
FD-HGAC: A Hybrid Heuristic/Genetic Algorithm Hardware/Software
Co-synthesis Framework with Fault Detection

John Conner1∗, Yuan Xie1, Mahmut Kandemir1, Robert Dick2, and Greg Link1
1The Pennsylvania State University —{jconner,yuanxie,kandemir,link}@cse.psu.edu

2Northwestern University — dickrp@ece.northwestern.edu

Abstract— Embedded real-time systems are becoming increas-
ingly complex. To combat the rising design cost of those systems,
co-synthesis tools that map tasks to systems containing both soft-
ware and specialized hardware have been developed. As system
transient fault rates increase due to technology scaling, embed-
ded systems must be designed in fault tolerant ways to maintain
system reliability. This paper presents and analyzes FD-HGAC,
a tool using a genetic algorithm and heuristics to design real-time
systems with partial fault detection. Results of numerous trials of
the tool are shown to produce systems with average 22% detection
coverage that incurs no cost or performance penalty.

I. I NTRODUCTION

As technology scales and computer systems become more
complex, the design time and engineering cost of embedded
systems is increasing dramatically. Hardware/software co-
synthesis is the automated design of special-purpose hard-
ware/software systems. It may be used to combat the rising
complexity of designing system-on-chip-style real-time em-
bedded systems. By mapping a description of system func-
tions onto a selection of general-purpose and special-purpose
processing elements, co-synthesis tools design low-cost, het-
erogeneous, real-time computer systems without requiring the
user to specify which tasks are mapped into hardware and soft-
ware.

FD-HGAC, the Fault Detecting Hybrid Genetic Algorithm
Co-synthesis Framework, is a tool that implements a set of
algorithms to perform hardware/software co-synthesis with
the incorporation of system features to detect transient faults.
Because of the pervasive trend of technology to experience
greater numbers of transient faults as system density increases
and transistor size decreases, fault detection will be a vital fea-
ture of future computer systems. Moreover, the co-synthesis
problem is NP-complete, so optimally solving large problem
instances is intractable. FD-HGAC combines a stochastic ge-
netic algorithm with two deterministic heuristics. By running
the fast heuristic inside the genetic algorithm, FD-HGAC de-
signs better systems than a deterministic heuristic, but runs in
less time than a guaranteed-optimal design tool.

FD-HGAC uses a fault detection methodology that inserts
redundant tasks into an pre-designed schedule. This allows the
algorithm to focus on designing low cost, high performance
systems while also increasing system reliability markedly over

the base case. The insertion of fault-finding nodes into the sys-
tem has the effect of increasing reliability without impacting
system cost or performance.

This paper contributes to the field of co-synthesis by

1. Presenting a design tool that produces real-time, partially
fault-tolerant systems with good cost and performance.

2. Significantly generalizing previous work.

3. Adapting co-synthesis techniques for low run time and
parallel scalability.

This paper is organized as follows: First, we discuss pre-
vious work. Then, co-synthesis is explained and a recurring
example is introduced in Figs. 1–4. Then, details on the im-
plementation are given, followed by experimental results and
analysis. Finally, possibilities for future work and conclusions
are discussed.

II. PREVIOUS WORK

R. Dick introduced a GA co-synthesis tool that op-
timizes part selection and scheduling simultaneously [3].
Chakraverty’s work on GA co-synthesis uses stochastic con-
straints and implements co-synthesis by handling each design
step in sequence instead of simultaneously [1]. FD-HGAC dif-
fers from these by including system-level fault detection and
by avoiding stability issues that are present in pure-GA tools.
Also, B. Dave introduced a heuristic tool for fault tolerant co-
synthesis [2] that uses additional hardware to produce redun-
dancy. FD-HGAC does not add hardware in this fashion.

FD-HGAC’s heuristics are improved from work done with
heuristic co-synthesis [8, 9]. The scheduling and allocation
heuristic is expanded in FD-HGAC over the previous work to
function on all types of processing elements instead of only
general-purpose types [9]. Similarly, the fault detection algo-
rithm in FD-HGAC is a faster adaptation of that in [8].

III. PROBLEM FORMULATION

In hardware/software co-synthesis, a system description is
mapped onto a collection of processing elements (PEs) [7] that
are either general-purpose processors or special-purpose pro-
cessing elements, such as digital signal processors or arith-
metic units. Using a description of the work that a system must

1

1: INIT

delay: 2

2:Con1

delay: 2

3:Con2

delay: 2

4:Con3

delay: 2

5:Con4

delay: 2

6:Xta1

delay: 2

7:Xta2

delay: 2

8:

Decode

delay: 2

9: FIN

delay: 2

9

75

9

1

2

1 1 1 1

1

1

1

2

1

1 1 1

#:Name

<check

delay>

Deadline

Latency Period: 100

Fig. 1. Example Task Graph

perform and of the capabilities of the various PEs, the tool al-
locates tasks either as hardware on special-purpose PEs or as
software on general-purpose PEs. The system has constraints
on data transfer between tasks and timing deadlines. In ad-
dition, the description includes information that describes the
execution latency of each task on each PE.

A. The Task Graph and Processing Element Library

The system specification used in this work is a directed,
acyclic task graph, a common model used in the field [7].
The graph models the functionality of the system in which
data arrives through source nodes and leaves through terminal
nodes. The nodes represent computational tasks that must be
performed by timing deadlines and which are repeated at a rate
defined by the system period. Tasks in this work are general
and contain only timing and data dependence information.

An example task graph is shown in Fig. 1. Each node in
the figure contains an ID number, name, and checking delay,
which is the time necessary to compare the output of the node
with the output of a duplicate node. Edges between nodes rep-
resent data dependencies with the labels indicating the data
transfer time if the producer and consumer must exchange data
between PEs. Black bars indicate hard timing deadlines.

The PE library describes the available hardware resources
that the tool may use in designs. Each PE models a particu-
lar available functional unit of any scale from simple on-chip
adders to complex separately-packaged CPUs. Each PE has an
ID number, name, cost, and execution latencies for each task
in the task graph. An example PE library is shown in Fig. 2.
Each row describes a different PE and gives the dollar cost and
the execution latencies for the various tasks from Fig. 1. A PE
cannot handle tasks with no latency listed.

PE Name $ 1 2 3 4 5 6 7 8 9
1 CPU1 15 6 9 9 9 9 16 16 200 5
2 CPU2 30 3 6 6 6 6 10 10 75 2
3 CONV1 5 5 5 5 5
4 CONV2 15 2 2 2 2
5 DEC 10 20

Fig. 2. Example PE Library - Numbered columns are execution latencies

B. The Co-Synthesis Process

Co-synthesis has five steps, with a sixth step in FD-HGAC:

1. A selection of hardware is chosen from the PE library.

2. Bus hardware is selected from the bus library.

3. The hardware is connected by the chosen busses under
contention constraints.

4. Tasks are assigned to instances of PEs.

5. Tasks are scheduled to run on their assigned PEs.

6. Redundant copies of tasks and result checkers are inserted
into idle time slots (slack) in the schedules.

C. Fault Detection in Co-Synthesis

To detect faults, it is necessary to replicate some tasks in the
schedule in order to compare the outputs for correctness. There
are two major ways to introduce redundancy in in a schedule:
Duplicate tasks can be scheduled without considering them
differently than necessary tasks, or the duplicates can be in-
serted into the schedule after all necessary tasks are present.
FD-HGAC chooses the latter method because it is cheaper.

IV. T HE FD-HGAC IMPLEMENTATION

FD-HGAC is implemented in C++ using the GALib library
[6]. Its algorithm is a nesting in which the GA does PE selec-
tion and its objective function calls the allocation and schedul-
ing heuristic to schedule tasks and insert duplicate tasks for
fault tolerance. This allows many of the benefits of the ge-
netic algorithm to come through in the algorithm and allows
the objective function to be fast. Bus selection and PE inter-
connection are idealized and discussed later.

A. The Genetic Algorithm

GAs are a type of stochastic optimization algorithm which
takes a group of potential solutions, i.e., a population of chro-
mosomes, and improves the population quality through suc-
cessive generations. Each generation requires evaluating the
fitness of each chromosome using an “objective function” and
performing randomized operations, crossover and mutation, on
the population to improve its aggregate fitness. In the interest
of space, this paper does not discuss GAs in detail, instead de-
ferring to the standard text [5].

FD-HGAC uses a standard GA to select system hardware
from the PE library. The chromosome structure is an array of
integers that encode the quantity of each PE type that is present

PE 1 PE 2 PE 3 PE 4 PE 5
0 1 2 0 1

Fig. 3. Example Result Chromosome

1-0 5 7

2-0 1 4 6 91* 7* 6* 9*

3-0 2 4* 3*

3-1 3 5* 2*

5-0 8 8*

Parts Time→

Fig. 4. Example Result Schedule — Each boxed number represents a
scheduled task. Starred tasks are duplicates. This schedule is 100% reliable.

in the system. As a special case, an additional PE 1 is always
added to the system. This guarantees that all possible chromo-
somes are valid, as PE 1 is required to be a general-purpose PE.
For example, the chromosome shown in Fig. 3 encodes for one
of PE 1 (because of the special case), one of PE 2, two of PE
3, zero of PE 4, and one of PE 5. The resulting schedule from
this chromosome for the example task graph and PE library is
shown in Fig. 4. The sample schedule shows complete task
duplication, and is cost-optimal under the deadline constraints
with a cost of 65 units.

FD-HGAC’s objective function takes into account the cost
of the chromosome’s encoded PEs and the performance of the
schedule that fits the chromosome. The algorithm for this is
simple: The objective function calls the scheduler and returns
the reciprocal of the sum of the encoded PEs, penalized if the
schedule does not meet all deadlines. A typical penalty for a
non-deadline-conformant schedule is 90%. This extreme bias
of preferring performance over cost assures that the system
produced will meet the timing constraints if at all possible, but
introduces some significant difficulties in the objective func-
tion that can hinder convergence to an optimal solution.

A significant idealization that FD-HGAC uses is that it
assumes a strongly connected, no-cost, high-bandwidth bus
topology between PEs. Tasks do have data transfer latencies
(see Fig. 1), and it is assumed that a bus will always be avail-
able for one task to talk to another and that no contention for
busses will occur. The impact of the idealized bus model can
be minimized by adding a constant transfer latency penalty be-
tween tasks that is large enough to approximate the realistically
random bus usage. This is a strong direction for future work.

B. The Allocation and Scheduling Heuristic

The allocation and scheduling heuristic is called from the
GA’s objective function as a vital step in evaluating the fit-
ness of a specific hardware selection. Because the scheduling
heuristic is called many times per execution, it must be very
fast. In addition, the heuristic must also produce high quality

results, as the GA cannot produce a high quality hardware se-
lection unless the results of the heuristic are as close to optimal
as reasonable.

FD-HGAC uses a heuristic modified from [9] to schedule
instead of handling all scheduling and allocation in the GA
because a heuristic allows the objective function to be small
and fast. Complex techniques to avoid producing many invalid
schedules in pure-GA optimizers [3] complicate the objective
function and slow down the algorithm. The heuristic allows
FD-HGAC to be sure that all chromosomes are valid.

C. The Task Replication Heuristic

The task replication heuristic in FD-HGAC is adapted from
[8]. The heuristic works by ranking all tasks according to crit-
icality, finding the slack in the cost-optimal schedule, and fill-
ing the slack with redundant tasks in the order of decreasing
criticality. Criticality is measured as the number of dependent
nodes a particular node has. An idle slot in the schedule (slack)
is selected for a task of particular criticality by checking for
slots that meet dependency requirements for the task, and then
choosing the slot that results in the earliest completion time
for the redundant task. The algorithm attempts to replicate all
tasks in turn, and ends when no more tasks can be replicated,
even if some tasks have no duplicates. The checking itself is
considered to be outside the scope of the cosynthesis problem
in FD-HGAC. Time is left in the schedule via the checking de-
lay on each task for an external system to capture and compare
the task results.

V. EXPERIMENTAL ANALYSIS

A. Experimental Platform

Example runs were performed with fixed GA parameters ex-
cept generation count. Population size was 200, crossover rate
was 90%, mutation rate was 0.5%, and genes were seeded uni-
formly randomly from 0 to 5. These parameters were found
to provide adequate results for a variety of inputs, including
the nine sample inputs used for benchmarking. The input files
were provided by the author of [8] and contain task graphs
generated using [4]. The sample input specifications are sum-
marized in Table I. The “Deadline” column in that table lists
the hard deadline for completion of all tasks in the graph.

B. Experimental Results and Analysis

Costs and fault detection coverage percentages for tests with
different generation counts are provided in Table II. All tests
were averaged over a minimum of five trials. For all trials,
the performance deadlines of the system were met, making the
end results comparable on cost and detection coverage. Cost
is the total cost of PEs in the designs. Fault detection cover-
age is defined as the percentage of total system PE run time
in which the system is not vulnerable to transient faults, cal-
culated according to the following equation, counting all tasks

TABLE I
TABULATION OF SAMPLE INPUTS

Tasks Edges CPUs ASICS Deadline
1 15 30 3 30 625
2 18 37 2 36 700
3 23 50 3 46 625
4 26 57 3 52 750
5 32 69 3 64 600
6 39 91 2 78 1000
7 40 85 3 80 800
8 44 95 3 88 1000
9 51 110 3 102 1000

TABLE II
TABULATION OF RESULTS

1K Gen. 5K Gen. 10K Gen.
Cost %Det. Cost %Det. Cost %Det.
1 94$ 29% 94$ 31% 94$ 31%
2 102 17 100 11 104 21
3 155 24 153 26 152 25
4 148 20 141 18 143 21
5 217 34 201 26 209 26
6 209 19 202 18 206 19
7 235 27 214 19 216 15
8 209 20 191 12 196 12
9 279 22 258 18 239 13

separately, including those that overlap.

%detection = 1 −

∑
unduplicated time

∑
all time

Run times are dominated by the many iterations of the
heuristics and range from one minute to two hours for the
provided examples on a 1 GHz computer. Run times scale
sub-linearly with increasing generation count due to a software
cache and scale super-linearly with increasing PE library size,
task count, and edge count. The task graphs used to bench-
mark FD-HGAC are realistically-sized and the tool is expected
to scale well to much larger task graphs because precision and
runtime are user-controllable through the GA parameters. In
situations where a minimal runtime is desirable, the user can
scale back the generation count and get a reasonable result
quickly.

Fault detection coverage averages 22% for the samples. The
results show that the cost of a system is related to the amount
of fault detection that can be placed in the schedule. This is be-
cause expensive solutions will, in general, have more slack in
their schedules, allowing for more room for redundancy. Trials
in which the input task graph was explicitly altered to provide
100% redundancy for the system produced full coverage with
an optimistic cost increase of 30–60%, averaging about 50%.

FD-HGAC exhibits some pathological scenarios in which
timing-conformant solutions require large numbers of specific
parts. In this situation, chromosomes with insufficient parts are

cheaper and equally good in relation to a valid solution because
they do not meet timing, so the non-conforming chromosomes
are selected against and cannot improve. As a result, the GA
will select as best an inexpensive chromosome that will not
meet timing constraints. This can be treated somewhat by us-
ing a larger and more diverse population, and future work will
look into solving this problem.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we have shown that a combined genetic al-
gorithm and heuristic approach to designing partially fault-
tolerant systems is practical and efficient. Results show excel-
lent cost and performance characteristics and include, on aver-
age, twenty-percent temporal coverage of transient faults at no
increase in cost over the performance-optimal case, compared
with an average fifty percent increase in cost for complete fault
detection. Run times are non-negligible but reasonable, and are
easily controlled by the user at the expense of solution qual-
ity. Additionally, the algorithm may be easily parallelized with
near-linear speedup.

There are many promising directions for future work on this
topic. Complete bus modeling is a very strong direction for
progress, and a solution to the previously explained patholog-
ical scenario must be found. The quality of the scheduling
could be increased by using a more advanced duplicate task in-
sertion heuristic. Additionally, other styles of GA-like stochas-
tic optimizers could be explored for use in a similar tool.

REFERENCES

[1] S. Chakraverty. Cosynthesis of multiprocessor architectures with
high availability. InProceedings of the 17th International Con-
ference on VLSI Design, pages 927–932. IEEE, IEEE Computer
Society, January 2004.

[2] B. P. Dave. Hardware/Software Co-Design of Hetrogeneous
Real-Time Distributed Embedded Systems. PhD thesis, Prince-
ton University, June 1998.

[3] R. P. Dick. Multiobjective Synthesis of Low-Power Real-Time
Distributed Embedded Systems. PhD thesis, Princeton University,
November 2002.

[4] R. P. Dick, D. L. Rhodes, and W. Wolf. TGFF: task graphs for
free. InProceedings of the 6th International Workshop on Hard-
ware/Software Codesign, pages 97–101. IEEE Computer Society,
1998.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimization &
Machine Learning. Addison Wesley, Boston, 1989.

[6] Matthew Wall, 1995-1999. http://lancet.mit.edu/ga/.

[7] J. Staunstrup and W. Wolf, editors.Hardware/Software Co-
Design: Principles and Practice. Kluwer Academic Publishers,
Norwell, MA, 1997.

[8] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin.
Reliability-aware co-synthesis for embedded systems. InASAP
2004 Proceedings, pages 41–50. IEEE, September 2004.

[9] Y. Xie and W. Wolf. ASICosyn: Co-synthesis of conditional task
graphs with custom ASICs. InASIC 2001 Proceedings, pages
130–135. IEEE, October 2001.

