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Abstract
The increasing complexity and software content of embedded sys-
tems has led to the frequent use of system software that helps appli-
cations access underlying hardware resources easily and efficiently.
In this paper, we analyze the power consumption of real-time op-
erating systems (RTOSs), which form an important component of
the system software layer. Despite the widespread use of, and sig-
nificant role played by, RTOSs in mobile and low-power embedded
systems, little is known about their power consumption characteris-
tics. This work presents the power profiles for a commercial RTOS,
µC/OS, running several applications on an embedded system based
on the Fujitsu SPARClite processor. Our work demonstrates that
the RTOS can consume a significant fraction of the system power
and, in addition, impact the power consumed by other software
components. We illustrate the ways in which application software
can be designed to use the RTOS in a power-efficient manner. We
believe that this work is a first step towards establishing a system-
atic approach to RTOS power modeling and optimization.

1 Introduction
Embedded systems often contain programmable processors and pe-
ripherals in addition to application-specific hardware. The com-
plexity of applications and underlying hardware, tight perfor-
mance/power budgets, as well as aggressive time-to-market sched-
ules, requires the use of run-time software support by application
developers. This support usually takes the form of an RTOS, run-
time libraries, and device drivers [6, 8, 9, 10, 13, 14, 16]. RTOSs
are used in embedded systems with soft real-time constraints, as
well as formal real-time systems with hard real-time constraints. In
the interest of brevity, we will use the term RTOS to refer to all
operating systems targeting time-constrained embedded systems.

An RTOS provides a number of services to an embedded system
designer. It manages the creation, destruction, and scheduling of
tasks, as well as communication between tasks. The device driver
and memory management portions of an RTOS simplify the inter-
face between an application and hardware by providing the embed-
ded system designer with routines to manage hardware resources.
In addition, an RTOS services synchronous and asynchronous inter-
rupts generated by the processor and other embedded system com-
ponents.

Typical applications involve significant use of RTOS primitives,
the complex interactions of which are hidden from the application
software developer. Although abstracting away the detailed behav-
ior of RTOS services allows embedded system designers to more
easily manage complexity, tight performance and power constraints
sometimes demand more detailed analysis. An RTOS accounts for
a significant fraction of the computational effort spent by an embed-
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ded system. Therefore, designers need to be aware of the potential
performance and power impact of their method of RTOS use. Com-
mercial RTOS manuals and data sheets typically include estimates
of the execution time for various parts of the RTOS for specific
hardware configurations. However, vendors do not provide infor-
mation about RTOS power consumption characteristics. In addi-
tion, state-of-the-art techniques in embedded software power anal-
ysis do not clearly separate and analyze power consumed in RTOS
components. Our work is a first step towards analyzing and charac-
terizing power consumption in different RTOS components.

Our work focuses on understanding and characterizing the power
effects of system software rather than on building a new system-
level power analysis tool. To our knowledge, this is the first work
that characterizes the power consumption of an RTOS. We demon-
strate that the RTOS itself can consume a significant amount of
power. The manner in which an RTOS is used significantly affects
overall system power consumption. We have developed a general
framework to measure the power consumed by different applica-
tion and RTOS components. We have characterized the power con-
sumption of a commercial RTOS,µC/OS [9], running on a Fujitsu
SPARClite processor. We present quantitative results for energy
and time consumed by different operating system tasks, such as
context switching, scheduling, inter-process communication, and
timer management. We present concrete examples of how informa-
tion derived from RTOS power analysis can be used to optimize em-
bedded software power consumption. The data and insights derived
from our analysis can be used for research on high-level power-
modeling of different RTOS components. These models can be in-
corporated into power-aware system-level design tools.

2 Motivation for RTOS energy analysis
In this section, we illustrate, with examples, the impact of an RTOS
on system energy and time consumption. The RTOS is shown to
account for a significant fraction of the system’s energy consump-
tion. The RTOS energy analysis infrastructure described in Sec-
tion 3 is used to provide a quantitative breakup of the energy and
time consumed by different parts of the application and the RTOS.
Our analysis identifies the key sources of energy consumption in
the system. Significant savings in energy consumption are obtained
by re-writing the application to use the RTOS in a more energy-
efficient manner.

Energy consumption information is generally more useful, when
optimizing an embedded systems’s battery lifespan, than power
consumption information. Even in situations requiring the opti-
mization of power consumption,e.g., building an embedded system
with limited short-term heat dissipation, one may frequently convert
an energy-reduced system to a power-reduced system by reducing
the system’s clock rate, putting it in a reduced power consumption
sleep mode part of the time, or reducing the voltage at which some
of its components operate. Therefore, we focus on the energy con-
sumption of a number of simulated embedded systems in this paper.
In addition, we give time consumption profiles for these examples.
Note that the power consumption profile follows directly from the
energy and time consumption profiles.

2.1 TCP/IP subsystem example
In our first example, we consider the part of a TCP/IP protocol stack
which does checksum computation and interfaces with the Ether-
net controller peripheral. Incoming packets are processed to derive
their checksums. The packets are subsequently transmitted to the
output device (Ethernet controller).
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Fig. 1: (a) A straightforward implementation, and (b) a multi-
process implementation of the TCP subsystem.

The most straightforward implementation of this algorithm,
shown in Fig. 1(a), processes each packet as soon as it is available.
However, acquiring a lock on the Ethernet controller’s memory and
preparing it to receive a packet, represented by theProcure Ether-
net controlleroperation in Fig. 1, may be costly. TheTCP-1bar in
Fig. 4, in Section 4, shows the energy consumed by this straightfor-
ward implementation, broken down by RTOS service and applica-
tion categories.

It is possible to amortize the cost ofProcure Ethernet controller
over the transmission of multiple packets by decoupling packet gen-
eration from transmission to the Ethernet controller. In this energy-
optimized implementation, the application is broken into three tasks
as shown in Fig. 1(b). TheChecksum computationtask communi-
cates packets to theBuffer managementtask via shared memory.
When theBuffer managementtask has enqueued a number of pack-
ets, it transfers them simultaneously to theOutputtask, which pro-
cures the Ethernet controller and transmits all of the packets in its
queue.

The TCP-2 bar in Fig. 4 shows the energy consumed by the
energy-optimized version of the TCP example. This results in a
20.5% overall decrease in energy consumption for the application
with most of the savings resulting from reduced reliance on hard-
ware access synchronization and initialization services. Power con-
sumption reduced by 0.2%,i.e., the energy savings resulted from a
reduction in execution time, not average power consumption. The
energy saved in the hardware access synchronization and initializa-
tion services was sufficient to more than offset the 4.9% increase
in energy resulting from the increased complexity of the multiple-
task implementation. Note that one could easily convert some of
these energy savings into power savings by putting the processor
and memory into sleep mode for the amount of time saved in TCP-
2. In this example, the RTOS proper consumed only approximately
1% of the overall energy. However, in the other three examples, the
RTOS consumes a substantial fraction of the embedded system’s
energy.

2.2 Anti-lock braking example
Our second example is based on embedded software used in an au-
tomotive anti-lock braking system (ABS). The system uses a timer
wake-up signal to trigger execution of theABSprocess. Consider
the flow chart shown in Fig. 2(a) which implements part of an ABS.
The system has been adapted from an example in a design automa-
tion manual [3]. TheABSprocess calls theSense brake pedaland
Sense speedfunctions that sense the brake pedal and the current an-
gular velocity of the wheel, respectively. It then computes the cur-
rent speed and acceleration of the automobile, and uses the speed,
acceleration, and brake pedal status to decide whether to apply the
brakes, pump the brakes, release the brakes, or do nothing. This
braking decision is conveyed to theActuate brakefunction, which
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Fig. 2: (a) A straightforward implementation, and (b) an energy
optimized implementation of the ABS example.

clamps the brake calipers, if appropriate. The simulated vehicle was
subjected to an input trace during which its speed and brake pedal
conditions change multiple times. The energy consumption profile
is shown in theABS-1bar of Fig. 4.

In the straightforward implementation of the ABS example, il-
lustrated in Fig. 2(a), the processor is awakened and theABSpro-
cess executes with every timer tick. As a result, it frequently ex-
ecutes without changing the condition of the brake calipers. This
needless execution requires energy which might otherwise be con-
served. By changing the algorithm slightly, such that it only wakes
up the processor on a timer tick if the brake pedal is depressed (as
shown in Fig. 2(b)), the embedded system’s energy consumption is
reduced. As shown in theABS-2bar of Fig. 4, the energy-optimized
implementation of the ABS example consumes 62.8% less energy
than the straightforward implementation. Most of the energy sav-
ings result from allowing the SPARClite processor to remain in the
sleep mode, and the DRAM to remain in self refresh mode, through
timer ticks during which it is certain that the brake calipers need
not be clamped. As the execution time in each case was 14 seconds,
power consumption also reduced by 62.8% in the energy-optimized
version. In this example, operating system and board support ser-
vices accounted for approximately 50% of the system’s energy con-
sumption.

The examples presented in this section demonstrate the manner
in which RTOS services are used may have a substantial indirect
impact on application energy consumption. Understanding RTOS
time and energy effects allows a designer to optimize the energy
consumption of the embedded system.

3 Energy analysis infrastructure
In this section, we present our RTOS energy analysis framework.
We first describe the inputs and outputs of our framework. Next,
we present a high-level view of its building blocks, and the manner
in which they interact to analyze the system energy consumption.
We then present some details of individual building blocks.

3.1 Inputs and outputs
Our framework can analyze the energy consumption of an applica-
tion, consisting of multiple tasks, executing under a multi-tasking
operating system. These tasks interact with each other, as well as
with peripheral devices such as UARTs, brake sensors, and other
hardware components. The system is simulated to obtain a detailed
report of the energy consumed by different application/RTOS func-
tions.

Fig. 3 depicts our energy analysis framework. The application,
which consists of multiple processes, is compiled and linked to-
gether with theµC/OS RTOS and Fujitsu’s SPARClite run-time li-
braries. In addition, a model of the system’s environment or exter-
nal stimuli is provided to our framework.

The outputs of our tool, shown at the right of Fig. 3, include
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Fig. 3: Energy analysis framework.

call-trees for each task, as well as the RTOS. Each tree node cor-
responds to a function call, and has a child node for each function
call instance which occurs within it. An edge from functionfoo
to functionbar indicates thatfoo calls bar. The nodes of the call-
tree are annotated with the functions they represent, and the energy
and time consumed by each invocation of the function. The con-
tributing sources of energy consumption within the function,e.g.,
instruction execution, stalls, DRAM refreshing, are recorded. Note
that if a functionh is called from two functionsf andg, we create
separate nodes in the call-tree corresponding to these two scenarios.
This ensures that the energy consumption statistics of a function are
separated by caller. Each call instance’s energy information can be
examined separately or the call-instances may be combined in order
to find the total energy consumed by all of the instances of a func-
tion located at a given position in the call-tree. At each position in
the call tree, detailed information is reported about the sources of
energy consumption within the function. In addition, a total hier-
archical energy consumption, equal to the sum of the total energy
consumptions of a node’s children, is given.

3.2 System overview
We now describe the operation of our energy analysis framework.
The simulated embedded system consists of a processor interact-
ing with a set of ASICs and other peripherals. Our energy analysis
infrastructure is built around a Fujitsu SPARClite processor, con-
nected to two fast page mode DRAMs, a timer, a UART, and a
number of other peripherals. It is easy to add new hardware,e.g.,
the brake sensors used in the ABS-1 and ABS-2 examples, to the
simulated system. Application-specific devices may interrupt the
operation of the processor. We use interrupt routines based on those
found in the Fujitsu MB86832 evaluation kit, andµC/OS. Applica-
tions run underµC/OS.

In order to analyze the energy consumption of the system, we
need detailed functional models and energy models for its con-
stituent parts. Instruction level power models for the Fujitsu SPAR-
Clite processor and internal cache can be found in the litera-
ture [15]. The internal operation of the MB86832 processor is sim-
ulated using an instruction set simulator (ISS) [11] which we have
enhanced to properly handle interaction with other components in
the modeled embedded system. The ISS accurately captures the
cycle-by-cycle execution of the processor,i.e., it accounts for ef-
fects such as branch delays, pipeline flushes, control-flow mispre-
dictions,etc.We have enhanced this ISS in a number of ways. In
order to account for the effects of cache misses, the ISS is enhanced
using an on-line cache simulator designed specifically to model the
SPARClite processor’s cache. It is necessary to use an on-line cache
simulator in order to know, during execution, whether or not a miss
has occurred. An off-line cache simulator would not allow the cor-
rect simulation of an embedded system because, due to races with
other peripherals, the presence or absence of a miss penalty may
change the flow of execution. The cache simulator accounts for
the cache and memory behavior. We model external memory as
well. Specifically, we simulate the cache and on-board bus inter-
face unit of a Fujitsu MB86832 [4, 5], as well as the operation of
two IBM0118160PT3-60 low-power fast page mode DRAMs [7].

Memory energy consumption is derived from the manufacturer’s
data-sheet, and depends on the DRAM’s mode of operation. If the
hardware implementation of an additional device a designer wants
to integrate into the system is known, its energy consumption can
be computed using known energy analysis techniques [1, 2, 12].

As mentioned earlier, our energy analysis framework organizes
the energy consumption data by function,i.e., the energy consumed
in the system during different instances of invocation of a function
are combined into a histogram. Therefore, in addition to evaluating
the energy consumed by the system in a cycle, our energy analyzer
needs to keep track of the function and process that are currently
being executed. In general, the manner in which the context is de-
termined is specific to the operating system, and the processor be-
ing considered.µC/OS performs scheduling and context switches
through the functionOSSched. Our framework uses this informa-
tion to keep track of context switches. Function calls are performed
using thejmpl instruction from the SPARC assembly language.
The name of the function to which control flow is transferred is de-
termined from the symbol table, which associates an address with
each function and global variable. The problem of tracking returns
from function calls is complex and requires information specific to
(i) the instruction set architecture of the processor being used, (ii)
the manner in which the compiler translates different control-flow
constructs in the high-level programming language into assembly
code, and (iii) some information specific to the RTOS code that
performs context switching.

Our energy analysis technique is non-intrusive. This contrasts
with many well-known software debugging and performance anal-
ysis techniques that augment the program to be analyzed with mon-
itoring code in order to enhance observability of the program state
and internals. While the addition of monitoring code eases analysis,
it results in a loss of accuracy because the monitoring code modifies
the parameters that needs to be measured: execution time and en-
ergy. Additionally, as explained in Section 3.2, this extra code may
change the order in which tasks execute in an embedded system
containing multiple hardware devices. The need to perform cycle-
accurate performance analysis is heightened in the presence of ex-
ternal devices which communicate with the processor. In several
systems, even minor inaccuracies in timing can cause a change in
the functionality of the system being implemented, leading to inac-
curate control-flow and energy results. Since we use cycle-accurate
processor and cache energy models, our framework does not suffer
from this problem. When run on a 336 MHz UltraSPARC-II with
four gigabytes of memory, the simulator takes 39.8 minutes to sim-
ulate the 14 second ABS-1 example and 12.3 minutes to simulate
the 2.5 second TCP-1 example.

3.3 System details
In this section, we describe the operation of two key components
of our target system architecture: the processor and the operating
system. We first present an overview of the processor, and then
briefly describe theµC/OS RTOS.

Our system is built around a Fujitsu SPARClite MB86832, a
32-bit RISC processor, operating at 80 MHz, with an external bus
speed of 26.7 MHz. It implements a superset of the SPARC v8 in-
struction set architecture. Its integer unit has a five-stage pipeline,
which can handle data interlocks, and a branch handler to perform
control-flow transfers efficiently. The bus interface unit is capa-
ble of providing single-cycle access to the on-chip cache. The
MB86832 has 136 registers, organized into eight overlapping reg-
ister windows, and 8 KB instruction and data caches. Multiply and
divide operations are supported by dedicated, on-chip hardware,
which can complete 32-bit multiplications in five cycles. The pro-
cessor also has a power-down mode, which can be employed to
reduce energy consumption.

µC/OS is Jean Labrosse’s portable real-time kernel for micropro-
cessors and micro-controllers. We use the version Brad Denniston
ported to the MB86832 processor.µC/OS has been used in many
commercial applications, and its performance is comparable to that
of other commercial real-time RTOSs.µC/OS supports multitask-
ing, and can handle up to 63 concurrent processes. The kernel is
fully preemptive. The RTOS is designed to be scalable,i.e., de-
signers who do not require some of its features may save memory
by easily building a light-weight version ofµC/OS. The RTOS pro-
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Fig. 4: Energy consumption profiles

vides a number of services such as scheduling, task-management,
inter-process communication, memory management, interrupt han-
dling, and timer-related services. We choseµC/OS for our experi-
ments because it is modular, and its source code is readily accessi-
ble. Further information onµC/OS can be found on the Internet at
http://www.uCOS-II.com, or in Labrosse’s book [9].

4 Results and case studies
We analyzed the energy consumption ofµC/OS RTOS when run-
ning several embedded applications. In all cases, we targeted the
Fujitsu SPARClite processor based embedded system presented in
Section 3.2. Some applications were abstracted from real embed-
ded system application software, while others were designed to
exercise specific RTOS functions and services. Overall, care was
taken to ensure that key RTOS functions and services were used by
the chosen applications.

For each example, we categorized energy consumption by RTOS
and application service type. Fig. 4 shows the energy consumed by
different RTOS and application services. Each vertical bar repre-
sents a distinct example. Vertical bars are divided to indicate the
percentage of energy consumed in the various RTOS and applica-
tion functions. For instance, in the Mailbox example, I/O primitives
used by the RTOS account for a larger portion of the energy con-
sumption than any other function category.

The Mailbox example illustrates the use of mailboxes for inter-
process communication. It consists of three application tasks which
communicate via the shared memory mailbox communication ser-
vice provided byµC/OS. The tasks also perform writes to the
UART. Fig. 4 shows that, in this example, the main sources of
energy consumption are input/output primitives, interrupt service
routines, task scheduling, as well as RTOS and processor initializa-
tion code. Mailbox management services also consume a small but
significant fraction of the system’s energy. Formatting and trans-
mitting data to the UART can be energy-intensive, and should be
sparingly used in an energy-constrained implementation. The ap-
plication code relied heavily on RTOS and processor support rou-
tines. As a result, the application code only consumed 1.0% of
the total system energy, with RTOS and processor support services
consuming the other 99.0%.

The Semaphore example illustrates inter-procedure communica-
tion through the use of shared memory. In this case, RTOS prim-
itives which post and release semaphores account for a small but
significant portion of the system’s energy consumption. The appli-
cation code consumed 1.3% of the total system energy, with RTOS
and processor support services consuming the other 98.7%.

The TCP and ABS examples are described in Section 2. In the
ABS-2 example, energy consumption was approximately evenly
divided between the SPARClite processor and its DRAM. In the
rest of the examples, the processor and DRAM consumed approxi-
mately 40% and 60% of the system’s energy consumption, respec-
tively. The results in this section, and in Section 2, indicate that an
embedded system’s RTOS may be directly responsible for a signif-
icant portion of the embedded system’s energy consumption. The
percentage of system energy directly consumed by the RTOS may
vary dramatically from approximately 1% (TCP-2) to 99% (Mail-
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Fig. 5: Time consumption profiles

box), depending on the degree to which the application code relies
on RTOS services. Even when the RTOS does not directly con-
sume a significant percentage of the system’s energy, one can sig-
nificantly reduce overall energy, and power, consumption by more
wisely using RTOS services, as demonstrated in the ABS-1 and
ABS-2 examples.

5 Conclusions and future directions
By analyzing a commercial RTOS,µC/OS, running several applica-
tions, we have demonstrated that the manner in which the RTOS is
used has a significant impact on an embedded system’s power con-
sumption. We have presented a method of analyzing the effects of
RTOS policies on embedded system power consumption. Insights
derived from RTOS power analysis were used to optimize embed-
ded software power consumption. The data and insights derived
from our work can be used to drive research on high-level power
modeling of different RTOS components. Furthermore, our work
enables power-efficient RTOS and application design, and may be
incorporated into power-aware system-level design tools.
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