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Abstract
In this paper, we present a hardware-software co-synthesis al-

gorithm, called COWLS, which targets embedded systems com-
posed of servers and low-power clients which communicate with
each other through a channel of limited bandwidth, e.g., a wire-
less link. Clients may be mobile. COWLS allows both hard and
soft real-time constraints. It simultaneously optimizes the price of
the client-server system, the power consumption of the client, and
the response times of tasks which have only soft deadlines, while
meeting all the hard deadlines. It produces numerous solutions
which trade off different architectural features, e.g., price, power
consumption, and response time, of an embedded client-server sys-
tem. As far as we know, this is the first co-synthesis algorithm of
its kind. We present experimental results of synthesizing a low-
power, client-server camera system as well as several randomized
examples.

1. Introduction
A bandwidth-constrained embedded client-server system is a

system in which clients and servers communicate with each other
via a channel of limited bandwidth. Clients are frequently con-
sumer products,e.g., portable communication devices, for which
price is often particularly important. Server price is also an im-
portant factor, although it is usually less important than client
price because clients typically outnumber servers. In this work,
we assume that servers have access to high-capacity power sup-
plies,e.g., they may be plugged in to wire-delivered power or have
access to high-capacity batteries. In order to maintain mobility,
clients may be small and battery-powered. Therefore, client power
consumption must be minimized to reduce heat production and in-
crease battery life.

The literature abounds with case studies of embedded client-
server system design and general descriptions of the client-server
problem domain. Some researchers have discussed wireless and
cellular systems [1], [2], some have focused on embedded systems
in which the server is a satellite [3], [4], and others have studied
telerobotics, systems in which a robot is partially or totally con-
trolled via a limited-bandwidth communication channel [5], [6].
The majority of previous research on embedded client-server sys-
tems either surveys the problems typically faced by the designer of
such systems or provides case studies detailing specific solutions
to individual problems.

There is a significant body of work on hardware-software co-
design,i.e., concurrent design of the hardware and software por-
tions of an embedded system, and hardware-software co-synthesis,
the automatic synthesis of hardware-software embedded systems
[7], [8]. Work in hardware-software co-design focuses on pro-
viding a designer with tools and guidelines which ease the ex-
ploration of the available implementation options. Schulzet
al. present a co-design approach based on the use of a sim-
ulatable, implementation-independent system representation [9].
Passeroneet al. discuss a rapid abstract hardware-software sim-
ulation method [10]. The hardware-software co-synthesis prob-
lem is intractable. It is composed of a number of sub-problems,
many of which are NP-complete,e.g., allocation/assignment and
scheduling [11]. Presently, only non-exhaustive optimization al-

gorithms are capable of solving large problem instances of dis-
tributed, embedded systems in a reasonable amount of time. Re-
searchers have tackled variants of the co-synthesis problem with
iterative improvement algorithms [12], constructive algorithms
[13], simulated annealing algorithms [14], evolutionary algorithms
[15], [16], and a rapid, sub-optimal timing constraints solver [17].

Despite the previous work dealing with embedded client-
server systems and hardware-software co-synthesis, we know of
no previous work which automatically synthesizes such systems.
COWLS automatically synthesizes embedded client-server sys-
tems, taking into account price, power consumption, bandwidth
requirements, as well as task deadlines.

2. Embedded client-server system
requirements

In this section, we explain task graphs, the means by which a
designer specifies the requirements of an embedded client-server
system. A task graph is a directed acyclic graph in which each
node represents a task and each arc represents a data dependency
and a communication event. In Fig. 1, the top node represents the
SCNtask type and that node’s outgoing arc represents a commu-
nication of 224 kilobytes of data to theID task. There may be
more than one task instance of a given type,e.g., IND in Fig. 1.
The ID task’s incoming arc indicates that it may not begin execu-
tion until theSCN task has completed execution and transmitted
224 kilobytes of data to it. Any task may have a hard deadline,
signified by a solid bar, or a soft deadline, signified by a dotted
bar. Thus, a designer may provide a specification containing only
hard real-time deadlines, a specification containing only soft dead-
lines, or specification containing any combination of the two types
of deadlines. In the first case, COWLS will attempt to minimize
price and power consumption under hard real-time deadlines. In
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the second case, it will attempt to simultaneously minimize soft
deadline violation, price, and power consumption. If all soft dead-
lines are set to zero, it will minimize system execution time, price,
and power consumption.

In Fig. 1, the upperIND task must complete execution within
100 ms of the start of the task graph’s execution. This hard dead-
line must be met for the synthesized architecture to be valid. The
REP task should complete execution by 200 ms after the start of
the task graph’s execution. However, the system will still be valid
if this soft deadline is not met. In the case of a task with a soft
deadline, the aim is to minimize its response time if the deadline
cannot be met. The specification may require some tasks to be
executed on the client,e.g., SCN. Others must be executed on the
server,e.g., REP. A task graph’s period is the amount of time that
elapses between its subsequent executions. The task graph’s pe-
riod is 500 ms in Fig. 1. The requirements placed on an embedded
client-server system are specified with a set of task graphs, each
of which may have a different period. A task graph may have a
period which is less than, greater than, or equal to the maximum
deadline within it.

3. Motivating example
A synthesis system for the client-server problem domain

should simultaneously optimize multiple costs. It must also con-
sider the differences in cost between executing a task on a client or
a server. It is, therefore, necessary to allow tasks to migrate from
one side of the primary communication resource, the link connect-
ing the client and server, to the other. Optimizing only one cost, or
considering local improvements instead of system-level improve-
ments is likely to lead to a poor overall solution.

Previous work has discussed a client-server specification for
a wireless camera [18]. It gives a brief case study of the design
of an embedded client-server system. Generating a high-quality
architecture, which meets the specifications given, is not entirely
straightforward, even for a human designer. We will show how
COWLS explores the design space in a manner which allows it to
uncover a similar high-quality design to the one proposed in the
case study, and consider other options which trade off different
system costs.

Consider a system specification requiring a battery-powered
camera to transmit video information to a base station via a
limited-bandwidth wireless link. If the designer has decided that
the video information should be compressed, but has not yet de-
cided what sort of processor should be used to carry out this oper-
ation, or even whether it should be done by the client or the server,
COWLS will simultaneously explore the different options.

Fig. 2 shows an example of a task graph for a wireless camera.
In this example, imaging and analog-to-digital conversion must be
carried out on the client. Data storage and display must be carried
out on the server. Storage has a soft deadline of 250 ms and display
has a hard deadline of 500 ms.

In one possible partitioning, shown in Fig. 3, Imaging & A/D,
as well as data compression, are executed on the client and all
other tasks are carried out on the server. This partitioning reduces
the load on the wireless communication link and allows an inex-
pensive communication resource to be used between the client and
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the server. However, carrying out data compression on the client
requires increased client price and power consumption.

In another possible partitioning, shown in Fig. 4, Imaging &
A/D is executed alone on the client and all other tasks are exe-
cuted on the server. In this partitioning, the client executes only
essential functions, shifting all other computational burdens to the
server. This decreases the client’s price and power consumption.
However, it increases the demands upon the communication link
between the client and the server, increasing its price. Although
some of the trade-offs facing the designer of client-server systems
are apparent even from this simple example, the problems tackled
by COWLS are significantly larger and more complicated.

4. Problem formulation
In this section, we present the client-server synthesis problem

formulation used for COWLS.
The independent synthesis of a client or server is similar to the

distributed, heterogeneous embedded system co-synthesis prob-
lem. However, COWLS targets the servers and clients simulta-
neously.

The manner in which a designer specifies the requirements
placed on a client-server system was explained in Section 2. It
is also necessary to describe the characteristics of the resources
which may be used to meet these requirements. We model three
main types of resources: processing elements, communication re-
sources, and memory.

Processing elements (PEs) model general-purpose or special-
purpose processors which are capable of executing tasks. There
are two types of PEs: client PEs and server PEs. A number of
attributes are associated with each type of PE. More than one in-
stance of a single type of PE may eventually be present in a synthe-
sized client-server system. Each PE type has a price, an idle power
consumption, as well as a Boolean value indicating whether or not
the PE uses buffered communication. In addition, we use a table
describing the performance of each task on each PE type. For each
task, this table indicates whether or not the task can be executed
on each type of PE. For each task which may execute on a given
PE type, it holds the task’s worst-case execution time, its aver-
age power consumption, and the amount of memory it requires.
Due to packaging considerations (e.g., weight, size, and cooling),
the memory available in the clients may differ from the memory
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available in the servers. Therefore, the price of memory depends
on whether it is located in a client or server.

COWLS synthesizes embedded systems containing arbitrary-
topology busses and point-to-point communication links [13], as
well as primary communication resources, which are used to con-
nect clients and servers. There are a number of attributes asso-
ciated with each type of communication resource. There may be
multiple communication resources within the client, and within the
server. Numerous alternative primary communication resources
may be available. However, only one primary communication re-
source may be present in a client-server pair, as multiple wireless
transmitters and receivers will typically result in unreasonably ex-
pensive client-server systems. The use of a unique link allows a
trade-off between price and bandwidth when modeling wireless
communication links. Each type of communication resource has
a price, a packet size (which can be very small to model com-
munication which is not packet-based), a power consumption per
packet, an amount of transmission time required per packet, and a
maximum number of contacts. A communication resource’s num-
ber of contacts is the number of different PEs which it may con-
nect together,i.e., a communication resource with two contacts is
a point-to-point link. Primary communication resources have two
prices, one of which is associated with the client and one of which
is associated with the server.

Given the client-server system requirements, in the form of a
set of task graphs, as well as the attributes of the PEs, memory,
and communication resources available, COWLS attempts to syn-
thesize client-server systems which meet the requirements with
minimal price, client power consumption, and soft deadline viola-
tion. An architecture’s costs are derived from the manner in which
resources are used in its construction. Therefore, by attempting
to meet real-time constraints, one ensures that high-speed PEs,
which are tailored to the tasks required, are used for tasks which
lie along critical paths in the task graphs. By attempting to min-
imize price, one ensures that PEs, which are capable of carrying
out the required tasks with minimal price, are used. By attempting
to minimize client power consumption, one minimizes the number
of power-intensive tasks run on power-hungry PEs located on the
client. Of course, some of these goals conflict with each other. For
this reason, a single run of COWLS generates multiple solutions
which explore the trade-offs among different costs.

5. Optimization framework
In this section, we explain the optimization framework

COWLS uses to synthesize client-server systems.
In order to simultaneously optimize different costs without any

pre-determined numerical specification of the relative importance
of those costs, a synthesis system must be capable of producing
multiple solutions to each problem. One can achieve this result by
running a single-solution, constructive or iterative improvement
algorithm multiple times. The left graph in Fig. 5 shows the results
of running a conventional single-objective iterative improvement

algorithm multiple times, given different relative importance of
two costs, price and soft deadline violation. In this figure, the dot-
ted lines represent the relative importance of the two costs during
each of the five runs of the algorithm. The curved solid line repre-
sents the Pareto-optimal solution curve,i.e., those solutions which
are not inferior to any other solutions in all of their costs [19]. The
circles represent the solutions ultimately found by the algorithm.
Note that, as the shape of the Pareto-optimal curve is unknown,
it is impossible to determine the appropriate relative importance
for the two costs before an optimization run. Thus, the algorithm
spends nearly as much time during the optimization runs which
have no hope of producing a high-quality solution as it does dur-
ing runs which have the potential to find high-quality solutions.
The end result is that computational effort is not focused on the
appropriate areas of the solution space.

The right graph in Fig. 5 shows the result of running a true mul-
tiobjective algorithm once. In this figure, the gray circles represent
solutions ultimately reported to the designer by the multiobjective
algorithm. The white circles represent solutions which are strictly
inferior to other known solutions. Although they aid in the ex-
ploration of the solution space by sharing information with other
solutions, they are eliminated before results are reported to the de-
signer.

The multiobjective algorithm focuses its efforts on the areas of
the solution space which are most promising by eliminating solu-
tions which are strictly inferior to others during the optimization
run. Given equal computational resources, a multiobjective algo-
rithm will, in general, find solutions which are closer to the most
promising portions of a multiobjective problem’s Pareto-optimal
curve than those located by multiple runs of a conventional algo-
rithm.

A given solution,A, dominates solutionB if all of A’s costs
are lower than or equal to the corresponding costs ofB, andA is
not equivalent toB. Instead of using a conventional cost function,
COWLS computes therank of each solution relative to the other
solutions that are currently maintained by its optimization algo-
rithm. A solution’s rank is the number of other currently existing
solutions which do not dominate it.

In Fig. 6, each oval represents a solution. The position of a so-
lution indicates its costs,i.e., its price and soft deadline violation.
The number in each oval indicates the rank of the corresponding
solution. SolutionB has a rank of three because it is not domi-
nated by three other solutions:C, D, andE. Note that even though
a two-dimensional solution space has been shown in Fig. 6 in or-
der to simplify the example, in general the solution space has three
or more dimensions,e.g., price, soft deadline violation, and power
consumption.

COWLS uses a multiobjective, evolutionary optimization
framework. This optimization framework was selected because
it is well-suited to solving optimization problems in which solu-
tions have multiple costs, it is unlikely to become trapped in local
minima, and its effectiveness, when applied to related synthesis
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problems, has been demonstrated in previous work. COWLS si-
multaneously maintains multiple solutions which trade off differ-
ent costs. Instead of using a conventional cost function, it derives
solution ranks based on the quality of each solution, relative to
other existing solutions. It eliminates poor solutions, those which
are inferior to other existing solutions in every way, and repro-
duces good solutions.

6. Optimization formulation
In this section, we explain the manner in which solutions are

represented and optimized by COWLS.
Each solution is defined hierarchically. At the top level of the

hierarchy, the physical resources available to a solution are spec-
ified. Thus, the primary communication resource type, the client
and server PE allocations (the numbers and types of PEs present
in the client and server), and the client and server communication
resource allocations (the numbers and types of communication re-
sources present in the client and server) are specified at this level.
Multiple resource allocations simultaneously exist. We refer to a
group of solutions which are guaranteed to share the same resource
allocations as acluster. Within each cluster, there are multiple so-
lutions. In addition to resource allocation information, assignment
information is associated with each solution. Each solution is fur-
ther defined by its client task assignment (information specifying
the PEs upon which each client task is executed) and its server task
assignment. A number of command line parameters affect the be-
havior of the optimization algorithm,e.g., the number of solutions
and the number of clusters.

The evolutionary algorithm maintains a geometrically decreas-
ing global temperature, initially set to one, which causes its behav-
ior to change during the course of an optimization run. Fig. 7 gives
an overview of the evolutionary optimization framework used in
COWLS. Initially, pseudo-random solutions and clusters are gen-
erated. The optimization algorithm consists of a set of two nested
loops. Within the outer loop, the cluster loop, changes are made to
existing clusters via mutation and information trading resulting in
the production of new clusters. The solution loop is then entered.
For each cluster, changes are made to the solutions via mutation
and information trading resulting in the production of new solu-
tions, the new solutions are scheduled, their costs are evaluated,
and Boltzmann trials are conducted between the new solutions and
the old solutions [20]. Solutions which lose their Boltzmann trials
are eliminated until the number of solutions in each cluster is the
same as it was at the beginning of execution. This inner solution
loop executes multiple times (two to five times works well in prac-
tice), after which control returns to the outer cluster loop. At this
point, Boltzmann trials are conducted between pairs of clusters,
eliminating the losing clusters, until the number of clusters is the
same as it was at the beginning of execution. This outer loop con-
tinues to execute until a number of iterations have been carried out
without an improvement in the quality of the clusters (10 iterations
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Fig. 7: Optimization overview

works well in practice), at which time the global temperature is
lowered, resulting in greedier optimization. When a large number
of iterations have passed without an improvement in the quality of
the clusters (31 works well in practice), the algorithm is halted and
all of the valid solutions encountered during the optimization run,
which are not dominated by other solutions, are reported.

During an optimization run, the resource allocation and assign-
ment information associated with solutions undergoes randomized
local changes, or mutations. Every time this happens, one newly
modified solution is tentatively created. Each mutation may affect
communication resources or PEs. Mutation either adds or removes
a randomly selected resource, although the client and server are
guaranteed to maintain at least one PE each. The probability that a
resource will be added is proportional to the global temperature,
causing resource allocations to initially be grown, then pruned
back later during an optimization run. When the primary commu-
nication resource information is mutated, another type of primary
communication resource is randomly selected as a replacement.

Randomized changes, similar to those which occur to resource
allocations, are made to the information specifying the manner in
which local communication resources are connected to PEs as well
as the assignments of tasks to PEs. Task assignment mutation is
randomized. However, it is not entirely random. Task assignment
mutation is guided by a heuristic designed to minimize task exe-
cution time and primary communication link bandwidth require-
ments. After randomly determining which task will be reassigned,
this heuristic generates an array of PEs capable of executing the
task. Two costs are associated with each PE: loading and distance.
Loading is the approximate proportion of a PE’s time which has
already been occupied by the other tasks assigned to it. Distance is
a metric which takes into account the likely impact of a change to a
task’s assignment upon the bandwidth requirements placed on the
primary communication resource. Recall that each PE is located
either on the client or the server. A task’s neighbors are the other
tasks with which it communicates,i.e., the tasks connected to it by



arcs as shown in Fig. 1. Letseparation be a function of two PEs.
This function takes the value one if one of its arguments is located
on the client and the other argument is located on the server. Oth-
erwise, it takes the value zero. Letassigned to be a function of
one task. Its value is the PE to which its argument is assigned.
Given a PE,pe, a lengthn array of neighbors,neighbors, of the
task under consideration, the distance,dist, of that PE is defined
as:

dist (pe) =
1

n

nX

i=1

separation (pe; assigned to (neighbor
i
))

In other words, distance is the proportion of the PEs to which a
task’s neighbors are assigned, which are located on the other side
of the client-server PE division from the PE whose distance is be-
ing calculated. Once loading and distance have been calculated,
these costs are used to compute the multiobjective ranks (see Sec-
tion 5) of the PEs. The array of PEs is then sorted in order of
increasing rank. Finally, the task is assigned to a PE which is se-
lected by indexing into this array, from the highest-rank PE, with
the square of a uniform random variable which ranges from zero
to one, multiplied by the length of the array,i.e., if m is the length
of the array andurv is a uniform random variable ranging from
zero to one, then the index variable,index , is defined as:

index = m � urv
2

This selection method is designed to allow the PE ranking heuristic
to guide the assignment of tasks to PEs in a probabilistic manner.

In addition to mutation, solutions may be changed by trading
information with other solutions. Every time information trading
occurs, two newly modified solutions are tentatively created. It
has been shown that for information trading in genetic algorithms,
which are closely related to the type of evolutionary algorithm em-
ployed by COWLS, it is important to keep related information
together during information trading [21]. Doing so results in a
dramatic decrease in optimization time (n evaluations implicitly
evaluaten3 solutions), or an increase in solution quality given the
same amount of optimization time. We have empirically verified
this assertion. The relative frequencies of the different types of
mutation and information trading are specified by empirically de-
termined parameters.

The allocation information trading algorithm used by COWLS
is designed to keep related information together more frequently
than disrupting it. Each PE type is characterized by a set of pa-
rameters,e.g., price and idle power consumption. Given that there
aren parameters, each parameter is treated as a coordinate of an
n-dimensional vector. There exists one such vector for each PE
type. These vectors are then normalized to a unit-diametern-
dimensional hyper-sphere. The hyper-sphere is then bisected by a
randomly positioned and randomly orientedn-dimensional hyper-
plane. PE allocations associated with PE vectors on one side of the
hyper-plane are swapped between the two solutions involved in in-
formation trading while PE allocations associated with PE vectors
on the other side of the hyper-plane remain in their original solu-
tions. Communication resource information trading is carried out
with a similar algorithm.

After making changes to solutions, it is necessary to determine
whether or not those changes resulted in improved costs. Thus,
after modifying a solution, COWLS carries out cost calculation
to determine its aggregate price, the client’s power consumption,
and the degree to which soft deadlines are violated. In addition
to these visible costs, there are a number of invisible costs which
need never be displayed to the designer. Hard deadline violation is
an example of such a cost. All solutions in which the hard deadline
violation is non-zero are eliminated before results are presented to
the designer. However, during optimization, solutions with hard
real-time deadline violations are allowed to exist, for they have
the capacity to evolve into high-quality, valid solutions during op-
timization.

Aggregate price is computed by taking the sum of the prices of
the PEs, memory, communication resources, and the primary com-
munication resource associated with the client, multiplying this by
the expected number of clients, and adding to this the sum of the
prices of the resources used in the server multiplied by the ex-
pected number of servers. This gives a total client-server system
price. If the designer is interested in optimizing only client price,
the expected number of servers may be set to zero for the purpose
of price computation.

In order to determine the client power consumption, soft dead-
line violation, and hard deadline violation, it is necessary to gen-
erate a complete schedule for a solution. COWLS uses a rapid
multi-rate list scheduler which is capable of handling task graphs
with periods which are greater than, equal to, or less than the dead-
lines in the task graphs [22]. While scheduling, bus contention is
explicitly simulated. If there are more clients than servers, the ap-
propriate number of copies of each task and communication event
are scheduled on the servers in order to guarantee that they can si-
multaneously handle multiple clients. The scheduler is determinis-
tic, i.e., given a particular resource allocation and task assignment,
it always produces the same complete, static schedule. Therefore,
after scheduling, the completion times of each task and commu-
nication event are known. This allows straightforward calculation
of soft and hard deadline violations. In addition, the scheduler
determines the communication resources upon which each com-
munication event occurs. This information allows the calculation
of power consumption by the client’s communication resources.
The power consumption of each task which executes on the client,
as well as the power consumed by the client PEs while idle and
communicating, is added to the client communication resource
power consumption to determine the total client power consump-
tion. Once a schedule is computed for a solution, that solution’s
client power consumption and soft deadline violation information
is stored in a look-up table and used for any equivalent solutions
which subsequently arise during optimization.

Once every solution’s costs are known, the evolutionary opti-
mization algorithm globally compares every solution with every
other solution in order to determine which solutions are inferior
to others, as defined in Section 5. A solution’s rank is the total
number of solutions minus the number of solutions to which it is
inferior. Boltzmann trials [20], using the global temperature and
the ranks of the two solutions, are conducted between randomly
selected pairs of solutions, one of which is a newly modified so-
lution. In a Boltzmann trial, the degree of correlation between the
superiority of a solution’s rank over its competitor’s rank, and its
probability of winning the trial, is inversely related to the global
temperature. The losers of these trials are deleted, until the number
of solutions is the same as it was after initialization.

7. Experimental results
In this section, we present the results COWLS produced when

run on the camera client-server example shown in Fig. 2, as well
as a number of pseudo-random examples. We know of no previous
work on automatic synthesis of client-server systems. Therefore,
it is not possible to compare the performance of COWLS against
prior art. However, the general multiobjective evolutionary opti-
mization framework employed in COWLS has performed equally
well or better when compared with other co-synthesis systems for
distributed, non-client-server, architectures [16]. For these exam-
ples, COWLS was used to explore the trade-offs between differ-
ent system costs, instead of attempting to minimize a single cost.
Given a similar amount of CPU run time, it would be possible to
better optimize a single cost by ignoring all other costs. However,
this approach would ignore the fundamentally multiobjective na-
ture of embedded system design. Each synthesis run reported in
this section took less than ten minutes on a PentiumPro running at
200 MHz with 96 MB of memory.

The pseudo-random examples, as well as the resource database
of the camera examples, were produced with the aid of TGFF, a
set of algorithms which generates multiple task graphs and re-
source descriptions based upon a number of parametric defini-



Table 1: Camera experiments

Example System Client Server Soft DL Client
number price (USD) price (USD) price (USD) violation power (mW)

1,762 67 87 0.108 643.9
1,768 67 93 0.060 2,685.3
1,785 67 110 0.060 643.9

1 1,883 71 108 0.112 641.1
1,889 71 114 0.064 641.1
2,534 79 559 0.150 590.2
2,596 79 621 0.148 590.2
1,762 67 87 0.310 729.7
1,789 67 114 0.263 729.7

2 2,534 79 559 0.353 676.0
2,596 79 621 0.350 676.0
3,579 120 579 0.344 676.0
1,762 67 87 0.513 815.5

3
1,789 67 114 0.465 815.5
1,789 67 114 0.673 901.2

4
1,810 67 135 0.667 901.2

Table 2: Randomized multiobjective experiments

Example System price Client Server Soft DL Client
number (USD) price (USD) price (USD) violation power (mW)

1,639 76 119 3.235 2,847.2
1

1,662 76 142 3.621 2,789.7
906 37 166 2.531 3,594.0

2
974 40 174 0.699 1,024.6

1,392 42 552 3.279 11,932.2
3

1,462 56 342 2.765 12,040.5
6,660 322 220 2.583 6,752.0
7,120 345 220 2.431 6,469.1

4
7130 345 230 2.682 2,635.2
7,142 345 242 2.357 6,440.4

5 3,995 172 555 3.163 1,997.2
6 1,095 49 115 2.730 1,544.9
7 1,197 55 97 2.341 1,977.5

1,223 49 243 2.282 1,224.2
8 1,234 49 254 2.576 1,160.7

2,281 100 281 2.270 7,196.4
4,888 212 648 5.490 4,943.7

10
5,188 227 648 5.039 4,968.7
1,295 60 95 2.232 1,360.2

12 1,349 63 89 2.346 1,238.5
1,581 64 301 2.032 1,101.2

tions [23]. Parameters were derived from textbooks dealing with
wireless communication [24] as well as trade journals which de-
scribe general-purpose and embedded processors [25].

Table 1 shows the results of running COWLS on the camera
client-server system task graph shown in Fig. 2. In these exam-
ples, there are four types each of the following resources: client
PEs, client communication resources, and server communication
resources. In addition, there are five types of server PEs and
six types of primary communication resources. Separate types
of memory are provided for the clients and the servers. The at-
tributes vary randomly from resource to resource and are based on
values found in the literature,e.g., in Example 1, the client-side
active power consumption of the different client, server, and pri-
mary communication resources available varied from 94 mW to
4,078 mW. The same set of COWLS command line parameters

were used for each one of the camera examples.
A solution’s soft deadline violation proportion is equal to the

sum of all soft deadline violations within it divided by the solu-
tion’s hyperperiod. For each run, a different set of client PEs were
provided. For a given example number,ex, the average execution
time,av ex time, of a task on a client PE is defined as:

av ex time = 5 ms+ (ex� 1) � 50 ms

The PEs available in the higher-number examples tend to be slower
than those available in the lower-number examples. Thus, the soft
deadline violation proportions tend to increase with increasing ex-
ample numbers. As a result of the tight soft deadline constraints,
soft deadline violations occur in all four examples. For a number
of examples, COWLS produces multiple solutions which trade off
soft deadline violations, price, and power consumption,e.g., Ex-



ample 1. In the third and fourth columns of Table 1, the prices for
a single client and server are given. However, for the purpose of
optimization, COWLS used an aggregate value based on the num-
ber of clients and servers in the target system. For these examples,
there were twenty five clients and one server. Thus, given a client
price of 67 USD and a server price of 87 USD, the aggregate sys-
tem price would be67 USD � 25 + 87 USD � 1 = 1;762 USD. As
average task execution times become high enough to make solu-
tions which meet their hard real-time constraints rare, the number
of solutions produced by COWLS decreases,e.g., Example 4.

In general, COWLS assigns tasks to the clients and server such
that only a small amount of data must be transferred via the wire-
less link. For most of the solutions produced for Example 1, data
are sent over the wireless link only after compression. Occa-
sionally, some of the decisions made by COWLS seem counter-
intuitive. For example, the second solution produced by the run on
Example 1 has a significantly higher power consumption (2,685.3
mW) than the other solutions. In this case, COWLS has assigned
the decompression task to the client. This increased the power
consumption of the client PE used for decompression, as well as
the power consumption of the primary link, which was required
to transmit uncompressed data to the server. However, by mak-
ing this counter-intuitive choice, COWLS found a solution which
has a lower system price (1,768 USD), for the given soft deadline
violation (0.060), than any of its other solutions. Solutions mini-
mizing power consumption at the expense of price or soft deadline
violation were also produced during the optimization run.

Table 2 shows the result of running COWLS on multi-rate,
pseudo-random examples, each of which contains four task
graphs. Within each task graph, there are between seven and thirty
five tasks. The resource databases are similar to those used in the
camera examples. The same set of COWLS command line pa-
rameters were used for each one of the pseudo-random examples.
COWLS did not produce solutions for some of the problems,e.g.,
Example 9 and Example 11. Note that there is no guarantee that
all of the problem instances generated by TGFF are solvable. For a
number of examples, multiple non-dominated solutions were pro-
duced by each design run, as in the camera experiments.

Although the client-side transmission rates of the primary com-
munication links available vary widely, their average is 470 Kbps,
which would be provided by a channel with a bandwidth of 300
KHz and a spectrum efficiency of 1.6 bps/Hz, which is a relatively
small portion of the available short-range RF spectrum in most na-
tions [24]. An exhaustive listing of the parameters defining the
camera and pseudo-random example task graph sets and resource
databases is beyond the scope of this paper. However, the parame-
ters defining these examples, as well as the examples themselves,
are available via anonymous FTP [26].

8. Conclusions
COWLS automatically synthesizes embedded client-server ar-

chitectures. It uses a multiobjective evolutionary algorithm to si-
multaneously produce multiple solutions which trade off different
costs. It optimizes price, client power consumption, and soft dead-
line violations under hard real-time constraints and constrained
client-server communication bandwidth. The experimental results
show that COWLS frequently makes design decisions which are
similar to those which would be intuitive to a human designer.
However, it occasionally makes counter-intuitive decisions which
are preserved if they assist in the evolution of non-dominated so-
lutions.
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