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different tasks in an application, ensuring that the highest-priority taskust be increasingly aware of power issues. While power dissipation is
has access to an embedded system’s hardware resources at any givemently a property of the underlying system hardware, a knowledge
time. It also provides for communication and synchronization amoiufthe embedded software that runs on the hardware is useful in order to
tasks. In short, it manages the details of task interaction and providesnalyze and improve the system’s power-consumption characteristics.
simplified interface to hardware resources. Recognizing the important role played by embedded software in de-
Unlike general-purpose operating systems, RTOSs often sacrifteemining system power consumption, researchers have started to in-
some functionality for the sake of compactness, predictability, amestigate techniques for software power analysis and power-efficient
speed. A number of services typically provided by general-purposeftware design. Power analysis techniques have been proposed for
operating systems are not useful in most embedded applications, egbedded software based on instruction-level characterization [13],
support for multiple users or complex file-systems. By omitting suciind simulation of the underlying hardware [14]. Techniques to im-
features, the size of an RTOS may be reduced, decreasing menpgve the efficiency of software power analysis through statistical pro-
requirements and, therefore, embedded system cost. General-purfibsg have been proposed in [15]. The system-on-chip design para-
operating systems usually try to complete their duties quicklgigm, which enables integration of processors, peripherals, busses, and
However, they typically do not provide a hard guarantee that a tastmplex user-defined logic blocks, has fueled research in hardware-
will complete by a certain time. RTOSs differ from general-purposagnd software power-consumption estimation [16]-[21]. Reducing em-
operating systems by making hard real-time guarantees about the thedded software power consumption through compiler optimizations
requirements of the critical services they provide. [22], source-level transformations [18], [23], customized memory man-
Typical applications involve significant use of RTOS primitives, thegement schemes [24], power management schemes [8], [25], device
complex interactions among which are hidden from the applicatiahiver and operating system policies [26], and variable-voltage pro-
software developer. Although abstracting away the detailed behavi@ssors [27]-[30] has been investigated. Researchers have also begun
of RTOS services allows embedded system designers to more easilestigating methods of using operating systems to dynamically dis-
manage complexity, tight performance and power constraints sonadle peripherals in order to save power [31]. Others have advocated
times demand more detailed analysis. The way an RTOS is used tedesigning page allocation and communication policies in order to de-
a significant impact on embedded system performance and power corease energy consumption [32].
sumption. Therefore, designers need to be aware of the impact of RTO®ur work focuses on understanding and characterizing the power
on these design characteristics. Therefore, designers need to be aefieets of RTOS and application software. Our goal is to provide de-
of the potential performance and power impact of RTOS use. Commesigners with a method of determining the system-specific changes to
cial RTOS manuals and data sheets typically include estimates of the interaction between application software and RTOS that will most
execution time for various parts of the RTOS for specific hardware coeffectively reduce system power consumption. The steps required to
figurations. However, vendors do not provide information about RTO®duce system power consumption are necessarily dependent on the
power-consumption characteristics. In addition, state-of-the-art tecpecific RTOS and processor being used. We applied this method to the
niques in embedded software power analysis do not clearly separaf&OS-Il RTOS [3] and applications running on the Fujitsu SPARClite
and analyze power consumed in RTOS components. We propose pritessor. However, our method of hierarchically analyzing RTOS and
demonstrate a method of conducting a detailed hierarchical analysisipplication software power consumption [33] can be applied to dif-
the power consumption and execution time of embedded system apfgient processors and RTOSs, e.g., an ARM processor running Linux
cations running on a multitasking RTOS. In addition, our work is a fir§B4]. Others have subsequently used a simulation-based approach to
step toward analyzing and characterizing power consumptions of difkalyze RTOS power consumption [35]. We modeled the SPARCIite
ferent RTOS components as well as the indirect impact of RTOS usagecessor’s sleep mode. It was observed that, in applications making
upon embedded system power consumption. heavy use of RTOS services, the RTOS, itself, can consume a sig-
The rest of the paper is organized as follows. Section Il introduce#icant amount of power. However, in general, the impact of RTOS
related research and summarizes our contributions. Section 1l demasage upon application software consumption is more significant than
strates the potential impact of an RTOS on embedded system engrgwer directly consumed by the RTOS. We present quantitative results
consumption, using various illustrative examples. It also describes htwr energy and time consumed by different operating system tasks,
insights into RTOS effects on energy can be used to optimize softwatech as context switching, scheduling, interprocess communication,
to reduce energy consumption. Section IV describes our energy arald timer management. In addition, we present concrete examples of
ysis infrastructure, and presents an overview of/fig0S-11 RTOS. the ways in which information derived from RTOS power analysis
Section V presents quantitative experimental results on several exangale be used to optimize embedded software power consumption. Our
embedded software systems, on which we base our analysis of RTid&hod of RTOS power analysis can be used for research on high-level
energy effects. Section VI concludes and makes recommendationpower-modeling of different RTOS components. These models can be
designers of low-power embedded systems that use RTOSs. incorporated into power-aware system-level design tools.

Il. RELATED WORK AND CONTRIBUTIONS IIl. M OTIVATION FOR RTOS ENERGY ANALYSIS

The importance of reducing power consumption in embedded sysdn this section, we illustrate, with examples, the impact of RTOS
tems has now been widely recognized, and a large body of work hasage on system energy and time consumption. The RTOS energy anal-
focused on estimating, managing, and reducing power consumptiais infrastructure described in Section IV is used to provide a quantita-
in various system components. For hardware design, techniques haxecategorization of the energy and time consumed by different parts
been developed to estimate and optimize power consumption startifighe application and RTOS. Our simulation infrastructure identifies
from the algorithm and architectural design phases, down to the circtlie key sources of energy consumption in the system. Significant sav-
design and technology optimization steps [8]-[12]. Application, semings in energy consumption are obtained by rewriting the application
conductor technology, cost, and time-to-market trends are causingadtware to use the RTOS in a more energy-efficient manner.
shift toward increased software content in embedded systems and sy&nergy-consumption information is generally more useful than
tems-on-chip. As a result, designers and users of embedded softwawer-consumption information when optimizing an embedded
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Fig. 1. Straightforward implementation of the ABS example.

system’s battery lifespan. Even in situations requiring the optimizatigimulated vehicle was subjected to an input trace during which its
of power consumption, e.g., building an embedded system wipeed and brake pedal conditions change multiple times. The energy
limited short-term heat dissipation, one may frequently convert @onsumption profile is shown in the nongate bar of Fig. 2(a).
energy-reduced system to a power-reduced system by reducing thim the straightforward implementation of the ABS example, illus-
system’s clock rate, putting it in a reduced power consumption slegpted in Fig. 1, the processor is awakened and the ABS process exe-
mode part of the time, or reducing the voltage at which some of itsites with every timer tick. Note that even this straightforward imple-
components operate. Therefore, we focus on the energy consumptintation is power-aware: it uses the processor’s sleep mode between
of a number of simulated embedded systems in this paper. In additisansor sampling events instead of continuously leaving the processor
we give time-consumption profiles for these examples. Note that theits high-power active mode. However, it frequently executes without
power consumption profile follows directly from the energy and timehanging the condition of the brake calipers. This unnecessary execu-
consumption profiles. tion requires energy that might otherwise be conserved. By changing
the algorithm slightly, such that it only wakes up the processor on a
timer tick if the brake pedal is depressed [as shown in Fig. 3], the em-
bedded system’s energy consumption is reduced. As shown in the gated

Our first example is based on embedded software used in amergy bar of Fig. 2(a), the energy-optimized implementation of the
automotive antilock braking system (ABS). The system uses a tim&BS example consumes 65.0% less energy than the straightforward
wake-up signal to trigger execution of the ABS process. Consider timeplementation. Most of the energy savings result from allowing the
flow chart shown in Fig. 1 that shows part of an ABS. The system h&PARClite processor to remain in the sleep mode, and the dynamic
been adapted from an example in a design automation manual [36]rdndom access memory (DRAM) to remain in the self-refresh mode,
the step marked, sense speed and pedal conditions, the ABS protasaigh timer ticks during which it is certain that the brake calipers
calls the sense brake pedal and sense speed functions. The sense hesdnot be clamped. As the execution time in each case was 14 s [see
pedal function determines whether the brake is currently depressEig. 2(b)], power consumption also reduced by 65.0% in the energy-op-
The Sense speed function uses the wheel sensor to determinetithized version. In both versions of this example, operating system
current angular velocity (rotation speed) of the wheel. The AB&nd board support services accounted for approximately half of the
process then computes the current speed and acceleration of system’s energy consumption. In this example, floating point service
automobile, and uses the speed, acceleration, and brake pedal statwitines account for the majority of RTOS and board support energy
to decide whether to apply the brakes, pump the brakes, releasedbiesumption. Although some of the functions listed in the bar chart’s
brakes, or do nothing. This braking decision is conveyed to the actulgy account for little energy, we have listed all categories to keep the
brake function that clamps the brake calipers, if appropriate. Tkeys of different figures consistent.

A. Antilock Braking Example



618 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 5, MAY 2003

9500 _ 14000 _
9000 | 13000 _|
8500 _| S - "
8000 _| 12000 _| Application
7500 _| 11000 _| S Floating—point
7000 _| »
10000 _|
6500 _|
6000 _| 9000 _
'E 5500 _| — 8000_]
E 50004 E 7000 _|
>, 4500 _| <
80 4000 _ g 6000_ ] Misc.
£ 3500 = 5000_] [I]] Scheduling
= gggg 7] 4000 _| [ Semaphore
000 | T 3000 _ B Sleep
1500 _| = 2000 B Synchronization
1000 _| N Task control
500 _| 1000 _|
0_| 0_|
4, & 9,
60(9 QQQ
% %

(@) (b)

Fig. 2. ABS example: (a) energy and (b) execution time consumption by RTOS service category.
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Fig. 3. Energy-optimized implementation of the ABS example.

B. Commodity Trading Agent Example desire to sell a particular commodity. Agents receiving the broadcast
respond with an offer price computed from the agent’s supply-price

In our second example, we consider a market composed of cooarve for the commodity under consideration. The seller agent uses its
modity trading agents. As shown in Fig. 4, each agent has money augply-price curve to determine whether the highest received offer is
four different types of commodities. These quantities are randomly irfiigher than its internal valuation of the commodity under consideration
tialized. Randomly selected agents broadcast, to all other agents, thethe quantity it currently owns. If so, it sells one unit of the commodity
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Fig. 4. Overview of the commodity trading agent example.

to the agent making the highest offer. Note that this example is notHsis action occurs at the lowest level of a TCP/IP protocol stack. In-
conventional as the antilock break and Ethernet examples describeddming packets are processed to derive their checksums. The packets
the preceding and following sections. However, this forward-lookinare subsequently transmitted to the output device.
example does provide an opportunity to examine the potential impacfThe most straightforward implementation of this algorithm, shown
of hand optimization on application energy consumption. in Fig. 6(a), processes each packet as soon as it is available. However,
The mail bar of Fig. 5(a) shows the energy consumption profile fam this example, preparing the Ethernet controller to receive a packet,
an embedded system running the commodity trading example, wirepresented by the Procure Ethernet controller operation in Fig. 6(a), is
implemented using RTOS mailboxes to transmit messages betweently. The nonbuf bar in Fig. 5(b) shows the energy consumed by this
agents. In addition, the mail version relies on the RTOS schedulerstwaightforward implementation, broken down by RTOS service and
manage the activity of different agents. The tuned bar shows the @pplication categories.
ergy consumption for code that is carefully hand-tuned to use sharedt is possible to amortize the cost of Procure Ethernet controller over
memory of message communication, and avoid the use of RTOS méile transmission of multiple packets by decoupling packet generation
boxes or scheduler. In the mail version, the RTOS is responsible foem transmission to the Ethernet controller. In this energy-optimized
95.5% of the embedded system’s energy consumption. Interrupt hamplementation, the application is broken into three tasks, as shown
dling, mailbox services, and scheduling, alone, account for 27.6%iofFig. 6(b). The Checksum computation task communicates packets
the energy consumption. In the tuned version, the RTOS is responsiieiéghe Buffer management task via shared memory. When the Buffer
for 92.2% of the energy consumption. Interrupt handling, mailbox semanagement task has enqueued a number of packets, it transfers them
vices, and scheduling account for 2.0% of the energy consumptisimultaneously to the Output task that procures the Ethernet controller
Note that this example relies very heavily upon RTOS services. In maagd transmits all the packets in its queue.
embedded systems, RTOS energy consumption will account for les§he buf energy bar in Fig. 5(b) shows the energy consumed by the
than 10% of the total. energy-optimized version of the Ethernet interface example. Although
As shown in Fig. 5(a), there is an energy cost associated with usisgme energy or time is consumed by functions in each of the classi-
the RTOS scheduler and mailboxes to allow a more versatile and mdinations listed in the key, some of these classifications account for
tainable implementation. The tuned version required only 70% of thery little energy or time consumption, and are barely visible in the
energy required by the mail version. However, adding new prioritizdzhr charts.
tasks to the mail version is simple, while changing the behavior of theEnergy optimization of the Ethernet interface example results in a
tuned version is more difficult. In this case, a designer may trade @8.1% overall decrease in energy consumption, with most of the sav-
flexibility and maintainability for energy savings. ings resulting from reduced reliance on hardware access synchroniza-
tion and initialization services. Power consumption reduced by 0.1%,
i.e., the energy savings resulted from a reduction in execution time,
not average power consumption. The energy saved in the hardware ac-
In our third example, we consider checksum computation and int&ess synchronization and initialization services was sufficient to more
facing with an Ethernet controller that has high per-access overhetihn offset a 2.9% increase in energy resulting from the increased com-

C. Ethernet Interface Example
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Fig. 5. (a) Commodity trading agent example energy and (b) Ethernet interface example energy by RTOS service category.
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Fig. 6. (a) Straightforward implementation and (b) multiprocess implementation of the Ethernet interface example.

plexity of the multiple-task implementation. One could easily convethe buffered version. In this example, the RTOS consumed only 1.2%
some of these energy savings into power savings by putting the pobthe overall energy in the version that was not energy-optimized, and
cessor and memory into sleep mode for the amount of time savedaisimilar percentage of overall energy in the energy-optimized version.
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Fig. 7. Energy analysis framework.

However, in a number of other examples shown in Section V, the RT@Sthese two scenarios. This ensures that the energy consumption sta-
consumes a larger portion of the embedded system’s energy. tistics of a function are separated by caller. Each call instance’s en-
The examples presented in this section demonstrate that the marangy information can be examined separately or the call-instances may
in which an RTOS power analysis infrastructure may be used to detbe combined in order to find the total energy consumed by all of the
mine promising areas for power optimization and evaluate the tradedfistances of a function located at a given position in the call-tree. At
between power and other costs. Understanding the effects of RTOS eaeh position in the call-tree, detailed information is reported about the
on time and energy allows a designer to better optimize the these sources of energy consumption within the function. In addition, a total

ergy embedded system attributes. hierarchical energy consumption, equal to the sum of the total energy
consumptions of a node’s children, is given.
IV. ENERGY ANALYSIS INFRASTRUCTURE Table | shows a portion of the automatically formatted output of the

system when analyzing a semaphore example. In this example, con-

ut the embedded system power analysis tool produces. Note that
h context, e.g., realstart and Taskl, is a separate start node in the
call-tree hierarchy. The same function may appear more than once in
the call-tree, if itis called from different locations, e.g., the window un-
derflow trap service routine win_unf_trap in Task1. Although only en-
Our framework can be used to analyze the energy consumptionenfly per invocation, percentage of total energy, total time, and number
an application, consisting of multiple tasks, executing under a multf calls are displayed in this table, the analyzer also produces more
tasking operating system. These tasks interact with each other, as wdethiled reports on embedded system attributes, e.g., it can separate
as with peripheral devices such as universal asynchronous receiversemetgy consumption into sleep energy, stall energy, cache stall energy,
transmitters (UARTS), brake sensors, and other hardware componemismory access energy, memory idle energy, and instruction processing
The embedded system is simulated to obtain a detailed report of grergy.
energy consumed by different application/RTOS functions. For the sake of brevity, the call-tree has been pruned to limit its depth
Fig. 7 depicts our energy analysis framework. The application, whiemd breadth. It truncates the call-tree at a depth of three and omits the
consists of multiple processes, is compiled and linked together with thask2 context. For example, the table shows information about the re-
nC10S-1l RTOS and Fujitsu’s SPARCIite runtime libraries. In addialstart and Task1 contexts. Taskl calls OSSemPend that in turn calls
tion, a model of the system’s environment or external stimuli is pra number of other functions, including OSSched. Although OSSched
vided to our framework. calls other functions, they are omitted from the table for brevity. OS-
The outputs of our software, shown at the right of Fig. 7, includemPend consumed 104.59 mJ, including the energy consumed by all
call-trees for each task and the RTOS. Each call-tree node correspanitthe other functions it calls. OSSched consumed 66.44 mJ per invo-
to a function call, and has a child node for each function call instancation and it is invoked 999 times at this position in the call-tree. In-
that occurs within it. An edge from function foo to function bar indi-cluding the energy of the other functions it calls, it consumes 6.35% of
cates that foo calls bar. The nodes of the call-tree are annotated withttietotal system energy and executes for a total of 51.95 ms. Note that
functions they represent, and the energy and time consumed by eaclttiefigure produced by multiplying the energy consumption of each one
vocation of the function. The contributing sources of energy consumpi-the functions OSSemPend calls by the number of times the function
tion within the function, e.g., instruction execution, stalls, DRAM reis called is slightly lower than OSSemPend’s total energy consumption.
freshing, are recorded. Note that if a functiors called from two func- The difference between these figures is the amount of energy consumed
tions f andg, we create separate nodes in the call-tree correspondimginstructions at OSSemPend’s position in the call-tree.

interact to analyze the system energy consumption. We then pre
some details of individual building blocks.

A. Inputs and Outputs
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TABLE |
HIERARCHICAL CALL-TREE FOR THESEMAPHORE EXAMPLE

" Energy () N . . e
_ Function Voo ﬁion Energy (%) | Time (ms) | Calls
realstart init_tvecs 1. 0.00 0.00 1
25.40 m] total init_timer Titeled 4.26 0.00 0.00 1
2.43 % 18.01 mJ total
1.72 %
startup do_main 7363.11 0.70 5.57 1
7.39 mJ total save_data 5.08 0.00 0.00 1
0.71 % init_data 423 0.00 0.00 I
init_bss 2.86 0.00 0.00 |
cache_on 8.82 0.00 0.01 1
Taskl win_unf_trap 6.09 1.16 9.43 1999
508.88 mJ total | OSDisableInt 0.98 0.09 0.82 1000
48.69 % OSEnablelInt 1.07 0.10 0.92 1000
0SSemPend win_unf_trap 6.00 0.57 4.56 999
104.59 mJ total 0SDisablelnt 0.94 0.18 1.56 1999
10.01 % OSEnableInt 0.94 0.18 1.56 1999
OSEventTaskWait 13.07 1.25 9.89 999
05Sched 66.44 6.35 51.95 999
0SSemPost 0OSDisablelnt 0.96 0.09 0.78 1000
9.82 mJ total OSEnablelnt 0.98 0.09 0.81 1000
0.94 %
0STimeGet OSDisablelInt 0.84 0.08 0.66 1000
4.62 m] total OSEnableInt 0.98 0.09 0.81 1000
0.44 %
CPUInit BSPInit 352 0.00 0.00 1
0.29 m] total exceptionHandler 15.51 0.02 0.17 15
0.03 %
printf win_unf_trap 6.18 0.59 4.87 1000
368.07 mJ total viprintf 355.04 33.97 257.55 1000
35.22 %
In order to analyze the energy consumption of the system, we need
functional models and energy models of its constituent parts. Instruc-
Fuiitsu tion-level power models for the Fujitsu SPARCIite processor and in-
IBM SPARCiit 86832 ternal cache can be found in the literature [13]. The internal operation
0118160PT3-60 ¢ of the SPARCIite processor is simulated using an instruction set simu-
DRAM On~chip cache lator (ISS) [18] that we have modified so that it handles interaction with
other components in the modeled embedded system. We have imple-
IBM mented an easy-to-use, object-oriented, inheritance-based method of
0118160PT3-60 adding new hardware to the simulated system, e.g., the brake sensors
used in the ABS example. Application-specific devices may interrupt
DRAM Interrupts P pp P y P

the operation of the processor. We use interrupt routines based on those
found in the Fujitsu MB86832 evaluation kit, apd’'/OS-II. Applica-
tions run undeyp.C/OS-1l. The addition of hardware interrupts to the
embedded system simulator required significant changes to maintain
Brake correct simulation. In particular, it is not possible to use offline hard-
sensor ware models in the presence of coprocessor generated interrupts.

The ISS simulates the cycle-by-cycle execution of the processor,
i.e., it accounts for effects such as branch delays, pipeline flushes,

Other ASICs control-flow mispredictions, etc. We have enhanced this ISS in a
and peripherals number of ways. In order to account for the effects of cache misses,

we added an online cache simulator designed specifically to model the
SPARCIite processor’s cache. It is necessary to use an online cache

Fig. 8. Modeled architecture. simulator in order to know, during execution, whether or not a cache
miss has occurred. An offline cache simulator would not allow the
correct simulation of an embedded system because, due to races with
interrupts generated by other peripherals, the presence or absence of a

We now describe the operation of our energy analysis frameworkiss penalty may change the flow of execution. The cache simulator
The simulated embedded system consists of a processor interacéingounts for the cache and memory behavior. We model a number of
with a set of application-specific integrated circuits (ASICs) an8PARCIlite-specific features. Among these, low-power sleep mode
other peripherals. As shown in Fig. 8, our energy analysis infrég particularly important. In addition, we model external memory.
structure models a Fujitsu SPARCIite processor, connected to t8pecifically, we simulate the cache and on-board bus interface unit
fast page-mode DRAMSs, a timer, a UART, and a number of othef a Fujitsu MB86832 [37], [38], as well as the operation of two
peripherals. Cycle-accurate simulators have a reputation for beiBM0118160PT3—-60 low-power fast page-mode DRAMs [39].
slow. However, this approach is sufficiently fast to handle substantidlemory-energy consumption is derived from the manufacturer's
applications; a similar simulation infrastructure subsequently built lilata-sheet, and depends on the DRAM'’s mode of operation. We
colleagues booted Linux in less than 5 min on a Pentium Il processmmsider the energy required to drive the processor-memory bus.
running at 667 MHz [34]. Our power model is built from datasheets [39] and published current

Processor
bus

B. System Overview
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measurements [13]. If the hardware implementation of an additioraaid power consumption, determined the contribution of processor core
device a designer wants to integrate into the system is known, @sd 1/O power consumption for the 80-MHz core and 26.7-MHz 1/O
energy consumption can be computed using known energy analydiB86832.
techniques [8], [9], [12].

As mentioned earlier, our energy analysis framework organizes &li- System Details

ergy-consumption data by function. Therefore, in addition to evaluatingln this section, we describe the operation of two key components of

the energy consumed by the system in a cycle, our energy analygSF target system architecture: the processor and the operating system.

needs to keep track of the function and process that are currently beifg .. A . .
. : - 4 first present an overview of the processor, and then briefly describe
executed. In general, the manner in which the context is determine S

- . . ) nC1OS-1l RTOS.
specific to the operating sy_stem, and the processor being con&dere%ur system is built around a Fujitsu SPARClite MB86832, a 32-bit
nC'10S-1I performs scheduling and context switch occurs through SC processor, operating at 80 MHz, with an external bus‘, speed of
function OSSched. Our framework uses this information to keep traﬁ ' ;

: . : . -26.7 MHz. It implements a superset of the SPARC v8 instruction set
of context switches. Function calls are performed using the jmpl in- . : . ) o
architecture. Its integer unit has a five-stage pipeline that can handle

struction from the SPARC assembly language. The name of the func-_.
. . : . . ata interlocks and a branch handler to perform control-flow transfers
tion to which control flow is transferred is determined from the symbal_. . . - - X

iciently. The bus interface unit is capable of providing single-cycle

table that associates an address with each function and global variaple. . )
. : . cCess to the on-chip cache. The processor has 136 registers, orga-
The problem of tracking returns from function calls is complex and. - . . . . h .
S . o ) . . nized into eight overlapping register windows, and 8-KB instruction
requires information specific to the instruction set architecture of the

: . . : d data caches. Multiply and divide operations are supported by ded-
processor being used, the manner in which the compiler translates %%ted, on-chip hardware that can complete 32-bit multiplications in

ferent control-flow constructs in the high-level programming Ianguaqﬁ/e cveles. The processor also has a power-down mode that can be
into assembly code, and information specific to the RTOS code that ycles. P P

erforms context switchin employed to reduce energy consumption.
P 9: We have taken care to simulate the context-dependent

Our energy analysis technique is nonintrusive. This differs with mangni0118160PT3-60 memory and MB86832 bus interface unit
well-known software debugging and performance analysis techniqygging in sufficient detail to ensure that memory accesses require the
that augment the program to be analyzed with monitoring code in orqgimper of cycles implied by the timing diagrams in the specifications.

toenhanceobservabilityoftheprogramstateandinternals.Whiletheﬁp-addition’ we simulate stalls resulting from periodic distributed
dition of monitoring code eases analysis, it results in a loss of accuragi am refreshes.

because the monitoring code modifies the parameters that needs to QfC/OS-II is Jean Labrosse’s portable real-time kernel for micro-

measured: execution time and energy. Additionally, this extra code Ma¥cessors and micro-controllers. We use the version Brad Denniston
change the order in which tasks execute in an embedded system (Wed to the MB86832 processgrC/OS-II has been used in many
taining multiple hardware devices. The need to perform cycle-accurg§y,mercial applications, and its performance is comparable to that of
performance.analys!s is heightened in the presence of.ex_ternal devig#r commercial RTOS$.C/OS-1I supports multitasking, and can
that communicate with the processor. Inaccuracies in timing can caysg dje up to 63 concurrent processes. The kernel is fully preemptive.
ac_hange in the functionality of the system belng implemented, leadiffle RTOS is designed to be scalable, i.e., designers who do not re-
to inaccurate control-flow and energy results. Since we use cycle-acgifire some of its features may save memory by easily building a light-
rate processor and cache energy models, our framework does not s fht version ofuC/OS-II. The RTOS provides a number of ser-
from this problem. When run ona 336-MHz UltraSPARC-II with4 Gb 0fices sych as scheduling, task management, interprocess communica-
memory, the simulator takes approximately 40 min to simulate the 14i8, ' memory management, interrupt handling, and timer-related ser-
original version (i.e., nongate) of the ABS example and approximat&lyces. we chos@('/OS-I for our experiments because it is modular,
12minto simulate the 2.5-s original version (i.e., nonbuf) of the Ethemgh|_gesigned, and well-documented; its source code is readily avail-

interface example. ) able. Further information opC'/OS-1I can be found on the Internet at
There is one caveat regarding the power model used for the SPAEpr//WWW.UCOS-H.Com or in Labrosse’s book [3].

Clite processor. We selected the Fujitsu SPARCIlite MB86832 for simu-
lation because an evaluation kit for this processor is currently available .
from Fujitsu, allowing us to use their development tool’s electrically™ Extending Our Approach to Other Embedded Systems
programmable read-only memory (EPROM) code to facilitate the sim-Our approach for analyzing RTOS and application software power
ulation of a concrete embedded system. However, we do not currertgnsumption can be extended to other processors and operating sys-
have a power model for the MB86832. We used the instruction-leveims. However, there are system-dependent components in this ap-
power model for the Fujitsu SPARCIite MB86934 [13]. The core clockroach.

frequency for the modeled processor is 80 MHz, while the core clocklt is necessary to have ISSs for the processors used in the target em-
frequency used to build the power model is 20 MHz. The input—outphedded system. There must be a method for tracing the status of the
(I/O) clock frequency for the modeled processor is 26.7 MHz, while tt@mulated processor cycle by cycle, in order to record energy consump-
core clock frequency used to build the power model is 10 MHz. It wadin, detect context switches, and simulate interaction with other hard-
necessary to scale the current values in the power model in order towaare in the embedded system. Although it is conceivable for an ISS to
count for the increased clock frequencies. According to the MB86832ovide a runtime interface meeting these requirements, it is our belief
data-sheet, this processor’s current scales linearly with clock frequertlegit, in practice, the ISS source code will be required. ISSs are avail-
[38]. This behavior is to be expected for conventional, low-leakagble for a number of popular architectures. Vendors sometimes provide
CMOS processes. The instruction-level power model for the MB86934#mulators for more exotic processors. A designer who wants to use our
does not separate the power consumed in the processor core frompthweer analysis method on complex processors for which ISSs are not
power consumed in the 1/O circuits. Therefore, we used the 20-MHwailable will face a substantial burden. Fortunately, getting access to
core and 10-MHz 1/0O MB86934 datasheet to determine the relatigenulation modules for system-specific ASICs is likely to be straight-
power contributions of the processor core and I/O circuits. We theforward, as the in-house simulators used to design and debug the ASICs
under the assumption of a linear relationship between clock frequerasy likely to be available.
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Fig. 9. Energy consumption profiles.

Unless power consumption was a primary consideration in RTQi&u SPARCIite processor-based embedded system presented in Sec-
design, minor changes to an RTOS can significantly improve its powsn 1V-B. Some examples are portions of real embedded system ap-
consumption characteristics. A feature;af'/OS-II provides support plication software, some were designed to illustrate design alternatives,
for this observation. When no user-defined processes are runniaggd others were included with the RTOS distribution as illustrative ex-
an idle task executes. Normally, this task repeatedly incrementsmple. Overall, care was taken to ensure that key RTOS functions and
variable. By comparing the actual number of increments in a giveservices were used by the chosen applications.
time-span with the maximum number of increments possible in thatFor each example, we categorized energy consumption by RTOS,
time-spanuC/OS-Il keeps track of the percentage of time spent idldoard support package, and application service type, as explained in
This behavior is beneficial, as long as one is not trying to minimizie following list.
power consumption. There are sophisticated approaches one could use Application: Non-RTOS functions;
to dramatically reduce idle-power consumption. However, even the « Floating-point: Integer operations to simulate floating point
straightforward expedient of preventing the variable from being incre-  mathematics;
mented eliminates numerous writes to the processor’s write-through « |njtialization : Embedded system initialization functions. This is
cache, thereby reducing memory power consumption. The ability to  typically executed only once during an application’s run;
make changes to the source code of an RTOS increases the designer's |nput/output : Input and output formatting and communication
flexibility in optimizing embedded system power consumption.  with the system’'s UART channels;
However, even if the source code is not available, our approach allows. |nterrupt : Interrupt service routines;
a designer to modify an application’s use of RTOS services in order « Mailbox: Code to handle task communication with mailboxes;
to reduce power consumption. Note that, even if an RTOS's source « Memory: Memory initialization, allocation, and copying func-
code is not available, as long as its method of switching contexts can tjons;:
be determined, the approach presented in this paper can be used.  « Misc.: Functions not in other categories;

Finally, it is necessary to have power models for the embedded « Scheduling Task scheduling;

system devices that consume a significant amount of power. It is our « Semaphore Semaphore-based task synchronization code;
hope that, in the future, hardware vendors will see the competitive « Sjeep Sleep mode;

advantage of providing customers with detailed power information . Synchronization: Nonsemaphore-based task synchronization
about their products. Until this practice becomes common, designers code:
who want to apply our approach will be forced to rely on power models « Task control: Task management, e.g., task creation.
and analysis techniques found in the literature [8], [9], [12], [13], Fig. 9 shows the energy consumed by different RTOS, board sup-
internally developed power models, or the limited power informatiogort, and application services. Each vertical bar represents a distinct
found in conventional data-books. Note that, for some processosgample. Vertical bars are divided to indicate functions. For instance,
this power information is sufficient to allow a reasonable estimate m the mailbox examp|e’ 110 primitives used by the RTOS account for
power consumption. a larger portion of the energy consumption than any other function cat-
egory. Fig. 10 presents a similarly formatted characterization of time
consumption by RTOS service and function category.
The ABS, Agent, and Ethernet examples are described in Section ll1.
We analyzed the energy consumption:6f/OS-Il RTOS when run- The ratio of processor energy consumption to DRAM energy consump-
ning several embedded applications. In all cases, we targeted the tfan varied from 2.71 (the energy-optimized version of the Ethernet

V. RESULTS AND CASE STUDIES
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Fig. 10. Time consumption profiles.

interface example) to 2.94 (the energy-optimized version of the ABBne and energy of all function calls located at a given position in
example). The results in this section, and in Section Ill, indicate thidite call-tree. The average power consumption of call-tree nodes,
an embedded system’s RTOS and board support routines may bei.gi; context-dependent function execution, varied from 769 mw
rectly responsible for a significant portion of the embedded system{®SEnablelnt) to 1,047 mW (uart_delay). However, the differences
energy consumption. The percentage of system energy directly camong the power consumption of RTOS service classes were smaller.
sumed by the RTOS and board support routines may vary dramaticallyerage RTOS service class power consumption varied from 842 (for
from approximately 1% (the energy-optimized version of the Ethernigtterrupt service routines) to 976 mW (for floating-point routines).
interface example) to 99% (the mailbox example), depending on htwhile there was a strong correlation between execution time and
heavily the software relies on RTOS services. Even when the RT@8ergy consumption for the examples in which sleep mode was
does not directly consume a significant percentage of the system’s rat used, it would be unwise to generalize this observation to all
ergy, one can significantly reduce overall energy consumption by mambedded systems. In embedded systems containing peripheral
wisely using RTOS services, as demonstrated by the different versigmecessors that consume a substantial amount of energy, and whose
of the ABS example. control is relegated to a subset of the RTOS service classes, there
The mailbox example illustrates the use of mailboxes for intewould be substantial differences between the power consumptions of
process communication. It consists of three application tasks thifferent RTOS service and function categories.
communicate via the shared memory mailbox communication serviceTable 1l shows the minimum and maximum energy per invocation
provided by C/OS-Il. The tasks also perform writes to the UARTfor each RTOS service, board support package routine, and standard
Fig. 9 shows that, in this example, the main sources of enerlilgrary routine used in our examples. These routines might consume
consumption are input/output primitives, interrupt service routineless energy than the minimum in the table, or more energy than the
task scheduling, as well as RTOS and processor initialization cogeaximum in the table, if they are used in a manner not encountered in
Mailbox management services also consume a small but significamy of our examples. However, for applications similar to our examples,
fraction of the system’s energy. Formatting and transmitting data tteese values provide a reasonable range for the energy costs of RTOS
the UART can be energy-intensive, and should be sparingly useervices and other support routines.
in an energy-constrained implementation. The application code
relies heavily on RTOS and board support routines. As a result, the
application code only consumes 1.0% of the total system energy, with
RTOS and board support services consuming the other 99.0%. In this paper, we have described the design and implementation of an
In the semaphore example, concurrent tasks are synchroniZDS power analysis infrastructure. Examples were presented to illus-
through the use of RTOS services. RTOS primitives that post atrdte the use of this infrastructure. By analyzing a commercial RTOS,
release semaphores account for a small but significant portion of #€/OS-Il, running several applications, we have demonstrated that the
system’s energy consumption. The application code consumed 1.8%nner in which the RTOS is used has a significant impact on an em-
of the total system energy, with RTOS and processor support servibesided system’s power consumption. Insights derived from such RTOS
consuming the other 98.8%. power analysis may be used to optimize embedded software power
From the results presented above, one can observe that the eamsumption and drive research on high-level power modeling of dif-
bedded system consumed significantly less power during sleep méelent RTOS components. Furthermore, this work enables power-ef-
(14.2-18.0 mW depending on example) than when running in othfagient RTOS and application design, and may be incorporated into
modes. As described in Section IV, a call-tree node holds the topwer-aware system-level design tools.

VI. CONCLUSION AND RECOMMENDATIONS
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TABLE I
RTOS S%RVICE ENERGY PERINVOCATION

Service Minimum Maximum Service Minimum Maximum
energy (1)) | energy (uJ) H energy (iJ) | energy (u))
AgentTask 341 472788 fptodp 17.46 49.72
BSPInit 3.52 3.52 fstat 16.34 16.34
CPUInit 287.15 287.15 fstat.r 31.26 31.26
GetPsr 0.38 0.55 init_bss 2.86 3.07
GetThr 0.40 0.53 init_data 423 4.37
InitTimer 2.53 2.53 init_timer 18012.10 20347.00
0SCtxSw 46.63 65.65 init_tvecs 1.31 1.31
0OSDisableInt 0.84 1.31 isatty 1.82 1.82
OSEnableInt 0.84 1.31 liteled 4.26 4.26
OSEventTaskRdy 26.45 29.16 litodp 10.22 22541
OSEventTaskWait 11.62 13.20 localeconv 2.08 13.82
OSEventWaitListInit 30.35 31.06 localeconv.r 0.56 0.92
0SInit 7057.43 7057.43 1shrdi3 2.63 3.37
0SMboxCreate 41.12 43.25 make_dp 9.87 40.44
0OSMboxPend 10.11 130.59 malloc-r 73.66 73.66
0SMboxPost 7.78 129.06 nbtowe 3.21 4.09
0SMemInit 4432.06 4432.06 memchr 2.15 16.38
08QInit 60.02 60.02 memmove 3.41 18.45
0SSched 10.24 80.73 norecore.r 57.20 57.20
0SStartHighRdy 20.53 20.53 pack-d 6.01 24.65
0STCBINnit 42.55 45.15 pack_f 349 7.66
0STaskCreate 84.29 87.98 printf 849.19 1054.54
0STaskCreateFxt 2145.03 2145.03 putCharPortl 19.43 32.87
0STaskCreateHook 1.94 1.94 rand 247 3.15
08TaskStkInit 16.56 31.76 rand_range 912.52 996.73
0STaskSwHook 0.58 1.13 rdthr 0.38 0.53
Roulette 926.92 5684.69 rint 3.76 435.11
agent broadcast 957.72 4714.15 save_data 5.08 5.08
agent _buy 7.24 8.94 sbrk 5.00 19.06
agent_init 71.19 211.09 shrk_r 7.22 33.27
agent_offer 241.37 1279.00 sfvwrite 50.31 530.08
agent_price 228.41 830.43 sinit 35.90 35.90
agent_sell 6.26 933.14 sitofp 7.67 86.79
cache_off 3.18 3.18 smakebuf 131.77 131.77
cache_on 8.68 8.68 sprint 53.60 533.44
do_global_ctors 3.26 3.26 std 9.09 9.09
dpadd 31.31 139.92 swrite 467.56 498.66
dpdiv 237.57 291.14 swsetup 138.95 138.95
dpsub 41.59 286.74 uart_delay 14.39 14.80
dptoli 8.44 17.03 unpack_d 5.24 8.59
exceptionHandler 15.26 18.80 unpack-f 3.60 6.10
fflush 477.04 507.35 viprintf 837.02 1036.37
fpadd_parts 3.79 255.83 viprintf_r 829.07 1022.72
fpdiv 21.03 72.81 win_ovf_trap 11.25 12.11
fpdiv_parts 4.23 261.22 winunf_trap 6.00 11.84
fpmul 22.00 40.66 write 461.03 468.38
fpmul _parts 4.73 18.07 write._r 463.92 482.99

Based upon our observations, we have found a few general guide- custom, e.g., uniform block, memory management for commonly
lines that designers should follow in order to use an RTOS in a power- allocated and deallocated data types.
efficient way. However, before presenting these guidelines, we must s Concentrate on special modes available in the processor. Most
first make a few caveats. The most power-efficient implementation of  designers already pay some attention to code execution time
embedded system software is processor-dependent and RTOS-depen- and, in the absence of special processor modes, there is a strong
dent. We strongly suggest implementing or simulating a prototype be- correlation between execution time and energy for general-pur-
fore expending heroic efforts on low-level power optimization. One  pose processors. However, using special processor modes, e.g.,
should start trading off code flexibility and maintainability for power sleep mode, can dramatically reduce power consumption. One
efficiency only after it is clear, e.g., via the type of energy profiling can leverage an RTOS to easily retrofit an existing application
described in this paper, which portion of the RTOS, board support for power reduction, e.g., one may use a low-priority task that
package, or application code is unnecessarily consuming power. The puts a processor into sleep mode.
guidelines we present, here, are no substitute for using a detailed powef/e emphasize that the above recommendations are not exhaustive;
analysis infrastructure, of the sort presented in this paper, during the gigsy will not be beneficial for every embedded system. Our strongest
sign of an embedded system. suggestion is to examine an embedded system’s RTOS/application en-
A number of energy reduction options are available to an embeddg@y profile before attempting to power-optimize code.
system designer with access to an RTOS, as follows.

» Rewrite high energy consumption portions of an application to
avoid unnecessary use of the RTOS scheduler.

« When synchronization between tasks is implicitly carried out, do The authors would like to thank Dr. L. French, from NEC C&C Re-
not use RTOS services to do (redundant) synchronization. Tigigarch Labs, for helpful discussions on real-time operating systems and
may be easier said than done because redundant synchronizdtisrassistance with the Ethernet interface example.
can make code more robust.

» Take advantage of RTOS primitives, e.g., process support, REFERENCES
to aIIc_)w easy implem_entation of multiprqcess schemes that [] S. Heath Embedded Systems DesigrBoston, MA: Butter-
amortize the co_st§ of_ high-overhead operations. wbrth-Heihemann, 1997, ' :

* If power analysis indicates that memory management consumesp] J. J. LabrosseEmbedded Systems Building Black&awrence, KS: R
a substantial proportion of embedded system power, consider & D Books, 1997.
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