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ABSTRACT

Most people spend more than 90% of their time in-
doors; indoor air quality (IAQ) influences human health,
safety, productivity, and comfort. This paper describes
MAQS, a personalized mobile sensing system for IAQ
monitoring. In contrast with existing stationary or out-
door air quality sensing systems, MAQS users carry
portable, indoor location tracking sensors that provide
personalized IAQ information. To improve accuracy
and energy efficiency, MAQS incorporates three novel
techniques: (1) an accurate temporal n-gram augmented
Bayesian room localization method that requires few
Wi-Fi fingerprints; (2) an air exchange rate based IAQ
sensing method, which measures general IAQ using
only CO2 sensors; and (3) a zone-based proximity de-
tection method for collaborative sensing, which saves
energy and enables data sharing among users. MAQS
has been deployed and evaluated via user study. De-
tailed evaluation results demonstrate that MAQS sup-
ports accurate personalized IAQ monitoring and quan-
titative analysis with high energy efficiency.
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INTRODUCTION

In recent years, indoor air quality (IAQ) has drawn
considerable attention in both the public and scientific
domains, due to the fact that most buildings appear to
fall far short of reasonable air quality goals [15]. Statis-
tics [28] from the U.S. Environmental Protection Agency
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(EPA) indicate that, on average, the indoor levels of
pollutants are two to five times higher than outdoor
levels and people in the U.S. spend about 90% of their
time indoors. Bad indoor air quality influences hu-
man health, safety, productivity, and comfort [31, 9].
IAQ is important and different people have different
exposure to pollutants. Providing personalized IAQ
information has the potential to increase public aware-
ness of the relationship between their behavior and air
quality; help people to improve their living environ-
ments; and also provide valuable information to build-
ing managers, policy makers, health professionals, and
scientific researchers.

IAQ monitoring is challenging because indoor air pol-
lutants concentration and human motion patterns each
vary spatially and temporally within and across rooms.
Existing solutions that require stationary sensors or tar-
get mobile outdoor sensing scenarios are inappropri-
ate for personalized IAQ monitoring. Stationary sens-
ing [13] has several limitations: (a) it can only mea-
sure the IAQ experienced by those who happen to be
near the sensors, and there can be substantial variation
in IAQ even within one room and (b) when locations
or rooms outnumber people, achieving full coverage
with stationary sensors is more expensive than doing
so with personalized mobile sensors. Outdoor mobile
sensing solutions use GPS localization, which fails in-
doors and is therefore inappropriate for IAQ applica-
tions. Furthermore, existing air quality sensing solu-
tions require multiple types of sensors, each of which
covers a subset of pollutants. This can be prohibitively
expensive for personalized mobile IAQ sensing.

A mobile sensing system designed for personalized IAQ
monitoring must address the following three challenges.
First, some existing approaches use proprietary radio
frequency and ultrasound technologies for room local-
ization, which require investment in infrastructure and
special hardware worn by all users. Others use Wi-Fi
based fingerprinting, which requires time consuming
pre-characterization and is hampered by device or en-
vironment heterogeneity. Second, the mobile sensing
devices must be inexpensive, portable, and energy effi-
cient. This limits the number and types of sensors that
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Figure 1. MAQS: A mobile sensing system for personalized indoor air quality (IAQ) monitoring.

can be integrated within each mobile device. Achiev-
ing high-quality IAQ monitoring with few sensors is
challenging. Third, IAQ sensing depends largely on
the motion patterns of individual user. This leads to
redundant IAQ information when users are near each
other, and may lead to gaps in coverage for users who
are not presently carrying sensing devices.

This paper describes MAQS1, a personalized mobile
sensing system for IAQ monitoring. MAQS estimates
human-dependent air quality factors (e.g., CO2 and con-
tagious viruses) using CO2 concentration, and estimates
other air quality factors (e.g., volatile organic compounds
(VOCs)) using air exchange rates. MAQS integrates
smartphones and portable sensing devices to deliver
personalized, energy-efficient, IAQ information. MAQS
is the first mobile air quality sensing system that achieves
high coverage of people in indoor environments. Our
work makes the following main technical contributions.

1. A temporal n-gram augmented Bayesian room lo-
calization method that is accurate and requires few Wi-
Fi fingerprints;

2. An air exchange rate based IAQ sensing method,
which measures general IAQ without requiring sen-
sors for various types of air pollutants; and

3. A zone-based proximity detection method for col-
laborative sensing, which saves energy and enables data
sharing among multiple users.

MAQS was evaluated via real-world system deploy-
ment and a user study. Our results demonstrate high
accuracy (over 96% for room localization and 89% for
zone detection) and 2×–8× better energy efficiency. Our
quantitative IAQ analysis also reveals that most users
are subject to poor IAQ (i.e., high CO2 concentration
and low air exchange rate) in a number of rooms.

SYSTEM OVERVIEW

This section gives a high-level overview of the MAQS
system architecture and describes the key components.

As illustrated in Figure 1, MAQS consists of four types
of components: (1) M-pods, the portable IAQ sensing

1MAQS stands for Mobile Air Quality Sensing.

devices; (2) smartphones; (3) a data server; and (4) a web
server. MAQS users carry smartphones and optionally
M-pods. The data server communicates with clients
and maintains room air quality, CO2, and personalized
IAQ data. The web sever allows users to view, analyze,
and share IAQ data. There are three main functional
units in MAQS: (a) temporal n-gram augmented room
localization, (b) air exchange rate based IAQ sensing,
and (c) zone-based collaborative sensing.

A MAQS client runs on each smartphone. It monitors
the phone’s accelerometer readings to detect room en-
trance and departure events. For the purpose of IAQ
monitoring, rooms are defined as enclosed building units
with walls, doors, and windows where people spend
substantial time (e.g., office, classroom, bedroom) and
we ignore transitional spaces indoor (e.g., hallway). Once
the client detects that the user has entered a room, the
room localization function collects Wi-Fi signals from
nearby access points and uses the subsequences of Wi-
Fi signals (spatial information) and the user’s mobility
pattern (temporal information) to determine the cur-
rent room. The collaborative sensing unit then uses
zone-based proximity detection to select specific sens-
ing devices for (collaborative) IAQ monitoring of the
room. This is useful since not all smartphone users
carry IAQ sensing devices, and sensing devices close
to each other (i.e., in the same zone) are largely redun-
dant. As concentration readings of CO2, VOCs, and
other air pollutants are collected and transmitted to
the server, they are stored in databases and combined
with room information (e.g., room ID, volume) for air
exchange rate calculation and personalized IAQ anal-
ysis. MAQS stops IAQ sensing after detecting a room
departure and restarts when another room is entered.

M-POD: THE PORTABLE IAQ SENSING DEVICE

In this section, we describe the design of our portable
IAQ sensing device, the M-pod. The M-pod is a wire-
less embedded sensing, computation, and communi-
cation device based on the Arduino BT [2]. It is ca-
pable of sensing the concentrations of a number of air
pollutants and either storing these data or transmit-
ting them to nearby smartphones via its Bluetooth in-
terface. The main requirements for the M-pod were
to accurately sense pollutant concentrations relevant
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Table 1. M-pod Processor, Wireless Interface, and Sensors
Hardware MCU Bluetooth Battery Size (inch)

specs ATMEGA 168 WT11 CS HDE160XL 4.8x2.6

On-board Temperature CO2 Humidity Light
sensors TMP101 S100 HYT271 GL5528

to IAQ and transmit these data, within a compact and
long battery life package.

M-pod Hardware Design. The M-pod’s major compo-
nents are an 8-bit, 32-pin microcontroller, a Bluetooth
module, and up to ten on-board sensors, which are
mounted on a custom-fabricated 4-layer printed cir-
cuit board. Table 1 lists the processor, wireless inter-
face, and sensors. The M-pod has a humidity sensor,
light sensor, two temperature sensors – one upstream
to measure ambient air temperature and the other down-
stream to measure the temperature near the sensors, a
CO2 sensor, and low-cost metal oxide gas sensors such
as Figaro TGS2600 and E2V MICS2611. The S100 is
an accurate, low-power non-dispersive infrared based
CO2 sensor. The humidity sensor, temperature sen-
sors, and CO2 sensor are connected to the microcon-
troller via the I2C interface. The other sensors are at-
tached to the microcontroller’s analog to digital con-
verter interface. The metal oxide gas sensors are power
gated using PMOSFETs. The M-pod supports in-system
and in-field wireless programming via its Bluetooth in-
terface. When developing and evaluating MAQS, we
primarily used data from the M-pod’s CO2 sensor. The
M-pod case is a low-cost off-the-shelf enclosure that
has been machined for this application. It can be car-
ried using an armband, or attached to a backpack or
briefcase. A 5 V DC fan is mounted to the case. The
sensors are positioned to enable uniform airflow. When
sensing, the fan moves 2 liters of air per minute, thereby
minimizing sensing latency when IAQ changes.

Energy Consumption. The M-pod is powered by a
2,200 mA-H Lithium-ion battery, which can be recharged
using a standard wall-mounted AC–DC converter. The
Lithium-ion battery is protected by an interlock that
halts the system when the battery voltage drops be-
low 2.9 V. The M-pod requires 240 mW in low-power
mode, in which only the processor and CO2, humid-
ity, and temperature sensors are enabled. It requires
1,080 mW when, in addition, four metal oxide gas sen-
sors are activated. The fan requires up to 105 mW, but
this can be reduced via pulse-width modulation. The
Bluetooth interface needs to transmit so infrequently in
this application that its power consumption has little
impact on battery lifespan. The battery lifespan is ap-
proximately 5.5 hours if an M-pod is continuously on
and greater than 24 hours when in low-power mode.

Command Processing. The M-pod processes low power
mode, full sensing mode, power state inquiry, and trans-
mit data commands, which are generally received from
smartphones. IAQ sensor readings are collected every
six seconds and stored in the microcontroller’s SRAM.
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Figure 2. Wireless RSS distributions in two adjacent rooms: (a)
without noise and (b) with environment and device noise.

In the low-power mode, the metal oxide sensors are
power gated; these sensors contain resistive heating el-
ements and therefore have high power consumptions.
The power state inquiry command causes the current
mode (low power or full sensing) to be transmitted to
the requester. The data transmit command causes the
M-pod to upload stored sensor data to the requester
(smartphone), which generally takes three seconds.

ROOM LOCALIZATION

IAQ data is most valuable when it can be associated
with the appropriate source room. Room characteris-
tics correlate closely with IAQ and rooms are the basic
control units in building management. MAQS users re-
view their IAQ histories and sharing data with others
by reference to rooms. Unlike stationary IAQ sensing,
M-pods are carried by users, i.e., their locations change
as users move. Hence accurate room localization is re-
quired for personalized mobile IAQ monitoring.

Researchers have proposed room localization techniques
based on Wi-Fi access point received signal strength
(RSS) [12, 14]. These methods share two common stages.
In the first (training) stage, a database that associates
ambient Wi-Fi RSS fingerprints with physical rooms is
constructed. In the second (operating) stage, the sys-
tem identifies the stored Wi-Fi fingerprint that most
similar to the one currently being measured, and re-
turns the associated room.

The first stage of our room localization technique is
similar to that of Park et al. [12]. All users contribute
their Wi-Fi RSS and room information to create a shared
database of room fingerprints. This is beneficial as it
(1) eliminates the deployment cost for fingerprint pre-
sampling and (2) reduces individual users’ effort to build
the database.

In the second stage, Bayesian room localization models
are commonly used [14, 12]. Given a database of fin-
gerprinted rooms R and a Wi-Fi RSS fingerprint rep-
resented by a set of access point (AP)-specific signal
strengths (wi for the i-th AP), the mobile device (and
user) is most likely in room r̂:

r̂ = argmax
r∈R

[

∏

i

P (wi|r)P (r)

]

(1)

This model is based on the assumption that the signal
strengths observed by the mobile device from differ-
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ent APs are conditionally independent. However, the
model fails to address the following two challenges: (1)
device heterogeneity – different devices may be used for
gathering RSS fingerprints and devices might be held
differently (e.g., in hand, pocket, or bag) and (2) envi-
ronment heterogeneity – the wireless environment of a
room may change over time, due to motion of people
and other room contents, influencing the RSS finger-
prints gathered by mobile devices. As demonstrated
in Figure 2, noise induced by device and environment
heterogeneity significantly increase the RSS overlap be-
tween adjacent rooms, leading to much lower room
localization accuracy. To address these problems, we
propose a novel temporal n-gram augmented Bayesian
room localization method, which is robust to both en-
vironment and device noises.

N-gram Augmented Bayesian Room Localization

Our key observation is that, although the exact RSS
values of each AP may change substantially for differ-
ent devices and environments, the ordered sequence of
APs based on their RSS values tends to be similar for the
same room and inconsistent among adjacent rooms. For ex-
ample, the ordering may be [ap1, ap2, ap3, ap4, ap5, ap6]
at one time, and [ap2, ap1, ap3, ap4, ap5, ap6] at another
time, for the same room. The ordered AP sequences
of adjacent rooms are less similar, especially when dif-
ferent APs are observed in these rooms. Intuitively, the
ordered AP sequence is useful for room localization be-
cause: (1) it captures the inherent correlations among
APs, which are stable for the same room yet different
for adjacent rooms and (2) it uses the order of RSS in-
stead of their exact values, allowing many sources of
device variation and wireless environment variation to
be tolerated.

Based on the observations above, we propose an n-
gram augmented Bayesian room localization model,
which works as follows. Let s be a sequence of N APs
ordered in descending RSS values:

s = (ap1, ..., apN ) wi ≥ wj(1 ≤ i < j ≤ N), (2)

where wi is the RSS value of api observed by the mobile
device. An n-gram is then defined as a subsequence of
length n extracted from the sequence s at position i:

ngrami(s) = (api, · · · , api+n−1). (3)

The most likely room r̂ is determined as follows:

r̂ = argmax
r∈R

[

∏

i

P (ngrami(s)|r)P (r)

]

. (4)

In other words, r̂ is the room with the highest probabil-
ity of having the same ordering of APs in subsequence
ngrami(s).

Temporal User Mobility for Room Localization

As shown in the experimental results, our n-gram aug-
mented Bayesian room localization model achieves high
accuracy when the room has enough fingerprints (more

Figure 3. Bayesian network for room localization.

than 50 or 100). However, when the number of finger-
prints is low, the model accuracy is poorer and users
tend to be misclassified into nearby rooms. To remove
such spatial errors, we propose to incorporate tempo-
ral user mobility information. This is motivated by the
following observations.

• A user’s current room is closely related to time and
weekday, e.g., the user has weekly meetings in the con-
ference room on Tuesday mornings.

• Users can only move among adjacent rooms, and
their paths tend to contain patterns. For example, a
user usually goes to the conference room from her of-
fice instead of from a classroom.

Based on these observations, a user’s current room can
be predicted based on current time and previous room.
As shown in Figure 3, the Bayesian network has three
layers: current time and user’s previous room (first
layer) indicate the user’s current room (second layer),
and user’s current room determines the observed Wi-
Fi RSS fingerprint. We also define a set of values to rep-
resent some semantic concepts of time, including “day
of week”, “morning”, “afternoon”, and “evening”. Given
a Wi-Fi scan observation s, the user’s previous room r′,
and current time t , the user is most likely in room

r̂ = argmax
r∈R

[

P (s, r, t, r′)
]

(5)

= argmax
r∈R

[

P (s|r)P (r|t, r′)P (t)P (r′)
]

. (6)

P (s|r) can be computed using our n-gram augmented
Bayesian room localization model. P (r′) and P (r|t, r′)
are calculated from the user’s mobility history. P (t)
can be ignored since it is the same for any room r.

Room Entrance and Departure Detection

Our room localization method requires Wi-Fi scanning,
which can be power intensive. For example, Wi-Fi scan-
ning at 1/6 Hz requires 80 mW on average. Using a
lower Wi-Fi scanning frequency improves energy effi-
ciency but increases room localization latency.

To address this problem, our MAQS system leverages
the smartphone accelerometer to monitor room entrance
and departure, and triggers room localization only when
a room entrance event is detected. Previous works have
used accelerometer to detect arriving at or departing
from a place (e.g., a building or outdoor place) [16] ,
while our work requires the finer-granularity of indoor
room-level entrance/departure detection. Specifically,
room entrance/departure detection helps to (1) reduce
energy use for room localization; (2) locate rooms in a
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timely fashion; and (3) start/stop IAQ sensing quickly.
We sample acceleration at a low frequency mode, 3–
10 samples per second, to reduce the energy consump-
tion of the accelerometer. The magnitude of accelera-
tion is calculated over all three axes and the variance
of the magnitude within a 5-second time window is
used to detect motion. Variance larger than a thresh-
old θ is taken to indicate motion. The threshold θ was
empirically determined based on measured data. If a
node is stationary for 60 seconds, a room entrance is
detected. if a node is moving for 10 seconds, a room
departure is detected. Our experimental results show
that this approach achieves high detection accuracy.
The false negative rate is 0.01%, which happens when
a user moves between two adjacent rooms quickly. The
false positive rate is 7% on average, and false positives
can be corrected by our room localization algorithm.

AIR EXCHANGE RATE BASED IAQ SENSING

Indoor air quality (IAQ) is influenced by multiple air
pollutants and sources, including (1) air pollutants gen-
erated indoor, such as volatile organic compounds
(VOCs), from combustion and off-gassing of paint and
building materials; (2) air pollutants introduced from
outside via ventilation, e.g., ozone; and (3) air pollu-
tants generated by people, e.g., CO2. It is impractical
to install sensors on our portable IAQ sensing devices
to monitor all pollutants of interest, as the sensing de-
vice would become unreasonably large and require too
much power. Additionally, not all pollutant sensors
are portable yet, and portable sensors are typically less
accurate than stationary sensors.

As shown in previous studies [25, 24, 9, 11], CO2 con-
centration and ventilation rate are strongly correlated
with general IAQ. Therefore, the M-pod monitors CO2

concentration, which is then used to calculate the air
exchange rate, i.e., how quickly air is cycled through
a room. This rate is used to estimate general IAQ in a
room. Specifically, personalized air exchange rates are
modeled using changes in CO2 concentration and CO2

generation rate. The rate of change in CO2 concentra-
tion depends on the concentration of in-flowing air, the
concentration of the out-flowing air, and the internal
generation of CO2 in a room. The time derivative of
the monitored concentration is given by [24]:

V dCt

dt
= G+QCex −QCt, (7)

where Ct is the internal concentration of CO2 at time
t, measured in units of ppm (parts per million, i.e., the
volume of CO2 over total volume of air). Cex is the ex-
ternal concentration of CO2 (ppm). G is the generation
rate of CO2 in the room (cm3/s). V is the room volume
(m3). Q is the air change rate (m3/s).

Solving the equation above gives us the formula to cal-
culate air exchange rate Q:

Q =
V dCt

dt
−G

Cex − Ct

, (8)

where Ct are the continuous CO2 readings from the
M-pod. External concentration of CO2, Cex, is set to
390 ppm, the globally averaged CO2 concentration at
the surface [4], unless local outdoor CO2 concentration
is available. To calculate the CO2 generation rate G,
we assume each person’s generation rate is equal to
0.0052 L/s[24], which corresponds to an average-sized
adult engaged in office work. At this time, we do not
incorporate other possible sources of CO2 such as cook-
ing or smoking. Room volume V can be provided by
the user through our system, or it can be calculated
from CO2 data based on the Steady-State Concentra-

tion Balance Equation, dCt

dt
= 0:

Q =
G

Cex − Ct

. (9)

After determining Q, we apply it to the user’s data, in

which dCt

dt
6= 0 and Q do not change. Then we can

calculate the value of V .

The air exchange rate required for good IAQ depends
on the size and occupancy of each room. In our system,
three metrics are considered for IAQ:

• Indoor CO2 concentration is a surrogate for indoor
pollutants emitted by humans and correlates with hu-
man metabolic activity. The ASHRAE Standard is at
most 700 ppm above outdoor CO2 concentration [3].

• Air changes per hour is a measure of how many times
the air within a defined space (normally a room or house)
is replaced per hour. Its value equals the air exchange
rate of room divided by room volume. The ASHRAE
Standard is at least 0.35 1/h [26].

• Air flow per person is the room air exchange rate di-
vided by the number of people in the room. The ASHRAE
Standard is at least 7.5 l/s/person [26].

ZONE-BASED COLLABORATIVE SENSING

In real-world usage scenarios, multiple users are likely
to stay in the same room, e.g., in meeting rooms or the
library. Such user groups tend to be concentrated in
small areas, leading to similar CO2 concentration and
IAQ within each group. Through collaborative sens-
ing, we aim to reduce the number of sensing devices
that have to run concurrently (thus saving energy), and
also enable IAQ data sharing with people who do not
carry sensing devices (thus increasing system coverage
and utility).

Specifically, we propose a zone-based proximity de-
tection and information sharing mechanism. Concen-
tration gradients are driven by transport via molecu-
lar diffusion and convection. Both transport processes
have random and non-random components. Whatever
the process, the spatial gradients dictate that two points
close in proximity will likely have more similar con-
centrations than two points that are more distant. The
smaller the distance, the more similar the CO2 concen-
tration readings. In MAQS, we define an area with
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high density of people as a zone. All people within the
same zone can share one M-pod for IAQ monitoring.
When a new user without an M-pod joins this zone,
the user’s smartphone initiates a scan to determine if
there is already an M-pod in the zone. If so, a com-
munication link between the phone and the M-pod is
established and the IAQ values reported by the M-pod
is used to estimate the IAQ of this user.

Zone-based sharing would incur some error, which is
defined as the difference between the CO2 concentra-
tion reported by the shared M-pod nearby and the true
CO2 concentration at the user’s location. Again, ac-
cording to the diffusion equation, this error is highly
correlated with the distance. Therefore, this error de-
termines the effective range of each zone.

Over 50 experiments have been conducted to deter-
mine the relationship between distance and CO2 error
in public rooms, including classrooms and a library. In
each experiment, two M-pods are placed 1–10 meters
apart for over 20 minutes. The CO2 readings from both
M-pods are monitored and the corresponding air ex-
change rates are calculated. Figure 4 shows the sensing
error rate of CO2 concentration at different distances.
Ranges less than two meters enable better and more
consistent results. Two meters is therefore uses as the
range threshold of zones in the MAQS system.

Given the zone range threshold (2 meters), each smart-
phone still needs to determine how far away a spe-
cific M-pod is. In MAQS, we use the Received Sig-
nal Strength Indication (RSSI) from the Bluetooth radio
as the distance metric. The signal power of Bluetooth
communication decays proportionally to d−2 [18], where
d is the distance between transmitter (M-pod) and re-
ceiver (smartphone). MAQS is meant to be used in a
broad range of unknown environments over long pe-
riods of time. It it therefore subject to environment-
dependent and time-varying noise. Figure 5 shows
the average and standard deviation of RSSI measure-
ments obtained at different distances in real-world ex-
periments. The illustrated noise can result in large er-
rors even for two meter zones. Since this noise can
be reasonably well modeled as additive white Gaus-
sian noise, in MAQS, multiple readings are used to de-
tect outliers and average values are used to improve
distance estimates. Figure 6 shows that the accuracy
of proximity detection can be significantly improved
when 10 readings are averaged.

The MAQS zone-based information sharing procedure
works as follows. When a user enters a room, the car-
ried mobile phone first identifies the room. Then, the
phone scans nearby M-pods 10 times and filters out
all M-pods with RSSI readings exceeding a threshold
corresponding to 2 meters (-64 dB in our experiments).
The remaining M-pod with the smallest RSSI average
is selected. The user joins the zone formed by this M-
pod and shares its CO2 concentration and air exchange
rate information. Figure 7 illustrates the concept of
zone-based information sharing. Numbers along the
lines indicate the RSSI between phone and M-pod. In
this scenario, phones A and B belong to the zone oc-
cupied by M-pod S1, because they are within the re-
quired range of S1. Since the RSSI between phone C
and M-pod S1 is lower than the threshold, they belong
to different zones.

A

B

C

E

D

-60 dBm

-50dBm
-75 dBm -51dBm

-53 dBm

-55 dBm

M-pod1 M-pod2

Zone 1
Zone 2

Figure 7. Zone-based collaborative sensing.

In addition to IAQ data sharing by people in the same
room, users may also be interested in rooms which they
have not yet visited; building managers would like to
know the IAQ in their buildings; and medical person-
nel may need the information to diagnose their patients.
MAQS provides a permission control mechanism al-
lowing users to specify the type, location, and time pe-
riods of data to be shared publicly. They can also de-
fine groups and share their IAQ data with other mem-
bers in each group, e.g., their family members.

EVALUATIONS

The MAQS system has been implemented and deployed
for user study. In this section, we describe the system
deployment and user study. We experimentally eval-
uated the effectiveness and efficiency of the proposed
system. We also make some observations based on the
data gathered during the user study.
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System Deployment and User Studies

The deployed MAQS system includes M-pod sensing
devices, Android-based smartphones, as well as the
data and web servers. We have conducted two phases
of user study with 17 participants, including faculty
and graduate students, who share some workplaces
and classrooms. The first phase was designed to evalu-
ate our room localization method. In this phase, users
were asked to carry their Android phones for 12 weeks.
Our MAQS phone application continuously collected
Wi-Fi signals, and requested manual labeling when users
entered rooms. Weekly meetings with the users were
held to verify the accuracy of the motion traces. In
addition, users were asked to collect Wi-Fi signals in
rooms that are adjacent to those they have visited, which
further increased the noise and complexity of our room
location task but better represents real-world scenar-
ios.

In the second phase, users carried both their smart-
phones and the M-pod sensing devices for 3 weeks.
The MAQS system collects both room information and
IAQ data for all users. This phase of user study allows
us to evaluate the entire MAQS system. We collected
localization data for 171 rooms, and IAQ data for 56
rooms.

Evaluation of Room Localization Technique

To evaluate our temporal n-gram augmented Bayesian
room localization method, we determined the room
localization accuracy as a function of the number of
Wi-Fi fingerprints. A good room localization method
should achieve high accuracy with few fingerprints.
Specifically, we conduct experiments to answer the fol-
lowing questions: (1) How does the n-gram length af-
fect overall room localization performance? (2) How
does the n-gram augmented Bayesian model perform
compared with existing approaches? (3) To what ex-
tent does temporal user mobility information improve
room localization accuracy?

The subsequence length n of n-gram has an important
impact on room localization performance. If n is too
small, adjacent rooms may have many similar subse-
quences and be difficult to distinguish. For example,
when n = 1, our n-gram augmented model is simi-
lar to the original Bayesian model, and the only dif-
ference is the binary discretization of signal strength:
AP equals 1 (or 0) if its signal can (or cannot) be ob-
served by the device. If n is too big, then the room
signature may change for each scan, since longer sub-
sequences have a low probability of being repeated in
each scan. For example, when n is set to the total num-
ber of APs that can be scanned in a room, it is very
unlikely to receive the same sequence for each scan.
Therefore, a good n value should make the n-gram sig-
nature for each room stable for different scans, and
make the n-gram signatures of adjacent rooms distin-
guishable. Figure 8 shows the accuracy of our n-gram
Bayesian model with different n values and different

Table 2. Energy Consumption for Room Localization

Method Wi-Fi Acc Energy
(#scans/day) (#samples/sec) (mw)

Wi-Fi only 1,440 off 8
Wi-Fi + Acc 5–30 3–10 1–3

number of fingerprints per room. As shown in the fig-
ure, when n = 2, our model achieves much better ac-
curacy with fewer fingerprints.

We now compare our n-gram augmented Bayesian room
localization model with four state-of-the-art algorithms:
(1) Bayesian room localization [14, 12], (2) Delta signal
Bayesian room localization, which is similar to Bayesian
room localization but uses the difference of signal strength
(instead of RSS values directly) between each pair of
APs to calculate probability, (3) vector-based room lo-
calization [5], which uses AP RSS vector as the room
signature and Euclidean distance to locate the near-
est room, and (4) Delta signal vector-based room lo-
calization, which is similar to vector-based room lo-
calization but uses the difference in signal strength be-
tween each pair of APs to build the vectors. As shown
in Figure 9(a), our n-gram augmented Bayesian model
achieves the best accuracy, especially when the num-
ber of fingerprints per room is above 50.

By incorporating the temporal user mobility informa-
tion, our temporal n-gram augmented Bayesian model
can achieve better accuracy even when the number of
fingerprints per room is limited. As shown in Figure 9
(b), our temporal n-gram model further improves the
room localization accuracy over our n-gram model, es-
pecially when the number of fingerprints per room is
less than 50. The Delta Bayesian room localization model,
which performed second best in Figure 9(a), can also
benefit from the use of temporal user mobility infor-
mation, but it is still not comparable to our temporal
n-gram model.

Finally, we evaluate the energy consumption of our
room localization method. By using an accelerometer
to detect room entrance/departure and performing a
Wi-Fi scan only when entering a new room, we can sig-
nificantly reduce the energy consumption. As shown
in Table 2, our Wi-Fi + accelerometer (Acc) approach
consumes only 1–3 mW on the mobile phone, while the
Wi-Fi only approach consumes 8 mW.

Evaluation of Air Exchange Rate Based IAQ Sensing

To estimate the general IAQ without using sensors for
each specific air pollutant, we propose to calculate the
air exchange rate from temporal CO2 concentration read-
ings, and use this air exchange rate to estimate IAQ.
Here, we evaluate the accuracy of the air exchange rate
model. We used the Alnor EBT721 EBT 721 Air Balanc-
ing Balometer Flow Capture Hood [1] to measure the air
flow rate directly from vents as the ground truth. Dur-
ing each experiment, we change the forced ventilation
rate and the number of people in the room to evaluate
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Table 3. Zone Detection Accuracy

Seat Map 1 2 3 4 5
Accuracy (%) 97 100 100 78 100

Seat Map 6 7 8 9 10
Accuracy (%) 100 88 100 42 85

the accuracy and responsiveness of our CO2 based air
exchange rate model.
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Figure 10. Air exchange rate model evaluation.

Figure 10 shows the results of one experiment. We
started at 11:15 with a relatively high forced ventilation
rate and lowered the ventilation rate at 11:30. We can
see that the air exchange rate calculated by our model
followed the actual rate drop quickly and stayed within
the same range. Starting from 12:15, we kept the ven-
tilation rate low and changed the number of people in
the room every 5 minutes. Again, we can see that the
AER calculated by the model well approximates the
measured value. It is slightly higher than the measured
value, since the door was opened and closed when we
changed the number of people in the room, leading
to additional air exchange, which is not captured by
the vent hood, as it measures only the air exchange at
the vent. We conducted multiple experiments in rooms
with different sizes and vents, and obtained similar re-
sults.

Evaluation of Zone-Based Collaborative Sensing

Zone-based collaborative sensing helps to reduce the
number of M-pods needed, saves energy, and allow
users to share IAQ data. Since the energy consump-
tion of scanning Bluetooth RSSI for a short period of
time (less than 30 seconds) is negligible compared with
that of continuous IAQ sensing, a zone with k devices
can generally achieve k× better energy efficiency since
only one device needs to be running. Here, we eval-
uate the accuracy of our zone-based proximity detec-
tion, i.e., whether we can identify the correct zone based
on the Bluetooth RSSI readings. Given three M-pods

and a mobile phone, we selected 10 seat maps that rep-
resent real-world user-sitting scenarios. For each seat
map, we conducted 10 experiments at different times
to capture potential temporal variations. For each ex-
periment, the mobile phone used 10 RSSI readings from
each M-pod to determine which zone (i.e., M-pod) it
belonged to. The average zone detection accuracy for
each seat map is shown in Table 3. We can see that
our RSSI-based zone detection method achieved high
accuracy for most seat maps with an average of 89%.

IAQ Data Analysis

We analyzed the IAQ distributions for the data gath-
ered during our user study. Specifically, we would like
to answer quantitatively what IAQ distributions the
study participants experienced. Figure 11 shows the
IAQ distributions for all users. The dashed lines indi-
cate the standard limits, blue solid lines represent good
IAQ, and red solid lines represent bad IAQ. According
to the figure, (1) 67% of the time, indoor CO2 concen-
tration is higher than the reasonable limit of 1,000 ppm;
(2) 30% of the time, air changes per hour do not meet
the minimum requirement of 0.35 1/h; and (3) 58% of
the time, flow rate per person does not meet the mini-
mum standard of 7 l/s/person. We conclude that our
study participants frequently spent time in environ-
ments with poor air quality.

Figure 12 shows the distributions of CO2 concentra-
tion, air changes per hour, and air flow per person for
different users. The users are ordered by their average
CO2 concentration. We can observe that users are sub-
ject to different IAQ at different times, and almost all
users are subject to a fairly high percentage of times at
which they experienced poor IAQ (high CO2, low air
changes per hour, or low air flow per person).

Figure 13 shows the distributions of CO2 concentra-
tion, air changes per hour, and air flow per person in
different rooms. The rooms are ordered by their aver-
age CO2 concentrations. We can see that rooms have
dynamic and diverse IAQ profiles. Although the ex-
act fraction is different, many rooms have poor IAQ
some of the time. Table 4 compares the IAQ in different
types of rooms: office, public place (e.g., library, lobby),
classroom, and home (apartment or house). The of-
fice has good IAQ in general, since most office rooms
are small, sparsely occupied, and have good ventila-
tion systems. IAQ in the other three types of rooms
is not good and can be very bad at times (indicated
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Figure 12. User-specific distributions of CO2 concentration, air changes per hour, and air flow per person.

Table 4. IAQ Comparison by Room Type
IAQ Office Public Classroom Home

CO2 avg 887 1238 1163 1491
stdev 274 207 303 479

Air changes avg 2.6 2.9 1.6 1.3
per hour stdev 3.0 3.8 2.0 1.8
Air flow avg 13.6 11.7 10.5 9.1

per person stdev 13.9 14.9 11.5 10.6

by large standard deviation). For example, large class-
rooms can have insufficient ventilation for large classes.
Also, apartments tend to be small and have no or lim-
ited forced ventilation, leading to poor IAQ.

RELATED WORK

Our interdisciplinary work of building a personalized
mobile system for IAQ monitoring draws upon research
in a number of related fields. In this section, we survey
research most relevant to ours.

IAQ monitoring. Previous studies [13] have focused
on monitoring or identifying air pollutants in differ-
ent types of rooms, such as classrooms, offices, and
residential rooms. However, without knowing when
and how long a user stayed in a room, it is difficult to
estimate the user’s exposure to indoor air pollutants.
Moreover, it is difficult to measure all rooms a user
stayed in. Other studies have focused on indoor air
pollutants in certain areas (e.g., city or countryside) us-
ing statistical methods. This approach ignores the fact
that users’ indoor air pollution exposures differ from
each other. Recently, Kim et al. proposed a mobile sys-
tem for sharing IAQ measurements and visualizations
within one’s social network [17]. The shared informa-
tion is room based and not user-specific.

Indoor localization. This has been a topic of active re-
search, some focusing on indoor intra-room position-
ing and others (such as ours) focusing on inter-room
positioning. Proprietary systems based on radio fre-
quency [29], FM radio signal [19, 22] and ultrasound [30]
have been implemented. Newer systems include DOL-
PHIN [23] which is based on ultrasound devices, and
the Zigbee-based system proposed by Sugano [27]. They
have good accuracy but require substantial investment

in infrastructure and special hardware worn by all users.
Our system can be deployed in any off-the-shelf smart-
phones with Bluetooth communication capability. Other
techniques are fingerprint-based and leverage existing
wireless infrastructure. Haeberlen et al. proposed a lo-
calization method over large-scale 802.11 wireless net-
works, which can be accurate within a few meters in
regions with high infrastructure coverage [14] . How-
ever, this method has high deployment cost. Other
methods leverage user collaboration [7, 8], i.e., users
train the system while using it. Issues such as con-
veying uncertainty, determining when user input is ac-
tually required, and discounting erroneous and stale
data are addressed by the work of Park et al. [12]. How-
ever, none of these methods addresses the challenges
associated with environment heterogeneity, device-induced
noise, and the requirement for large user inputs.

Proximity detection. Previous peer-based indoor posi-
tioning systems attempt to infer either the proximity of
a pair of devices, or the actual distances between mul-
tiple pairs of devices in order to place them in a virtual
map. Most of them techniques use anchors with avail-
able position information as references. Other nodes
refer to the anchors to determine their own positions.
PeopleTones [21] uses a GSM-based approach to detect
proximity for mobile phone users. NearMe, proposed
by Krumm et al. [20], provides a complete framework
for clients equipped with Wi-Fi devices to obtain in-
formation about people and things that are physically
close (30 to 100 meters). Banerjee et al. proposed Vir-
tual Compass [6], which measures the distances be-
tween multiple nearby nodes and generates a map on
a 2D plane. In our system, precise absolute position is
not required and relative proximity information is suf-
ficient. It is conceptually similar to the reality mining
system proposed by Nathan et al. [10]. However, mo-
bile devices within a room are distributed more densely
and the amount of noise is greater. We propose zone-
based proximity detection to tackle the unique prob-
lem of personalized IAQ monitoring.

CONCLUSIONS

This paper has described MAQS, a mobile system for
personalized IAQ monitoring. To achieve high accu-
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Figure 13. Room-specific distributions of CO2 concentration, air changes per hour, and air flow per person.

racy and energy efficiency under diverse sensing sce-
narios, we developed a number of novel techniques:
(1) a temporal n-gram augmented Bayesian room lo-
calization method that achieves high accuracy with a
small number of Wi-Fi fingerprints; (2) an air exchange
rate based IAQ sensing method that measures general
IAQ using only CO2 sensors; and (3) a zone-based prox-
imity detection method for collaborative sensing, which
saves energy and enables data sharing among multi-
ple users. MAQS has been deployed and evaluated via
user study. Detailed evaluation results demonstrate
the feasibility, effectiveness, and efficiency of MAQS
for personalized IAQ monitoring. We also found that
study participants frequently experienced poor IAQ.
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