay reduction. The total area
overhead is approximately 500 gates plus the area for the additional
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bitlines, compared to an uncompressed cache.

Based on the “pair-matching” concept, a newly compressed line
has an effective compression ratio of 100% when it takes up a whole
cache line, and an effective compression ratio of 50% when it is
placed with a partner in the same cache line. Note that when a com-
pressed line is placed together with its partner without evicting any
compressed lines, its partner’s effective compression ratio decreases
to 50%. The effective system-wide compression ratio is defined as
the average of the effective compression ratios of all cache lines in
a compressed cache. It indicates how well a compression algorithm
performs for pair-matching based cache compression. The concept
of effective compression ratio can also be adapted to a segmentation
based approach. For example, for a cache line with 4 fixed-length
segments, a compressed line has an effective compression ratio
of 25% when it takes up one segment, 50% for two segments,
and so on. Varying raw compression ratio between 25% and 50%
has little impact on the effective cache capacity of a four-part
segmentation based technique. Figure 5 illustrates the distribution
of raw compression ratios for different cache lines derived from real
cache data. The x-axis shows different compression ratio intervals and
y-axis indicates the percentage of all cache lines in each compression
ratio interval. For real cache trace data, pair-matching generally
achieves a better effective system-wide compression ratio (58%) than
line segmentation with four segments per line (62%) and the same
compression ratio as line segmentation with eight segments, which
would impose substantial hardware overhead.

We now compare the performance and hardware overhead of pair-
matching based cache with decoupled variable-segment cache. The
hardware overhead can be divided into two parts: tag storage overhead
and compressed line locator overhead. For a 512 KB L2 cache with
a line size of 64 bytes, the tag storage overhead is 7.81% of the
total cache size for both decoupled variable-segment cache and pair-
matching based cache. The area overhead of the compressed line
locator is significant in a decoupled variable-segment cache. During
line insertion, a newly inserted line may be larger than the LRU
line plus the unused segments. In that case, prior work proposed
replacing two lines by replacing the LRU line and searching the
LRU list to find the least-recently used line that ensures enough

space for the newly arrived line [1]. However, maintaining and
updating the LRU list will result in great area overhead. Moreover,
set compaction may be required after line insertion to maintain the
contiguous storage invariant. This can be prohibitively expensive in
terms of area cost because it may require reading and writing all
the set’s data segments. Cache compression techniques that assume
it are essentially proposing to implement kernel memory allocation
and compaction in hardware [18]. However, for pair-matching based
cache, the area of compressed line locator is negligible (less than
0.01% of the total cache size).

The performance overhead comes from two primary sources: ad-
dressing a compressed line and compressed line insertion. The worst-
case latency to address a compressed line in a pair-matching based
cache is 1 cycle. For a 4-way associative decoupled variable-segment
cache with 8 segments per line, each set contains 8 compression
information tags and 8 address tags because each set is constrained
to hold no more than eight compressed lines. The compression infor-
mation tag indicates (1) whether the line is compressed and (2) the
compressed size of the line. Data segments are stored contiguously
in address tag order. In order to extract a compressed line from a set,
eight segment offsets are computed in parallel with the address tag
match. Therefore, deriving the segment offset for the last line in the
set requires summing up all the previous 7 compressed sizes, which
incurs a significant performance overhead. In addition, although the
cache array may be split into two banks to reduce line extraction
latency, addressing the whole compressed line may still take 4 cycles
in the worst case. To insert a compressed line, the worst-case latency
is 2 cycles for pair-matching based cache with a peak frequency of
more than 1 GHz. The latency of a decoupled variable-segment cache
is not reported [1]. However, as explained in the previous paragraph,
LRU list searching and set compaction introduce great performance
overhead. Therefore, we recommend pair-matching and use the pair-
matching effective system-wide compression ratio as a metric for
comparing different compression algorithms.

D. Design Tradeoffs and Details

In this section, we present several design tradeoffs encountered
during the design and implementation of C-Pack. We also validate
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TABLE II
EFFECTIVE SYSTEM-WIDE COMPRESSION RATIOS FOR C-PACK

Effective system-wide compression ratio (%)

Dictionary size (B) 16 32 64 128 256 512

FIFO
Huffman 58.14 57.56 57.46 57.46 57.66 57.73

Two-level 58.81 58.47 57.95 58.30 58.29 58.68

LRU
Huffman 58.13 57.70 57.61 57.91 58.07 58.17

Two-level 58.97 58.54 58.38 58.73 58.72 58.92

Two Huffman 58.05 57.61 57.48 57.46 57.66 57.73

FIFOs Two-level 58.71 58.49 57.97 58.30 58.29 58.68

RLE Huffman 57.20 56.68 56.63 56.73 56.75 56.87

w/ LRU Three-level 57.66 57.31 57.08 57.11 57.35 57.44

C-Pack’s effectiveness in pair-matching.

Dictionary design and pattern coding: We evaluated the
impact of different parameters during algorithm and hardware design
and optimization, including dictionary replacement policy, dictio-
nary size, and pattern coding scheme. The effective system-wide
compression ratio of C-Pack was evaluated based on cache trace
data collected from a full microprocessor, operating system, and
application simulation of various workloads, e.g., media applications
and SPEC CPU2000 benchmarks on a simulated 1 GHz processor.
The cache is set to 8-way associative with a 64 B line size. The
evaluation results are shown in Table II. The candidates for different
parameters and the final selected values are shown in Table III, in
which the first column shows various parameters, the second column
shows the corresponding candidates for each parameter, and the third
column shows the selected values. Note that the two or three level
coding scheme in Table III refers to one in which the code length
is fixed within the same level, but differs from level to level. For
example, a two-level code can contain 2-bit and 4-bit codes only.

The criteria of choosing design parameters can be explained as
follows. For design parameters that have only have small impact on
design complexity, we choose values to optimize compression ratio.
For design parameters that have great impact on design complexity,
we choose the simplest design when the design complexity varies a
lot as the current design parameter changes. For replacement policy,
hardware LRU algorithm maintains a table of n × n bits given a
dictionary size of n words. The kth row and kth column is updated on
every access to word k, which complicates hardware design. Using 2
FIFO queues to simulate LRU essentially doubles the dictionary size.
In addition, moving the words between two queues adds additional
hardware complexity. Combining FIFO with RLE also complicates
hardware design because special care is needed when the current word
has been encountered several times before. For all of the replacement
policies except the simplest FIFO, dictionary updates depend not

only on the current word but also on recently processed words. This
complicates algorithm design because decompression of the second
word depends on the dictionary updates due to decompression of the
first word. A replacement policy that records the exact sequence of
recently processed words would incur a large area overhead during
decompression hardware design. This is also true when selecting a
coding scheme because for Huffman coding, there is a larger variance
in the length of a compressed word, thus making it more difficult to
determine the location of the second compressed word. Therefore,
choosing Huffman coding also negatively affects the decompression
hardware design. However, varying the dictionary size only affects
the area by a negligible amount (in the order of several hundred
gates). Moreover, it has no impact on the structure of compression
or decompression hardware. Therefore, we choose the dictionary size
that minimizes the compression ratio. With the selected parameters,
the effective system-wide compression ratio for a 64 byte cache line
is 58.47% for our test data.

Trade-Off Between Area and Decompression Latency:
Decompression latency is a critically important metric for cache
compression algorithms. During decompression, the processor may
stall while waiting for important data. If the decompression latency
is high, it can undermine potential performance improvements. It
is possible to use increased parallelism to increase the throughput
of a hardware implementation of C-Pack, at the cost of increased
area. For example, decompressing the second word by combining
bytes from the input and the dictionary is challenging because the
locations of bytes that compose the decompression output depend on
the codes of the first word and second word. Given that each code can
have 6 possible values, as indicated in Table I, there are 36 possible
combinations of the two codes, each of which corresponds to a unique
combination of bytes from the input and dictionary. If we double the
number of words processed in one cycle, i.e., 4 words per cycle, there
can be 1,296 possible combinations for decompressing the fourth
word, thereby dramatically increasing the area cost. To achieve a
balance between area and throughput, we decided to compress or
decompress two words per cycle.

Evaluating Compression Ratio for C-Pack Pair-Matching:
In order to determine whether the mean and variance of the com-
pression ratio achieved by C-Pack is sufficient for most lines to find
partners, we simulated a “pair-matching” based cache using the cache
trace data described above to compute the probability of two cache
lines fitting within one uncompressed cache line. The simulated cache
size ranges from 64 KB to 2 MB and the set associativity ranges
from 4 to 8. We adopt a “best fit + best fit” policy: for a given
compressed cache line, we first try to find the cache line with minimal
but sufficient unused space. If the attempt fails, the compressed line
replaces one or two compressed lines. This scheme is penalized only
when two lines are evicted to store the new line. Experimental results
indicate that the worst-case probability of requiring the eviction of
two lines is 0.55%, i.e., the probability of fitting a compressed
line into the cache without additional penalty is at least 99.45%.
We implemented and synthesized this line replacement policy in
hardware. The delay and area cost are reported in Table IV.

V. C-PACK HARDWARE IMPLEMENTATION

In this section, we provide a detailed description of the proposed
hardware implementation of C-Pack. Note that although the proposed
compressor and decompressor mainly target on-line cache compres-
sion, they can be used in other data compression applications, such
as memory compression and network data compression, with few or
no modifications.

A. Compression Hardware

This section describes the design and optimization of the proposed
compression hardware. It first gives an overview of the proposed
compressor architecture, and then discusses the data flow among
different pipeline stages inside the compressor.
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TABLE III
DESIGN CHOICES FOR DIFFERENT PARAMETERS

Parameters Candidates Selected Candidate

Dictionary
(1) First-in first out (FIFO)

replacement
(2) Least recently used (LRU) FIFO – least HW complexity

policy
(3) Using two FIFO queues to simulate LRU only 1.32% higher CR than best case

(4) FIFO combined with run-length encoding (RLE)

(1) Huffman coding
Two-level coding due to best HW complexity

Coding scheme
(2) Two or Three-level coding

with at most 0.95% increase in CR given the same

dictionary size and replacement policy

Dictionary size Ranging from 16 B to 512 B 64 B – optimal CR for FIFO and low HW cost

Backup 
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32
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32
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Fig. 6. Compressor architecture.

Compressor Architecture: Figure 6 illustrates the hardware
compression process. The compressor is decomposed into three
pipeline stages. This design supports incremental transmission, i.e.,
the compressed data can be transmitted before the whole data block
has been compressed. This reduces compression latency. We use bold
and italic fonts to represent the devices and signals appearing in
figures.

1) Pipeline Stage 1: The first pipeline stage performs pattern
matching and dictionary matching on two uncompressed words
in parallel. As illustrated in Figure 6, comparator array
1 matches the first word against pattern “zzzz” and “zzzx”
and comparator array 2 matches it with all the dictionary
entries, both in parallel. The same is true for the second
word. However, during dictionary matching, the second word
is compared with the first word in addition to the dictionary
entries. The pattern matching results are then encoded using
priority encoders 2 and 3, which are used to determine
whether to push these two words into the FIFO dictionary.
Note that the first word and the second word are processed
simultaneously to increase throughput.

2) Pipeline Stage 2: This stage computes the total length of the
two compressed words and generates control signals based
on this length. Based on the dictionary matching results from
Stage 1, priority encoders 1 and 4 find the dictionary entries
with the most matched bytes and their corresponding indices,

which are then sent to word length generators 1 and 2 to
calculate the length of each compressed word. The total length
calculator adds up the two lengths, represented by signal
total length. The length accumulator then adds the value of
total length to two internal signals, namely sum partial and
sum total. Sum partial records the number of compressed bits
stored in register array 1 that have not been transmitted.
Whenever the updated sum partial value is larger than 64
bits, sum partial is decreased by 64 and signal store flag is
generated indicating that the 64 compressed bits in register
array 1 should be transferred to either the left half or the
right half of the 128-bit register array 2, depending on the
previous state of register array 2. It also generates signal
out shift specifying the number of bits register array 1 should
shift to align with register array 2. Sum total represents the
total number of compressed bits produced since the start of
compression. Whenever sum total exceeds the original cache
line size, the compressor stops compressing and sends back
the original cache line stored in the backup buffer.

3) Pipeline Stage 3: This stage generates the compression output
by combining codes, bytes from input word, and bytes from
dictionary entries depending on the pattern and dictionary
matching results from previous stages.

Placing the compressed pair of words into the right lo-
cation within register array 1, denoted by Reg

1
[135:0], is
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challenging. Since the length of a compressed word varies from
word to word, it is impossible to pre-select the output location
statically. In addition, register array 1 should be shifted to fit
in the compressed output in a single cycle without knowing the
shift length in advance. We address this problem by analyzing
the output length. Notice that a single compressed word can
only have 7 possible output lengths, with the maximum length
being 34 bits. Therefore, we use two 34-bit buffers, denoted by
A[33:0] and B[33:0], to store the first and second compressed
outputs generated by code concatenators 1 and 2 in the lower
bits, with the higher unused bits set to zero. Reg

1
[135:0] is

shifted by total length using barrel shifter 2, with the shifting
result denoted by Reg

1s
[135:0]. At the same time, A[33:0]

is shifted using barrel shifter 1 by the output length of the
second compressed word. The result of this shift is held by
S[65:0], also with all higher (unused) bits set to zero. Note that
Reg

1
[135:68] only has one input source, i.e., Reg

1s
[135:68],

because the maximum total output length is 68. However,
Reg

1
[67:2] can have multiple input sources: B, S, and Reg

1s
.

For example, Reg
1
[4] may come from B[4], S[2], or Reg

1s
[0].

To obtain the input to Reg
1
[135:0], we OR the possible inputs

together because the unused bits in the input sources are all
initialized to zero, which should not affect the result of an OR
function.

Meanwhile, Reg
1
[135:0] is shifted by out shift using bar-

rel shifter 3 to align with register array 2, denoted by
Reg

2
[135:0]. Multiplexer array 1 selects the shifting result

as the input to Reg
2
[135:0] when store flag is 1 (i.e., the

number of accumulated compressed bits has exceeded 64 bits)
and the original content of Reg

2
[135:0] otherwise. Whether

Latch is enabled depends on the number of compressed bits
accumulated in Reg

2
[135:0] that have not been transmitted.

When output flag is 1, indicating that 128 compressed bits
have been accumulated in Reg

2
[135:0], Reg

2
[135:0] is passed

to Multiplexer array 1. Multiplexer array 3 selects between
fill shift and the output of latch using fill flag. Fill shift rep-
resents the 128-bit signal that pads the remaining compressed
bits that have not been transmitted with zeros and fill flag
determines whether to select the padded signal. Multiplexer
array 2 then decides the output data based on the total number
of compressed bits. When the total number of compressed
bits has exceeded the uncompressed line size, the contents of
backup buffer are selected as the output. Otherwise, the output
from Multiplexer array 3 is selected.

B. Decompression Hardware

This section describes the design and optimization of the proposed
decompression hardware. We describe the data flow inside the decom-
pressor and point out some challenges specific to the decompressor
design. We also examine how to integrate data prefetching with cache
compression.

1) Decompressor Architecture: Figure 7 illustrates the decom-
pressor architecture. Recall that the compressed line, which may be
nearly 512 bits long, is processed in 128-bit blocks, the width of
the bus used for L2 cache access. The use of a fixed-width bus
and variable-width compressed words implies that a compressed
word may sometimes span two 128-bit blocks. This complicates
decompression. In our design, two words are decompressed per cycle
until fewer than 68 bits remain in register array 1 (68 bits is
the maximum length of two compressed words). The decompressor
then shifts in more compressed data using barrel shifter 2 and
concatenates them with the remaining compressed bits. In this way,
the decompressor can always fetch two whole compressed words per
cycle. The decompressor also supports incremental tranmission, i.e.,
the decompression results can be transmitted before the whole cache
line is decompressed provided that there are 128 decompressed bits
in register array 3. The average decompression latency is 5 cycles.

1) Word Unpacking: When decompression starts, the unpacker
first extracts the two codes of the first and second word.

Signals first code and second code represent the first two bits
of the codes in the two compressed words. Signal first bak
and second bak refer to the two bits following first code and
second code, respectively. They are mainly useful when the
corresponding code is a 4-bit code.

2) Word Decompressing: Decoders 1 and 2 compare the codes
of the first and second word against the static codes in Table I
to derive the patterns for the two words, which are then
decompressed by combining zero bytes, bytes from FIFO
dictionary, and bytes from register array 1 (which stores the
remaining compressed bits). The way the bytes are combined
to produce the decompression results depends on the values
of the four code-related signals. The decompressed words are
then pushed into the FIFO dictionary, if they do not match
pattern “zzzz” and “zzzx”, and register array 3. Note that
the decompression results will be transmitted out as soon as
register array 3 has accumulated four decompressed words,
given the input line is a compressed line.

3) Length Updating: Length generator derives the compressed
lengths of the two words, i.e., first len and second len, based
on the four code-related signals. The two lengths are then
subtracted from chunk len, which denotes the number of the
remaining bits to decompress in register array 1. As we
explained above, the subtraction result len r is then compared
with 68, and more data are shifted in and concatenated with the
remaining compressed bits in register array 1 if len r is less
than 68. Meanwhile, register array 1 is shifted by total length
(the sum of first len and second len) to make space for the
new incoming compressed bits.

2) Decompressor & Data Prefetching: Data prefetching [19]
has been proposed as a technique to hide data access latency. It
anticipates future cache misses and fetches the associated data into
the cache in advance of expected memory references. In order to
integrate data prefetching with cache compression, resource conflicts
must be taken into account: a processor may request a line in
the compressed region of the L2 cache while the corresponding
decompressor prefetches data from the compressed region into the
uncompressed region. Although we can disable data prefetching
from the compressed region of an L2 cache, i.e., only allowing
prefetching data from off-chip memory into the uncompressed region
of L2, this may result in higher average data prefetching latency and
lower performance benefit compared to a scheme where prefetching
from both off-chip memory and compressed region of L2 caches
are enabled. One possible solution is to add an extra decompressor
for each processor. This enables simultaneously serving processor
requests and prefetching data from the compressed region into the
uncompressed region.

VI. EVALUATION

In this section, we present the evaluation of the C-Pack hard-
ware. We first present the performance, power consumption, and
area overheads of the compression/decompression hardware when
synthesized for integration within a microprocessor. Then, we com-
pare the compression ratio and performance of C-Pack to other
algorithms considered for cache compression: MXT [6], Xmatch [7],
and FPC [20]. Finally, we describe the implications of our findings
on the feasibility of using C-Pack based cache compression within a
microprocessor.

A. C-Pack Synthesis Results

We synthesized our design using Synopsys Design Compiler with
180 nm, 90 nm, and 65 nm libraries. Table IV presents the resulting
performance, area, and power consumption at maximum internal
frequency. “Loc” refers to the compressed line locator/arbitrator in
a pair-matching compressed cache and “worst-case delay” refers to
the number of cycles required to compress, decompress, or locate a
64 B line in the worst case. As indicated in Table IV, the proposed
hardware design achieves a throughput of 80 Gb/s (64 B × 1.25 GHz)
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Fig. 7. Decompressor architecture.

TABLE IV
SYNOPSYS DESIGN COMPILER SYNTHESIS RESULTS

Parameters
180 nm 90 nm 65 nm

Compressor Decompressor Loc. Compressor Decompressor Loc. Compressor Decompressor Loc.

Worst-case delay (cycles) 13 8 2 13 8 2 13 8 2

Max. frequency (GHz) 0.38 0.31 0.60 1.09 0.91 1.79 1.25 1.20 2.00

Area (mm2) 0.34 0.25 0.063 0.076 0.076 0.013 0.043 0.043 0.007

Power consumption at
111.78 75.18 110.03 73.88 51.50 15.96 32.63 24.14 5.20

max. internal freq. (mW)

for compression and 76.8 Gb/s (64 B × 1.20 GHz) for decompression
in a 65 nm technology. Its area and power consumption overheads
are low enough for practical use. The total power consumption
of the compressor, decompressor, and compressed line arbitrator at
1 GHz is 48.82 mW (32.63 mW/1.25 GHz + 24.14 mW/1.20 GHz +
5.20 mW/2.00 GHz) in a 65 nm technology. This is only 7% of the
total power consumption of a 512 KB cache with a 64 B block size
at 1 GHz in 65 nm technology, derived using CACTI 5 [21].

B. Comparison of Compression Ratio

We compare C-Pack to several other hardware compression de-
signs, namely X-Match, FPC, and MXT, that may be considered
for cache compression. We exclude other compression algorithms
because they either have not been implemented in hardware or are
not suitable for cache compression. Although the proposed hardware
implementation mainly targets online cache compression, it can
also be used in other high-performance lossless data compression
applications with few or no changes.

We tested the compression ratios of different algorithms on four
cache data traces gathered from a full system simulation of various
workloads from the Mediabench [22] and SPEC CPU2000 benchmark
suites. The block size and the dictionary size are both set to
64 B in all test cases. Since we are unable to determine the exact
compression algorithm used in MXT, we used the LZSS Lempel-
Ziv compression algorithm to approximate its compression ratio [23].
The raw compression ratios and effective system-wide compression

ratios in a pair-matching scheme are summarized in Table V. Each
row shows the raw compression ratios and effective system-wide
compression ratios using different compression algorithms for an
application. As indicated in Table V, raw compression ratio varies
from algorithm to algorithm, with X-Match being the best and MXT
being the worst on average. The poor raw compression ratios of
MXT are mainly due to its limited dictionary size. The same trend
is seen for effective system-wide compression ratios: X-Match has
the lowest (best) and MXT has the highest (worst) effective system-
wide compression ratio. Since the raw compression ratios of X-Match
and C-Pack are close to 50%, they achieve better effective system-
wide compression ratios than MXT and FPC. On average, C-Pack’s
system-wide compression ratio is 2.76% worse than that of X-Match,
6.78% better than that of FPC, and 10.3% better than that of MXT.

C. Comparison of Hardware Performance

This subsection compares the decompression latency, peak fre-
quency, and area of C-Pack hardware to that of MXT, X-Match,
and FPC. Power consumption comparisons are excluded because
they are not reported for the alternative compression algorithms.
Decompression latency is defined as the time to decompress a 64 B
cache line.

1) Comparing C-Pack with MXT : MXT has been imple-
mented in a memory controller chip operating at 133 MHz using
0.25 µm CMOS ASIC technology [24]. The decompression rate is
8 B/cycle with 4 decompression engines. We scale the frequency up
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TABLE V
COMPRESSION RATIO COMPARISON

Raw compression ratio (%) System-wide compression ratio (%)

Benchmark MXT FPC X-Match C-Pack MXT FPC X-Match C-Pack

mpeg2 70.88 63.39 49.50 52.10 75.55 64.28 57.97 58.47

mesa 49.50 69.81 42.80 51.97 60.50 66.18 53.59 55.80

art 57.69 59.27 46.60 51.74 64.84 66.67 60.63 61.40

twolf 84.09 80.73 70.20 77.40 85.90 75.60 62.37 69.92

Average 65.54 68.30 52.28 58.30 71.70 68.18 58.64 61.40

to 511 MHz, i.e., its estimated frequency based on constant electrical
field scaling if implemented in a 65 nm technology. 511 MHz is below
a modern high-performance processor frequency. We assume an on-
chip counter/divider is available to clock the MXT decompressor.
However, decompressing a 64 B cache line will take 16 processor
cycles in a 1 GHz processor, twice the time for C-Pack. The area
cost of MXT is not reported.

2) Comparing C-Pack with X-Match: X-Match has been
implemented using 0.25 µm field programmable gate array (FPGA)
technology. The compression hardware achieved a maximum fre-
quency of 50 MHz with a throughput of 200 MB/s. To the best of
our knowledge, the design was not synthesized using a flow suitable
for microprocessors. Therefore, we ported our design for C-Pack for
synthesis to the same FPGA used for X-Match [7] in order to compare
the peak frequency and the throughput. Evaluation results indicate
that our C-Pack implementation is able to achieve the same peak
frequency as X-Match and a throughput of 400 MB/s, i.e., twice as
high as X-Match’s throughput. Note that in practical situations, C-
Pack should be implemented using an ASIC flow due to performance
requirement for cache compression.

3) Comparing C-Pack with FPC : FPC has not been im-
plemented on a hardware platform. Therefore, no area or peak
frequency numbers are reported. To estimate the area cost of FPC, we
observe that the FPC compressor and decompressor are decomposed
into multiple pipeline stages as described in its tentative hardware
design [20]. Each of these stages imposes area overhead. For example,
assuming each 2-to-1 multiplexer takes 5 gates, the fourth stage of
the FPC decompression pipeline takes approximately 290 K gates
or 0.31 mm2 in 65 nm technology, more than the total area of our
compressor and decompressor. Although this work claims that time-
multiplexing two sets of barrel shifters could help reduce area cost,
our analysis suggest that doing so would increase the overall latency
of decompressing a cache line to 12 cycles, instead of the claimed
5 cycles. In contrast, our hardware implementation achieves much
better compression ratio and a comparable worst-case delay at a
high clock frequency, at an area cost of 0.043 mm2 compressor and
0.043 mm2 decompressor in 65 nm technology.

D. Implications on Claims in Prior Cache Compression Work

Many prior publications on cache compression assume the exis-
tence of lossless algorithms supporting a consistent good compression
ratio on small (e.g., 64-byte) blocks and allowing decompression
within a few microprocessor clock cycles (e.g., 8 ns) with low
area and power consumption overheads [10], [12], [13]. Some pub-
lications assume that existing Lempel–Ziv compression algorithm
based hardware would be sufficient to meet these requirements [2].
As shown in Section VI-C1, these assumptions are not supported
by evidence or analysis. Past work also placed too much weight
on cache line compression ratio instead of effective system-wide
compression ratio (defined in Section IV-C). As a result, compression
algorithms producing lower compressed line sizes were favored.
However, the hardware overhead of permitting arbitrary locations
of these compressed lines prevents arbitrary placement, resulting in
system-wide compression ratios much poorer than predicted by line
compression ratio. In fact, the compression ratio metric of merit
for cache compression algorithms should be effective system-wide
compression ratio, not average line compression ratio. Alameldeen et

al. proposed segmented compression ratio, an idea similar to system-
wide compression ratio. However, segmented compression ratio is
only defined for a segmentation-based approach with fixed-size
segments. Effective system-wide compression ratio generalizes this
idea to handle both fixed size segments (segmentation-based schemes)
and variable length segments (pair-matching based schemes). C-Pack
was designed to optimize performance, area, and power consumption
under a constraint on effective system-wide compression ratio.

C-Pack meets or exceeds the requirements assumed in former mi-
croarchitectural research on cache compression. It therefore provides
a proof of concept supporting the system-level conclusions drawn in
much of this research. Many prior system-wide cache compression
results hold, provided that they use a compression algorithm with
characteristics similar to C-Pack.

VII. CONCLUSIONS

This paper has proposed and evaluated an algorithm for cache com-
pression that honors the special constraints this application imposes.
The algorithm is based on pattern matching and partial dictionary
coding. Its hardware implementation permits parallel compression of
multiple words without degradation of dictionary match probability.
The proposed algorithm yields an effective system-wide compression
ratio of 61%, and permits a hardware implementation with a maxi-
mum decompression latency of 6.67 ns in 65 nm process technology.
These results are superior to those yielded by compression algorithms
considered for this application in the past. Although the proposed
hardware implementation mainly targets online cache compression, it
can also be used in other high-performance lossless data compression
applications with few or no modifications.
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