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ABSTRACT

People spend the majority of their time indoors, and
human indoor activities are strongly correlated with
the rooms they are in. Room localization, which identi-
fies the room a person or mobile phone is in, provides
a powerful tool for characterizing human indoor activ-
ities and helping address challenges in public health,
productivity, building management, etc. Existing room
localization methods, however, require labor-intensive
manual annotation of individual rooms.

We present ARIEL, a room localization system that au-
tomatically learns room fingerprints based on occupants’
indoor movements. ARIEL consists of (1) a zone-based
clustering algorithm that accurately identifies in-room
occupancy “hotspot(s)” using Wi-Fi signatures; (2) a
motion-based clustering algorithm to identify inter-zone
correlation, thereby distinguishing different rooms; and
(3) an energy-efficient motion detection algorithm to
minimize the noise of Wi-Fi signatures. ARIEL has
been implemented and deployed for real-world test-
ing with 21 users over a 10-month period. Our stud-
ies show that it supports room localization with higher
than 95% accuracy without requiring labor-intensive
manual annotation.

1. INTRODUCTION

People spend approximately 90% of their time in build-
ings [21]. Understanding the indoor activities and en-
vironments of occupants will offer valuable insights to
a wide range of pressing challenges, such as public
health, employee productivity, building security and
energy management. For instance, the economic con-
sequences of poor indoor environments in U.S. com-
mercial buildings were estimated at $40–160 billion per
year in lost wages and productivity, administrative ex-
penses, and health care costs [8].

A key observation of this work is that indoor environ-
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ments are well structured – Buildings are organized
into rooms with distinct functionalities, supporting and
also defining the activities, interests, and social roles
of their occupants. For instance, an office building is
typically organized into offices, conference rooms, and
lounges; a shopping center consists of a large num-
ber of shops selling different products; and a residen-
tial home is comprised of a living room, bedrooms, a
kitchen, etc. Therefore, room localization, i.e., identi-
fying which room an occupant is in, will help charac-
terize the indoor activities of occupants, thereby pro-
viding valuable insights to address health, social, and
economic related issues of indoor environments.

Recently, new applications and services that leverage
indoor room information have started to emerge [9, 11,
15, 19]. Room fingerprinting, which measures and as-
signs unique RFS (radio-frequency signals, e.g., Wi-Fi)
to rooms, is the de facto technique for room localiza-
tion. The time-consuming manual annotation process
is a key limitation of existing room fingerprinting tech-
niques. They either rely on an expert surveyor [11, 15],
or leverage a collaborative but less accurate effort [17]
among volunteers [9, 19], to manually collect Wi-Fi fin-
gerprints for each room and associate them with pre-
defined room IDs.

This article describes ARIEL, an automatic room lo-
calization system using Wi-Fi based room fingerprint
analysis based on personal mobile phones carried by
occupants. Designing an indoor room localization sys-
tem that learns room fingerprints without manual an-
notation is challenging. First, due to signal reflection,
refraction, diffraction, and absorption, indoor Wi-Fi sig-
nals are noisy. Such noise obscures the unique relation-
ship between Wi-Fi fingerprints and individual rooms.
Second, occupant-specific indoor activities directly af-
fect the room fingerprinting process. For instance, in-
room occupancy “hotspot(s)” are unevenly distributed
both spatially and temporally. With such distribution,
clustering algorithms may learn multiple fingerprints
for a room. Third, as a collaborative voluntary effort,
the overhead, e.g., energy consumption, imposed on
personal mobile phones must be low. In response to
these challenges, we have developed the following al-
gorithms:
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Figure 1. ARIEL system architecture.

• A zone-based clustering algorithm that accurately
and automatically identifies in-room occupancy hotsp-
ot(s) using Wi-Fi signature;

• A motion-based clustering algorithm to identify inter-
zone correlation, thereby distinguishing different rooms;
and

• An energy-efficient motion detection algorithm to
minimize the noise of Wi-Fi signature.

ARIEL has been implemented and deployed. In a 10-
month user study with 21 volunteers, ARIEL demon-
strates excellent accuracy for room localization over a
wide range of building environments, and offers com-
parable accuracy (95%) to existing supervised learning
techniques requiring time-consuming manual annota-
tion.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes the ARIEL system architecture. Sec-
tions 3 and 4 present the zone-based and motion-based
clustering algorithms. Section 5 discusses the energy-
efficient motion detection algorithm. Section 6 evalu-
ates the proposed techniques. Section 7 surveys related
work. Finally, Section 8 concludes this work.

2. PROBLEM FORMULATION AND SYSTEM OVERVIEW

This section formulates the Wi-Fi based room finger-
printing problem for indoor localization and summa-
rizes ARIEL system architecture.

2.1 Room Fingerprinting and Localization

Room fingerprinting: Given a building with a set of
rooms R and K Wi-Fi stationary access points (APs),
Wi-Fi based room fingerprinting is to assign, to each
room r ∈ R, a unique Wi-Fi signature consisting of m
Wi-Fi signal vectors, Vr = {Vrj |j ∈ Z and 1 ≤ j ≤ m},
and

Vrj = {ap1 : rss1, ..., apk : rssk}, (1)

where each access point ap is identified by its MAC
address, rss is the received signal strength (RSS) value
of ap observed by a mobile phone. Note that k (k ≤ K),
the number of access points observed, could vary for

each Wi-Fi scan, and m (m ≥ 1), the number of Wi-
Fi signal vectors, also varies by room. Automatically
learning the Wi-Fi signature for each room is the key
challenge addressed in this work.

Room localization: Given a run-time h-dimensional
(h ≤ K) Wi-Fi signal vector Vo observed by a user’s
mobile phone, indoor room localization determines the
room that the user is in by measuring the similarity be-
tween Vo and each Wi-Fi signal vector Vrj ∈ Vr in each
room r’s fingerprint. We adopt the n-gram augmented
Bayesian room localization method, which can achieve
high accuracy, even when data are gathered using het-
erogeneous mobile phones [12]. Let Qo be the sequence
of access points sorted in descending RSS values:

Qo = seq(Vo) = (apq1 , · · · , apqh) with

rssqi ≥ rssqj (1 ≤ qi < qj ≤ h). (2)

An n-gram of Qo is defined as a subsequence of length
n extracted from the sequence Qo at position i (1 ≤ i ≤
h− n+ 1:

ngrami(Qo) = (apqi , apqi+1, · · · , apqi+n−1). (3)

In the set of all rooms R, the most likely room r̂ of oc-
cupation is determined as follows:

r̂ = argmax
r∈R

[

∏

i

P (ngrami(Qo)|r)P (r)

]

. (4)

In other words, r̂ is the room with the highest proba-
bility of producing the same ordering of access points
as in subsequence ngrami(Qo). Note that each Vrj (1 ≤
j ≤ m) in room r is also converted to an n-gram subse-
quence based on Equation 2 and Equation 3. The sig-
nature of room r, Vr = {Vrj |j ∈ Z and 1 ≤ j ≤ m}, is
therefore converted to

{ngrami(seq(Vrj)) | i, j ∈ Z, 1 ≤ j ≤ m

and 1 ≤ i ≤ |seq(Vrj)| − n+ 1}.

P (ngrami(Qo)|r) is the probability of ngrami(Qo) ap-
pearing in the converted signature of room r.

2.2 System Overview

ARIEL supports automatic indoor room fingerprinting
and room localization using collaborative Wi-Fi signa-
ture analysis based on personal mobile phones carried
by occupants. Figure 1 illustrates the overall system
architecture, which is comprised of components on the
mobile phone side and server side.

On the mobile phone side, ARIEL performs the follow-
ing operations.

• The run-time Wi-Fi signal vectors observed by each
mobile phone are collected and delivered to the server
to support room fingerprinting and room localization.

• The Wi-Fi signal vector stream is further annotated
with motion data from build-in accelerometer, i.e., ei-
ther collected when the occupant is in motion or sta-
tionary. Such information is also delivered to the server
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to improve Wi-Fi fingerprint identification of in-room
occupancy hotspot(s) and inter-hotspot correlation.

• Each mobile phone also maintains a local database
storing the fingerprints1 of the rooms that the user has
visited before, which serves as a local cache, enabling
run-time on-device room localization without engag-
ing the server.

• A system software module provides room localiza-
tion APIs to support high-level applications & services.

On the server side, ARIEL performs room fingerprint-
ing and localization through an incremental process.

• Given the streams of Wi-Fi signal vectors and the
corresponding motion information collected from mo-
bile phones, ARIEL uses the zone-based clustering al-
gorithm to incrementally identify in-room occupancy
hotspot(s), or zone(s). Meanwhile, inter-zone correla-
tions are identified by the motion-based clustering al-
gorithm, then zones belonging to the same room are
merged into a new cluster. Each cluster is assigned
a room ID and the Wi-Fi signal vectors in the cluster
form the room fingerprint.

• Using the n-gram augmented Bayesian room local-
ization method, run-time room localization services are
then offered to the occupants. A room fingerprint
database maintains room IDs, room fingerprints, and
the converted room fingerprints (n-gram AP subseque-
nces and corresponding probabilities). The converted
room fingerprints are selectively synchronized to each
user’s mobile phone based on the user’s room visit his-
tory and predicted room visits in the future.

3. ZONE-BASED CLUSTERING

Our first step leverages Wi-Fi signals collected in sta-
tionary sessions (i.e., when a user is stationary in a
room). We propose a zone-based clustering algorithm
to accurately identify within-room stationary occu-
pancy hotspot(s), i.e., zone(s). Each zone is then iden-
tified by a unique Wi-Fi signature, consisting of a set of
Wi-Fi signal vectors which are typical for that zone.

Stationary occupancy hotspot (zone) identification is
critical for accurate room fingerprinting and localiza-
tion due to the following reasons. Within a room, hu-
man activities are highly nonuniform. One or multi-
ple stationary occupancy hotspots typically exist, such
as the couch area in a living room, cashier desk in a
store, and desks in an office. Leveraging the mobile
phones carried by occupants, more Wi-Fi signal sam-
ples are naturally collected from these zones, offering
more robust fingerprints for a room. Vice versa, since
occupants spend more time around these zones, their
fingerprints usually better match the Wi-Fi signal vec-
tors reported by occupants at run-time, improving ac-
curacy.

1These are the converted room fingerprints, i.e., n-gram sub-
sequences of APs and corresponding probabilities of seeing
each of them in a room.

The zone-based clustering algorithm uses the Wi-Fi sig-
nal vectors reported by the mobile phones when the
occupants are stationary, e.g., sitting or standing (de-
tected by our motion detection algorithm described in
Section 5.1). We further define the set of Wi-Fi signal
vectors collected during a stationary period of an occu-
pant as a Wi-Fi session. Next, giving a large collection of
Wi-Fi sessions reported from multiple occupants, the
zone-based clustering algorithm aims to determine the
distances between the collected Wi-Fi sessions and par-
tition these Wi-Fi sessions into one or more clusters,
each corresponding to one of the stationary occupancy
hotspots (zones).

3.1 Distance of Wi-Fi Sessions

The primary challenge of automatically identifying in-
door stationary occupancy hotspots comes from the
high noise of the collected Wi-Fi signal vectors, which
is mainly due to i) high noise of indoor Wi-Fi signals
from reflection, diffraction, and absorption; and ii) het-
erogeneity of the occupants’ mobile phones. Therefore,
directly measuring inter Wi-Fi session distance is error
prone (see Figure 2(a)).

Our zone-based clustering method consists of a novel
de-noising procedure that is applied to the collected
Wi-Fi sessions. Given a Wi-Fi session S containing m
Wi-Fi signal vectors VSj (1 ≤ j ≤ m), our de-noising
procedure works in three steps.

1) Computing the 2-grams of Wi-Fi session signals,
which are robust to phone heterogeneity. Specifically,
each VSj is converted to an ngrami(seq(VSj)), with n =
2, 1 ≤ i ≤ |seq(VSj)| − n + 1, 1 ≤ j ≤ m, using Equa-
tions 2 and 3.

2) Averaging Wi-Fi RSS values to minimize signal noise.
Specifically, for each ngrami(seq(VSj)), n = 2, we de-
fine APSS as the set of all 2-gram AP sequences ob-
tained from S and RSSS as the corresponding set of
RSS differences between the two APs in each 2-gram.
Let APS∗

S be the set of unique 2-grams in APSS (note
APS∗

S ⊆ APSS), for each unique 2-gram APSSk ∈
APS∗

S , we identify all occurrences of APSSk in APSS

and compute the average of their corresponding RSS
difference values. That is, for 1 ≤ i ≤ |APSS |,

RSSSk = avg{RSSSi|APSSi = APSSk}. (5)

3) Weighting each unique 2-gram APSSk based on its
occurrence rate, with more frequent 2-grams having
heavier weights. The occurrence rate of each unique ac-
cess point sequence APSSk is equal to the total num-
ber of occurrences of that sequence in the session S di-
vided by the number of Wi-Fi signal vectors in that ses-
sion. For 1 ≤ i ≤ |APSS |,

OCCSk = |{APSSi|APSSi = APSSk}| /m. (6)

Then, the weighted RSS vector for session S is defined
as follows:

WR(S) = {APSSk : OCCSk ×RSSSk} (7)
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Figure 2. Within room or across wall: Distance function comparison between (a) direct RSS-based distance measure and (b) our method.

for all APSSk ∈ APS∗
S .

Finally, the distance function, based on Tanimoto dis-
tance, for two Wi-Fi sessions Su and Sv is defined as

d(Su, Sv) = 1−

WR(Su) ·WR(Sv)

|WR(Su)|
2
+ |WR(Sv)|

2
−WR(Su) ·WR(Sv)

. (8)

For each access point sequence APSk that appears only
in WR(Su), we set the corresponding weighted RSS
value to zero in WR(Sv), and vice versa.

Figure 2 compares the accuracy of inter-session dis-
tance measure using RSS directly [14] (Figure 2(a)) with
our method (Figure 2(b)). In this study, two Wi-Fi ses-
sions are gathered under different physical distances (0
to 8 meters), either within the same room (w/o wall) or
in different rooms (w/ wall). It shows that our method
can differentiate Wi-Fi sessions in different physical sce-
narios.

3.2 Density-based Wi-Fi Clustering

Given the inter Wi-Fi session distance measure describ-
ed above, ARIEL incorporates a clustering procedure
to partition the collected Wi-Fi sessions into clusters.
Each cluster corresponds to one of the stationary occu-
pancy hotspots.

We propose to use density-based clustering [7], which
features a well-defined cluster model called “density-
reachability”. It connects points within a specific dis-
tance threshold (Eps) and a specific density criterion:
minimum number of points (MinPts) within that dis-
tance threshold. Setting parameters Eps and MinPts

is discussed in Section 6. The rationale behind using
density-based clustering is as follows. First, the sta-
tionary occupancy hotspots may have arbitrary shapes,
which can be properly handled by density-based clus-
tering, but not some other techniques, e.g., k-means
clustering. Second, our distance measure may still leave
residual noise and density-based clustering can effec-
tively filter out such noise.

We now describe our density-based Wi-Fi session clus-
tering technique. Given a set of Wi-Fi sessions D, we
define a Wi-Fi session Sp as density-reachable from Sq , if
there exists a chain of sessions S1, ..., Sn (Sn = Sp and

S1 = Sq) that for 1 ≤ i ≤ n− 1,

Si+1 ∈ NEps(Si) and |NEps(Si)| > MinPts, (9)

where NEps(Si) = {Sj |Sj ∈ D ∧ d(Si, Sj) 6 Eps}.

Given the specific Eps and MinPts , we also define a
Wi-Fi session Sp as density-connected to Sq if there exists
a session Sk such that Sp and Sq are density-reachable
from Sk. A zone z is defined as a non-empty subset of
D satisfying the following conditions:

1. ∀Sp, Sq ∈ D: if Sp ∈ z and Sq is density-reachable
from Sp, then Sq ∈ z; and

2. ∀Sp, Sq ∈ z: Sp is density-connected to Sq .

Each zone, which can be in arbitrary shapes, consists of
a set of Wi-Fi sessions and is robust to the outliers/noise.
In order to identify zones incrementally as more Wi-Fi
data are collected, the clustering process is conducted
as follows.

Given a newly collected Wi-Fi session S, we first iden-
tify a set of Wi-Fi sessions within distance Eps from S,
i.e., DS = {Sk|Sk ∈ DS and d(S, Sk) 6 Eps}. Then we
define a set Dupd, which includes Wi-Fi sessions that
need to be updated:

Dupd = {Sk|Sk ∈ DS ∪ {S} and NEps(Sk)| > MinPts}.
(10)

The new session S is categorized as follows:

• If Dupd is empty then there is no new cluster formed
and no change to the existing clusters after the inser-
tion of session S. Session S is marked as a noise and
will be considered later.

• If none of the sessions in Dupd belongs to any zone
before the insertion of S, then a new zone z is created
that contains Dupd and S.

• If all the sessions in Dupd are members of the same
zone z, then session S and possibly some Sk ∈ Dupd

are absorbed into zone z.

• If sessions in Dupd belongs to multiple zones, then
all those zones and session S are merged into one zone.

4. MOTION-BASED CLUSTERING

In the motion-based zone clustering phase, we aim to
identify zones (stationary occupancy hotspots) exist-
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ing in the same room, then combine them together as
the room’s fingerprint. This is a difficult task because
occupants may stay at any zone in a room and those
zones can be far from, or close to, each other. Our goal
is to combine zones in the same room, but not across
rooms.

We describe a novel motion based-clustering algorithm
based on an important observation – user mobility pat-
terns are different in different rooms within a certain
time period, because of the room functions or user ha-
bits and activities. For example, users may move more
frequently in an office than in a meeting room and two
users may have different mobilities in their own of-
fices. Therefore, if two nearby zones are in the same
room, they are likely to be surrounded by similar mov-
ing Wi-Fi scans, which are gathered when users are mov-
ing (discussed in Section 5). However, that is less likely
to happen for two zones in different rooms. Our motion-
based clustering algorithm determines whether two z-
ones, za and zb, are in the same room as follows.

First, we describe a process to select moving Wi-Fi scans
for each zone. For a given zone z and K moving Wi-
Fi signal vectors Vk (1 ≤ k ≤ K), we want to select
m (m ≤ K) moving Wi-Fi scans as motion profile of z,
defined as Vz , that can well represent how users move
around near z within a time period. The selection is
based on the probability of Vk belonging to z as fol-
lows:

∏

1≤i≤|seq(Vk)|+n−1

P (ngrami(seq(Vk))|z) > τm. (11)

We use n-grams of signal vectors because they are ro-
bust to noise and produce more accurate probabilities.
The calculation of ngram() is based on Equation 3. The
parameter τm determines the closeness of the moving
Wi-Fi signal vector Vk to zone z. If τm is close to 1,
then the moving Wi-Fi scans in Vz are very close to z.
Vz can only represent motion features of that zone, not
the room, and are not helpful for identifying the inter-
zone correlation. On the other hand, if τm is close to
0, the moving Wi-Fi scans in Vz surrounding the zone
within a large area (e.g., cross multiple rooms) are se-
lected. In that case, Vz may present motion features of
multiple rooms, which may cause the merging of zones
in different rooms. In our system, we set

τm = 0.85×max
k

{
∏

i

P (ngrami(seq(Vk))|z}

for 1 ≤ k ≤ K, 1 ≤ i ≤ |seq(Vk)|+ n− 1, (12)

where maxk{
∏

i P (ngrami(seq(Vk))|z} is the highest p-
robability that a moving Wi-Fi scan Vmax belongs to z.
Namely, Vmax is gathered at a position that is nearest
to z, e.g., when users are leaving or arriving at z. We
set τm a value slightly lower (0.85 ×) than the high-
est probability in order to get the maximum number of
moving scans for z in the same room. Note that higher
values of τm can result in failure to identify the corre-
lation between two zones far from each other in a large

room. In that case, we need to leverage middle-point
zones in between or expand the size of the zones to
shorten the distance between them.

Second, given two zones za and zb, and corresponding
motion profiles Vza and Vzb , we calculate the motion
profile similarity of za and zb using Jaccard similarity:

Jza,zb =
Vza ∩ Vzb

Vza ∪ Vzb

. (13)

If Jza,zb is close to 1, its indicate that za and zb are most
likely in the same room because they are surrounded
by almost the same moving Wi-Fi scans. Note that at
least one of the zones has none empty V in calculation
of Jza,zb .

Calculating the value of Jza,zb based on data gathered
during a short time period may result in accuracy be-
cause the motion patterns in two adjacent rooms may
be briefly similar. In response to that problem, the sys-
tem calculates the value of Jza,zb multiple times over
different time periods. It then calculates the average
value of Jza,zb in order to eliminate above noise. Set-
ting threshold τJ for Jza,zb is discussed in Section 6.

5. WI-FI SENSING ON MOBILE PHONES

In this section, we present an energy-efficient Wi-Fi sens-
ing technique that automatically and intelligently col-
lects representative stationary Wi-Fi sessions and mov-
ing Wi-Fi scans from mobile phones. The Wi-Fi collec-
tion process is controlled by two modules: 1) motion
detection to determine a user’s current status (mov-
ing or stationary), and 2) duplication checking to deter-
mine if Wi-Fi collection is needed at current location.

5.1 User Motion Detection

The key challenge of user motion detection on mobile
phones is to achieve high accuracy and energy effi-
ciency. Since a user’s motion status can change at any
time, the detection process needs to be constantly ac-
tive. Previous work on motion detection has used ei-
ther high-frequency (32 Hz) accelerometer readings to
accurately detect all types of user activities [18], or
medium-frequency (20 Hz) accelerometer readings to
detect user’s motion status [20]. The average power
consumption of accelerometer is 330 mW for 30–50 Hz,
290 mW for 20–25 Hz, and only 50 mW for 4–7 Hz [14].
The first two frequencies result in unacceptably short
battery lifespans if used continuously.

We describe a novel motion detection algorithm that
can accurately determine if a user is moving or sta-
tionary using only 5 Hz acceleration sampling. The al-
gorithm is based on our observation that when a per-
son is moving (mainly walking), the average of abso-
lute acceleration changes (mabs ) within a short period
(e.g., 3 seconds) is large but the average of accelera-
tion changes (m) is small. This is because when a user
is walking, the body is in oscillation. As a result, the
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sign of acceleration readings also oscillate from posi-
tive and negative values, canceling each other in the
average acceleration change but not the average abso-
lute acceleration change. However, when user is not
walking (e.g., no position change), the above property
of acceleration data (m is large and mabs is small) rarely
occurs. For example, when a user types on phone, both
m and mabs will be small. And when a user picks up
phone from desktop, both m and mabs will be large.

Given acceleration readings (X,Y, Z) in a 3-second win-
dow with sampling frequency of 5Hz, and X , Y , and
Z are acceleration readings in three axis, we first calcu-
late the acceleration changes (i.e., difference of adjacent
readings) on each axis, (∆X,∆Y,∆Z). We then calcu-
late the average acceleration change m as

m = ‖(avg(∆X), avg(∆Y ), avg(∆Z))‖ (14)

and the average absolute acceleration change mabs as

mabs = ‖(avg(∆Xabs), avg(∆Yabs), avg(∆Zabs))‖ .
(15)

We conducted a set of experiments on 10 users of dif-
ferent gender and age to collect acceleration data. Those
experiments include stationary scenarios: completely
stationary, playing with phone, and standing with some
body movements; and moving scenarios: walking with
phone in pocket (both in jacket and pants) and in a bag
(on shoulder and in hand), walking on stairway, and
with various walking speed. Figure 3 shows a scatter
plot of mabs and m/mabs values we have obtained in
different moving and stationary scenarios. We observe
that moving instances are concentrated in the upper
left region. The outliers are due to users making turn-
ing or pausing. Based on this figure, we determine a
user is moving when τmabs

> 300 and τm/mabs
6 0.15,

otherwise the user is stationary.

Once a user is determined to be stationary, the system
starts stationary Wi-Fi session sampling till the user
changes to the moving status. When the user is deter-
mined to be moving, the system starts moving Wi-Fi
scans sampling continuously for 5 minutes or till the
user changes to the stationary status.

5.2 Wi-Fi Duplication Check

Our automatic Wi-Fi collection mechanism is passive
and highly dependent on user motion patterns. Thus,
we may collect a lot of redundant Wi-Fi data at places
that a user visits often, such as home and office. Such
redundant data increase the energy use on phone and
computation overhead on server without improving
the clustering results. We describe a Wi-Fi duplication
check mechanism to stop Wi-Fi collection at a place
when sufficient data have been collected.

Our duplication check is performed at the zone level.
The server maintains a status for each zone – “full”
if the zone contains enough Wi-Fi sessions (we use a
threshold of 50) and “not full” otherwise. This status
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Figure 3. Thresholds for motion detection (moving vs. stationary).

information is distributed to phones periodically. On
the phone side, the application first samples one Wi-Fi
signal V , and calculates the most likely zone ẑ based
on Equation 4. If P (ngrami(seq(V ))|ẑ) is larger than a
given threshold (0.8 in our system) and zone ẑ is full,
then the system skips the stationary scan and follow-
ing moving scans. Otherwise the Wi-Fi data will be
collected.

6 EVALUATIONS

ARIEL has been implemented and deployed for real-
world evaluation. This section presents the experimen-
tal setup, system accuracy, and efficiency analysis re-
sults. We also explore ARIEL’s parameter settings and
discuss the problems encountered during user study.

6.1 Experimental Setup

ARIEL is implemented on mobile phones and a server.
The zone-based Wi-Fi clustering algorithm and motion-
based zone clustering algorithm are implemented in
python on the server side. The motion detection algo-
rithm is implemented on the Android mobile platform.
In addition, the Wi-Fi signal vector and room finger-
print database is built using MySQL. A web server re-
ceives Wi-Fi signal vectors from mobile phones, deliv-
ers room localization services, and synchronizes room
fingerprints to mobile phones.

Over a period of 10 months, a total number of 21 par-
ticipants, including faculty members and graduate stu-
dents, have participated in the user study. Overall, we
have collected Wi-Fi data for 193 rooms, in which 85
have at least one adjacent room and 61 rooms have
been visited by at least two participants. The user study
covered a wide range of building environments, in-
cluding hospitals, supermarkets, restaurants, a univer-
sity campus, apartments, and houses.

For evaluation purpose, during the user study, each
user was asked to provide related room information,
e.g., room name, room entry/departure time, and ac-
tivity in the room, through a user interface integrated
in our mobile application. Weekly meetings with the
users were held to verify the accuracy of the user in-
put data. The user data was also verified using col-
lected GPS data (for the rooms in which GPS signals
were available) and Wi-Fi data in building level. This
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data set is used to establish ground truth between each
Wi-Fi session and the corresponding room. Each clus-
ter automatically identified by ARIEL is mapped (via
majority voting) to the room with most Wi-Fi sessions
in the cluster.

6.2 Accuracy

This section first evaluates the overall accuracy of the
room localization service provided by ARIEL, and then
investigates the accuracy of the fingerprinting techniq-
ues.

ARIEL automatically builds room fingerprints through
an incremental process using the Wi-Fi signal vector
samples gathered by personal mobile phones, and then
delivers room localization service back to the individ-
ual occupants. Therefore, the accuracy of the room lo-
calization service depends on the accuracy of room fin-
gerprints, which in turn is a function of the amount of
Wi-Fi signal samples collected for each room. A good
room localization system should achieve high accuracy
with a reasonable number of Wi-Fi signal samples.

Figure 4 shows the accuracy of the ARIEL room local-
ization service as a function of the number of Wi-Fi sig-
nal vector samples. Given the user study including 21
participants and 193 rooms, it shows that, first, when
the Wi-Fi samples collected per room are less than 200,
ARIEL is unable to generate fingerprints. This is due to
the fact that, given the default system setting of ARIEL,
the clustering algorithm cannot build up meaningful
clusters using such limited number of Wi-Fi samples.
Next, as the collected Wi-Fi sample count increases, the
accuracy of room localization quickly improves, and
the variance of service quality decreases. For 400 or
more samples per room, ARIEL achieves 95% accuracy,
which is comparable to past works that require time-
consuming manual annotation [9, 12]. Note that ob-
taining 400 Wi-Fi samples per room requires collection
of 15 Wi-Fi sessions, and each session takes less than
two minutes.
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Figure 4. Room localization accuracy vs. number of Wi-Fi sessions.

Figure 5 shows room localization accuracy as a func-
tion of numbers of users. It shows that the accuracy
of ARIEL improves as the number of users per room
increases. When more users visit the same room, a bet-
ter spatial coverage in terms Wi-Fi signal samples will

be obtained during room fingerprinting. On the other
hand, even if room fingerprinting is conducted based
on data from a single user, ARIE is still able to localize
with over 90% accuracy.
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Figure 5. Room localization accuracy vs. number of users.

We next evaluate the room fingerprinting techniques,
and focus on evaluating the performance of the clus-
tering algorithms. Specifically, ARIEL uses clustering
techniques to construct room-level clusters consisting
of Wi-Fi sessions belonging to each room. Two po-
tential errors introduced by the clustering methods in-
clude 1) Wi-Fi sessions collected in room A are incor-
rectly assigned to a cluster belonging to room B and
2) the clustering algorithm is unable to merge all the
zones belonging to the same room into one cluster, re-
sulting in multiple clusters per room. To this end, we
introduce the following two performance metrics.

1. Purity measures the percentage of Wi-Fi sessions
with correct room assignment divided by the total num-
ber of assigned Wi-Fi sessions.

2. Unity measures the quality of room-level zone merg-
ing, i.e., it is the reciprocal of the total number of zones
assigned to each room, a average over all the rooms.
The unity of one is ideal.

Figure 6 shows the accuracy of the clustering methods
as a function of number of Wi-Fi sessions. ARIEL starts
to produce clusters when the number of collected Wi-
Fi sessions is greater than 200. The unity measure im-
proves as the number of Wi-Fi sessions increases, be-
cause more Wi-Fi session collections form more con-
nections between in-room stationary hotspots, thus im-
proving clustering quality. The value of unity converges
when the total number of Wi-Fi sessions reaches 400.
The purity measure slightly degrades as the number of
Wi-Fi sessions increases, which introduces more Wi-Fi
variations.

Figure 7 shows the clustering accuracy as a function
of the number of users. When the system has more
users, the purity of the clusters slightly degrades as
more variations are introduced by different users and
different phones. Meanwhile, the unity of the clusters
improves as different motion patterns of users within
a room help bridge in-room hotspots, thus improving
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Figure 6. Clustering accuracy vs. number of Wi-Fi sessions.

the clustering quality.

Overall, this study shows that ARIEL offers high clus-
tering quality.
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6.3 Energy Efficiency

The energy overhead imposed by ARIEL on the mo-
bile phone has two main parts: Wi-Fi sensing and mo-
tion detection. We calculate the average power con-
sumption based on power measurement data from An-
droid HTC G1 [1]. The average power consumption on
reading acceleration at 4–7Hz is 50mW, at 20–25Hz is
285mW, and at 30–50Hz is 325mW. The average power
consumption of Wi-Fi scan at 1/5Hz is 108mW.

We first compare our motion detection method with
two other approaches: 1) frequent acceleration sam-
pling [18], which targets general user activity recogni-
tion including stationary and walking and 2) moderate
acceleration rate sampling [20], which focuses on mo-
tion detection. As shown in Figure 8, given the same
data set, our detection algorithm achieves the high-
est energy efficiency, nearly 5× better than that of the
other two approaches. In addition, the average motion
detection accuracy of our approach is 94%, which is
higher than the medium-frequency approach and slig-
htly lower than the high-frequency approach.

We also study the power consumption of Wi-Fi sens-
ing. We found that the active time duration of Wi-Fi
sensing varies among users. On average, the Wi-Fi ac-
tive time over a day ranges from 20 minutes to 2 hours
with an average sampling frequency of 1/5Hz. The
corresponding average power consumption is 4.5mW.
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6.4 Parameter Settings

Several parameters in the ARIEL system need to be de-
termined: 1) density parameters Eps and MinPts , 2)
threshold τJ for motion-based clustering, and 3) size
of Wi-Fi stationary session (number of Wi-Fi scans in
a session). These three parameters directly impact the
purity and unity of the room fingerprints.
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Figure 9. Impact of different Eps values in two different rooms.

In our density-based clustering algorithm, we set MinPts

to 5 for all data because 1) in our experiments, we found
no difference among clustering results when MinPts ≥
5; and 2) larger MinPts requires more computation ef-
fort and more Wi-Fi sessions per room. Figure 9 shows
the purity and unity of two rooms with different Eps
values. The two rooms have different wall types: room
1 shares a thin drywall with adjacent rooms, while room
2 shares a thick concrete wall with adjacent rooms. Gen-
erally, larger Eps can increase the unity of cluster but
reduce the purity, vice versa. The two rooms with dif-
ferent wall types have different clustering results. With-
out prior knowledge of the wall type, it is difficult to
choose the right value for Eps . As shown in Figure 10,
the average purity and unity of all data change with
the value of Eps . We set Eps conservatively to 0.32,
which ensures high purity for all the clusters but rela-
tively low unity, i.e., a room may have multiple clusters
but each cluster has high purity. The low unity of the
clusters will be compensated for in the merging phase.

Another important parameter in our system is the zone
merging threshold τJ introduced in Section 4. As shown
in Figure 11, if we set the threshold too low, the pu-
rity decreases a lot. On the other hand, if we set the
threshold too high, clusters in the same room may not
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Figure 10. Average clustering accuracy as a function of Eps .

be merged. In the tests, we empirically set τJ to 0.5.
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Figure 11. Average clustering accuracy as a function of merging
threshold τJ .

Session size also impacts system performance. A ses-
sion with more Wi-Fi scans gives more accurate dis-
tances, but requires more energy for Wi-Fi scan. Fig-
ure 12 shows that, as session size increases, the dis-
tance between two sessions become more stable. We
evaluated our system with different session sizes; the
results are shown in Figure 13. When session size is
larger than 30, the room purity and unity do not change
much. Although the session distance is not perfect with
a size of 30 as shown in Figure 12, our density-based
clustering algorithm is robust to outliers and achieves
high accuracy even with some noise.
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7. RELATED WORK

In this section, we survey works that are most related
to ours, focusing on indoor localization techniques based
on Wi-Fi signals. We also discuss works that aim to re-
duce the effort of fingerprint collection for indoor lo-
calization.
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Figure 13. Average room localization accuracy vs. session size.

Indoor localization has been a topic of active research,
some focusing on indoor positioning while others (sim-
ilar to our work) aiming to determine rooms rather
than the exact indoor positions. Indoor positioning
systems [2, 10] can be easily extended to room-level
localization but require extensive effort for fingerprint
sampling or the pre-knowledge of AP positions, which
are not scalable. Previous room location methods ei-
ther rely on manual room fingerprint collection, which
imposes a high cost [11], or leverage user feedback to
reduce deployment and maintenance cost [3]. Issues
such as determining when user input is actually re-
quired, and discounting erroneous and stale data are
addressed by the work of Park et al. [19, 9]. However,
their approach requires a floor plan to deal with input
errors and the inconsistent room naming preferences
of different users. Furthermore, the input effort is non-
negligible, given the small screens and keyboards of
mobile phones. Most of these systems use Wi-Fi sig-
nals as room or position fingerprints.

To reduce fingerprint collection efforts, some works fo-
cused on reducing sampling locations and sampling
time while maintaining similar localization accuracy [15,
4]. Other works proposed calibration-free approaches
to improve scalability but require AP infrastructure in-
formation. Gwon and Jain proposed TIX (triangular
Interpolation and extrapolation), a calibration-free mech-
anism that used the three APs with the highest RSSIs
to determine the centroid of the triangle [10]. Lim et
al. proposed a zero-configuration indoor localization
method, which used online calibration and truncated
singular value decomposition (SVD) to characterize the
relationship between RSSI and geographical distance
to anchors [16]. More recently, unsupervised indoor
positioning systems [5, 22] have been proposed by lever-
aging GPS signals near a window or internal landmark
that can be easily identified. However, these approaches
rely on indoor GPS signasl, indoor landmarks, and/or
floor plans. Our solution is fully automated and re-
quires no manual annotation or prior knowledge of
APs or floor plans, yet achieves high room localization
accuracy.

Density-based clustering [7, 6] is a popular method and
attractive for spatial identification. It clusters objects
based on neighborhood density, which is defined by a
given radius (Eps) and a minimum number of objects
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(MinPts). It can identify clusters of arbitrary shapes
and is robust to noise. Density-based clustering is thus
appropriate for our problem and achieves high perfor-
mance as demonstrated by the evaluation results.

8. CONCLUSIONS AND DISCUSSIONS

This paper has presented ARIEL, a fully automated in-
door room localization system. To accurately identify
rooms without extensive manual annotation, we pro-
posed and developed a number of novel techniques: 1)
a zone-based clustering algorithm that accurately iden-
tifies in-room occupancy hotspot(s) using Wi-Fi signa-
tures; 2) a motion-based clustering algorithm to iden-
tify inter-zone correlation, thereby distinguishing dif-
ferent rooms; and 3) an energy-efficient motion detec-
tion algorithm to minimize the noise of Wi-Fi finger-
prints. ARIEL has been implemented and deployed
for a 10-month study with 21 participants. The evalua-
tion results demonstrate that our automated clustering
algorithm generates clusters that are high representa-
tive of individual rooms and achieves high accuracy
(95%) for room localization. The accuracy is compara-
ble to existing techniques that require labor-intensive
manual annotation.

The cluster identities generated by ARIEL can serve as
room identification and are sufficient for most applica-
tions that do not require semantic name/label for each
room. If room names are required, ARIEL can rely on
users’ feedback [13] to provide this information. The
advantage of our system is that there are much fewer
clusters than WiFi fingerprints, significantly reduced
annotation effort. With unique identities, we can eas-
ily identify different rooms with the same name, learn
how people name the same room differently, and iden-
tify commonly-used names for a room.
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