
Automatic Run-Time Extraction of Communication Graphs
From Multithreaded Applications

Ai-Hsin Liu and Robert P. Dick

Electrical Engineering and Computer Science Department
Northwestern University

2145 Sheridan Road
Evanston, Illinois 60208

ai-hsin-liu@northwestern.edu dickrp@eecs.northwestern.edu

ABSTRACT

Embedded system synthesis, multiprocessor synthesis, and thread
assignment policy design all require detailed knowledge of the run-
time communication patterns among different threads or processes.
Researchers have commonly relied on manual estimation, compile-
time analysis, or synthetic benchmarks when developing and eval-
uating synthesis algorithms and thread assignment policies. In a
more ideal world, it would be possible to quickly and easily deter-
mine the run-time communication properties of large commercial
and academic multithreaded applications. This article describes
a fully-automated method of extracting run-time communication
graphs from multithreaded applications.
The resulting graphs may be used to better understand, design, and
synthesize application-specific hardware-software systems. The
proposed graph extraction method is implemented as a module
within the Simics multiprocessor simulator. It presently supports
the analysis of arbitrary multithreaded applications running on the
Linux operating system. This software is called CETA. It is freely
available for academic and non-profit use.

Categories and Subject Descriptors: C.1.4 [Processor Architec-
tures]: Parallel Architectures; C.5.4 [Computer System Implemen-
tation]: VLSI Systems
General Terms: Design, Algorithms, Performance, Measurement
Keywords: Multithread, Communication, Task graph,
Benchmarks, Synthesis, Run-Time

1. INTRODUCTION
Many embedded system and multiprocessor synthesis algorithms

start from specifications in the forms of graphs [7,8,11,13,18,19].
Developing and validating such algorithms depends on access to
graph representations of the communication among different tasks,
processes, or threads. However, as explained in the following para-
graphs, large commercial graph-based application specifications
are scarce in the system synthesis community. This article de-
scribes an automated method of extracting run-time communica-
tion graphs from real multithreaded applications.

Easy-to-use, automated extraction of run-time communication
dataflow graphs sits between two research communities. Com-

This work was supported in part by the NSF under award CNS-
0347941.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’06, October 22–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1595933700/06/0010 ...$5.00.

puter architects are generally familiar with the simulation tech-
niques necessary for extracting these graphs. However, few archi-
tects need these data in their research. Application-specific system
synthesis researchers most need these graphs. However, develop-
ing automated methods to extract them would require learning tools
that are rarely used in their primary research area. The proposed
technique builds on work in the computer architecture community
but seeks to solve a pressing problem for those in the embedded
system and multiprocessor synthesis communities.

In an ideal world, embedded system and multiprocessor synthe-
sis algorithms would be developed and evaluated using large in-
dustrial application specifications. However, in practice, there are
a number of legal, language, and economic barriers to this goal.
Companies are generally reluctant to release even anonymized ver-
sions of their embedded system specifications. Doing so can un-
dermine trade secret protection. In addition, this would require
effort without immediate benefit to the company. Finally, even
if other barriers did not exist, the formats of specifications may
vary from company to company, making use for developing and
evaluating synthesis algorithms difficult. We are aware of a few
cases in which companies released anonymized embedded specifi-
cations to synthesis researchers. Those cases required great effort
and ultimately did little to publicly validate synthesis techniques
because the specifications could not be further distributed due to
non-disclosure agreements.

A number of researchers have written or gathered embedded sys-
tem specifications for use in synthesis. However, producing de-
tailed embedded system specifications is time-consuming. It neces-
sarily reduces the time that can be spent developing and evaluating
new synthesis ideas. As a result, there are few hand-built academic
synthesis benchmarks, and most of those that exist are small.

Researchers have developed methods of converting from medium-
level programming languages such as C and C++ to dataflow
graphs [15]. However, these techniques can only extract informa-
tion available at compile time. In order to capture the run-time
dataflow properties of applications, dynamic techniques, of the sort
described in this article, are necessary.

Researchers have developed pseudo-random graph generation
algorithms for use in scheduling and allocation research [4]. These
pseudo-random techniques are meant to produce large graphs that,
hopefully, approximate the structures of real applications. Such
techniques serve as last resorts when an insufficient number of large
real specifications are available. Their use in scores of papers on
system synthesis is evidence that the research community could
benefit from an easy-to-use method of generating communication
graphs from real applications.

Researchers have developed sophisticated processor and system
simulation environments [3,6,10,14] that accommodate the execu-
tion of unmodified multithreaded software applications on widely-
used operating systems (OSs). However, although such simulators
execute OS code with fidelity to real machines, they typically op-
erate with no knowledge of the implications of operations occur-
ring within the simulated OSs. We have extended Simics [10], a
multiprocessor simulator, so that it supports the operating system

Main thread

Thread 1 Thread 2

Thread 4Thread 3

Func A Func B

Func C

Figure 1: Example multithreaded application.

Table 1: Process IDs and names
PID Name Description

0 swapper Ancestor process
1 init Root process

1052 thread example master
1053 thread example main
1054 thread example Thread 1
1055 thread example Thread 2
1056 thread example Thread 3
1057 thread example Thread 4

introspection necessary to trace dataflow in multithreaded shared
memory applications.

Existing projects have proposed to use simulation, instrumenta-
tion, and special-purpose hardware to profile distributed or parallel
applications [2,9,16]. However, existing tools have one or more of
the following drawbacks when used in multiprocessor synthesis re-
search: dependence on special hardware; intrusive modification of
the applications under analysis; dependence on a particular com-
munication protocol, e.g., a specific message passing library; or
neglect of communication. Some dynamic instrumentation tech-
niques for memory profiling are promising but have been tailored
for use in redesigning applications instead of synthesis [17].

This article describes an easy-to-use tool for extracting run-
time communication graphs from multithreaded applications. This
tool is called Communication Extraction from Threaded Appli-
cations (CETA). It is composed of a Simics module for extract-
ing dataflow information during the simulation of multithreaded
Linux applications and a number of scripts that implement graph
transformations. The purpose of CETA is to extract application
dataflow information in a hardware-independent manner, enabling
other tools to determine and optimize the performance of the ap-
plication and hardware–software implementations. Three output
formats are supported for use in application analysis and opti-
mization, multiprocessor synthesis, and thread assignment. CETA
supports analysis of applications for which either the source code
or executable code is available, and gives the user control over
the portions of applications on which dataflow analysis will be
used. CETA is freely available for academic and non-profit use
at http://www.eecs.northwestern.edu/˜dickrp/projects.html.

The rest of the paper is organized as follows. Section 2 describes
CETA’s use and operation on an example application, Section 3
describes the design and implementation of CETA, Section 4 de-
scribes the results of using CETA on multithreaded multimedia ap-
plications, and Section 5 concludes the paper.

2. ILLUSTRATIVE EXAMPLE
In this section, we illustrate the operation of CETA by describing

the production of a communication graph from a multithreaded ap-
plication. We have selected a small application to ease explanation.
Please note that CETA can analyze multithreaded applications of
arbitrary complexity and size, as demonstrated in Section 4.

Figure 1 illustrates the order in which an example multithreaded
application spawns its five threads. In the main(·) function the
main thread creates Thread 1 to execute Function A and Thread 2
to execute Function B. After executing for a short while, Thread
1 and Thread 2 create Thread 3 and Thread 4 in Function A and

step 0

1057

1053

188

1054

65

1055

68

619

864

1338

1056

720

1052

233

791

586

57

84

57

630

254

44

47

125

116

92

24

483

81

12

Figure 2: Simplified communication graph for example appli-
cation.

Function B, respectively. When Thread 3 and Thread 4 are created,
they each execute Function C.

In a multithreaded Linux application, each thread is a lightweight
processes with its own process identifier (PID). Although threads
have individual PIDs, register states, and stack pointers, they typ-
ically share memory and file descriptors with other threads. This
makes shared memory communication among threads convenient.
The main(·) function allocates an array. When a thread creates an-
other, the two threads share the same address space and, therefore,
both have access to this array.

2.1 Aggregate Communication Graphs
Figure 2 shows the run-time communication graph CETA ex-

tracted from the example application shown in Figure 1. In Fig-
ure 2, we have omitted OS threads for simplicity. Each node repre-
sents a process or thread. The edges indicate the directions in which
data are communicated among threads. The edge labels indicate the
amount of data communicated between the two connected threads.
Each node in this graph is labeled with its corresponding PID. The
tasks associated with these threads are listed in Table 1. We will
first focus on the threads within the application, then explain the re-
maining information provided by the CETA communication graph.

The six threads for the example program are shown in Figure 2.
The main thread has a PID of 1053 and the master thread, which
has a PID of 1052, is used by Pthreads to manage other threads.
PIDs 1054 and 1055 correspond to Thread 1 and Thread 2, which
are created by the main thread. PIDs 1056 and 1057 correspond to
Thread 3 and Thread 4, which are created by Thread 1 and Thread
2, respectively. As shown in Figure 2, PID 1053 communicates
a high volume of data to PID 1055 (1338 bytes), PID 1054 (864
bytes), and PID 1056 (720 bytes). The master thread, PID 1052,
only communicates with PID 1053, PID 1054, and PID 1055, the
main thread and the threads created by it. PID 1056 receives data
from the main thread and its parent thread, PID 1054, and sends
data to PID 1054. In summary, each thread communicates fre-
quently with the main thread via reads and writes to shared mem-
ory.

2.2 Phase Partitioned Communication
Graphs

Although the communication graph in Figure 2 contains useful
information about the communication properties of the application,
it does not indicate whether these properties change during execu-
tion. For example, some threads may communicate heavily dur-
ing some phases of execution and other threads may communicate
heavily during other phases of execution. This phase-specific in-
formation is useful during synthesis or the development of thread

step 10

1052

1054

20

1053

472

step 15

1055

1053

45 209

1052

4

1054

8

step 17

1053

1056

720

1057

619

125

1054

4

57

1055

18

44

57

step 19

1054

1053

8

1055

16

340 225

1057

12

68 1052

4

1056

20

Figure 3: Phases for example multithreaded application.

15T

16T

17T

18T

19T

20T

15.1052

16.1055

4

15.1053

209

15.1054

8

15.1055

16.1053

45

16.105216.1054

17.1053

4

18.1056

720

18.1057

619

17.1054

18.1053

4 57

17.1055

18 44 57

17.1056

125

18.1052

19.1054

1268

18.1054

19.1053

233

18.1055

8116 88 176 49

19.1052

20.1055

4340

20.1053

816

19.1055

225

19.1056

20

19.1057

1268

20.105220.105420.105620.1057

Figure 4: Directed acyclic communication graph for example
application.

assignment algorithms. For example, phase-dependent communi-
cation profiles can allow the designer or synthesis tool to construct
communication networks that minimize the impact of contention.
CETA can automatically partition communication graphs with ar-
bitrary, user-specified, granularity.

Figure 3 illustrates the result of CETA partitioning the commu-
nication graph for the example application with a period of 5,000
CPU clock cycles, resulting in 21 graphs for the example program.
The step duration is provided as a parameter to the CETA module.
Here we show four of these graphs, including only Steps 10, 15, 17,
and 19. For this example, a label of Step n denotes the communi-
cation graph for cycles 5,000n to 5,000(n+1)−1. During Step 10
of Figure 3, a significant amount of data flows from PID 1053 to
PID 1054 when the main(·) function transmits an array of data
to Function A. In Step 15, PID 1053 creates PID 1055, within
which Function B reads the contents of an array in shared mem-
ory. In Step 17, a large amount of data flows from the main thread
(PID 1053) to Thread 3 (PID 1056) and Thread 4 (PID 1057).
Finally, in Step 19, PIDs 1053 and 1055 communicate often as
PID 1055 rejoins with PID 1053. This sort of phase partitioned
communication graph can be used to determine the time-varying
communication behavior of a multithreaded application, allowing
the application to be optimized, or enabling the synthesis of an ar-
chitecture on which it may run with good performance.

2.3 Directed Acyclic Communication Graphs
A number of synthesis algorithms target dataflow applications

specified by sets of periodic, acyclic dataflow graphs. This repre-

Graph transformations
using Python scripts

and dot graph generator

Running multithreaded
application on Simics

int main(void) {

 pthread_t thrd1, thrd2;

 MAGIC(0);

 pthread_create(&thrd1, 0,

 FuncA, 0);

 ...

 pthread_join(thrd2, 0);

 MAGIC(0);

 exit(0);

}

size = 57
size = 44
size = 483
size = 791

1052 to 1053
1053 to 1054

1056 to 1053
1054 to 1053

1052
1052
1052
1056

3224117880 R 4
3437748160 W 4
3437748156 W 4
3437748148 W 4

Dataflow graph

CETA module

Process ID

Dataflow computation

Memory access

step 19

1054

1053

8

1055

16

340 225

1057

12

68 1052

4

1056

20

Figure 5: CETA design overview.

sentation is particularly useful for hard and soft real-time applica-
tions; by eliminating unbounded loops, it permits bounds on graph
execution times. In the case of true hard real-time applications,
deriving hardware-software synthesis specifications from run-time
communication graphs is unacceptable unless it is possible to guar-
antee that the worst-case communication volume path was exer-
cised. However, it is appropriate to use such graphs in soft real-time
applications, e.g., multimedia consumer electronics.

CETA has the ability to transform the multi-phase communica-
tion graphs described in Section 2.2 into directed acyclic commu-
nication graphs as shown in Figure 4. This transformation changes
the properties of the original graphs only as required by the tempo-
ral discretization process. The transformation ensures that all com-
munication occurs between temporally adjacent phases, and travels
in the direction of increasing time.

Figure 4 shows the directed acyclic graph derived from steps 15–
19 of the example multithreaded application shown in Figure 3. In
this figure, Step 15 corresponds to the communication between the
phases starting at 15 ·5,000 and 16 ·5,000 CPU cycles. In Figure 4,
tasks 15.1054, 16.1054, 17.1054, and 18.1054 represent the same
thread in different time phases. This sort of graph may be used
directly within existing real-time system synthesis algorithms, i.e.,
CETA enables the automated extraction of runtime directed acyclic
communication graphs from multithreaded applications of arbitrary
complexity.

3. DESIGN OF CETA
This section describes the design and implementation of CETA,

our system for automatic extraction of run-time communication
graphs from threaded applications.

3.1 Design Overview
CETA is composed of a Simics 3.0.8 multiprocessor simulator

module and a number of Python scripts for data analysis and graph
transformation. It extracts run-time communication graphs from

multithreaded applications during simulation. Figure 5 illustrates
this extraction process. The first stage in the communication graph
extraction process is gathering or compiling an executable for the
simulated processor. Simics is then used to simulate the multi-
threaded application and OS. In the current implementation, CETA
simulates a virtual workstation running Red Hat Linux version 7.3,
which uses the 2.4.8 Linux kernel. This system has a 20 MHz Pen-
tium 4 processor, and 256 MB of RAM, one 19 GB hard disk, and
one IDE CD-ROM. Note that the particular processor used has only
second-order effects on application dataflow properties. During
simulation CETA traces the flow of data among threads by mon-
itoring reads and writes of shared memory. When the application is
finished executing, CETA’s Python scripts are used to transform the
data into any of the three graph structures described in Section 2.

CETA’s implementation is necessarily specific to the processor
architecture, simulator, and OS in use. However, this is a small
concern for two reasons. First, most languages can be compiled
to Intel x86 executables, permitting the use of CETA’s current im-
plementation for communication graph extraction. Second, even if
simulation on another processor or OS is necessary, many of the
techniques presented below will still work. In short, CETA need
only be able to determine when context switches, reads, and writes
occur.

In the following sections, we describe CETA’s methods of asso-
ciating PIDs with memory accesses and tracking the flow of data
and explain its support transforming communication graphs to dif-
ferent formats.

3.2 Process Identifier Tracking
Although instruction processor simulators such as Simics have

access to all of the data used by the OSs and applications they sim-
ulate, they typically do not understand the meaning of these data.
In order to determine the PID associated with each memory access,
CETA detects OS context switches and traverses OS data structures
to track the current PID.

Whenever the instruction pointer (program counter) is equal to
the address of the OSs context switch code (switch to(·)) at
address 0xc0107410 for Linux 2.4.8 kernel [1], the stack pointer
(esp) is sure to point to the top of the stack for that function. The
get task pid(·) function maintains a pointer to a task descrip-
tion structure for the next process on its stack, which includes the
new PID. This PID is stored in CETA’s memory for later reference
during simulated memory accesses.

3.3 Dataflow Analysis
This section describes the method used by CETA to extract com-

munication volumes between pairs of processes.
The CETA module is triggered upon all memory reads and

writes. It has access to the PID of the currently-running thread,
as described in Section 3.2. In addition, the simulator provides the
physical address of the memory access and indicates whether the
access is a read or write. Using logical addresses would result in
neglected communication because different logical addresses may
have the same physical address.

Data flows from Thread A to Thread B if Thread A most recently
wrote to a location read by Thread B. If Thread C reads data from
the same memory location, data flow from Thread A to Thread C
is also tabulated. If Thread B reads the same memory location sev-
eral times, CETA accumulates the total data volume. Note that this
method also allows analysis of data flow in message passing ap-
plications. However, if data is copied by a manager thread, it will
appear to flow transitively through the manager thread.

In order to permit efficient implementation of communication
volume tracking, the Hash Map extension to the Standard Template
Library (STL) was used associate each physical address with the
PID of its most recent writer. When data at an address are written,
the value in the Hash Map is replaced. When data at an address are
read, communication from the PID stored in the Hash Map value
associated with the address, to the PID of the current process, is
tabulated. Communication volumes are accumulated in scalars held
in another Hash Map keyed on ordered pairs of PIDs.

step 19

1042

1048

1920

1041

1040

4

128

1010

1039

222

1046

8

1045

8625

1044

80

468

104

517

11465

step 19

1040

1048

1010

1042

1920

1039

11465

1045

8625

(a) (b)

Figure 6: Example graph (a) before and (b) after data volume
filtering.

3.4 Graph Formats and Transformations
CETA can produce graphs in several formats: (1) aggregate,

phase-less, and potentially-cyclic (Section 2.1); (2) phase parti-
tioned and potentially-cyclic (Section 2.2); and (3) phase parti-
tioned and acyclic (Section 2.3). Phase-less graphs can be viewed
as a special case of phased graphs in which only one phase exists.
Phase partitioning is done within CETA’s Simics module based on
a time step interval supplied by the user.

After Simics reports dataflow information, CETA’s Python scripts
format these data as directed graphs in the DOT format [5]. This
format is straight-forward, general, and suitable for use in synthe-
sis. It may also be converted to human-readable illustrations using
the graphvis application.

In time partitioning mode, CETA produces a dataflow subgraph
for each user-specified time phase. Figures 2 and 3 illustrate the
aggregate and phase partitioned versions of communication graphs
for the same multithreaded applications. Finally, CETA supports
conversion of phase partitioned but potentially cyclic communica-
tion graphs into a single acyclic graph (e.g., Figure 4) using the
following algorithm. For each phase in the corresponding phase
partitioned but potentially cyclic graph, label each vertex (vi) with a
symbol indicating the phase (pi). Given that {piv1, piv2, · · · , pivn}
are vertices in a phase, {pi+1v1, pi+1v2, · · · , pi+1vn} are the corre-
sponding vertices in the subsequent phase, and e[a,b] is an edge
from vertex a to vertex b, replace each edge e[piv j, pivk] within the
same phase with e[piv j, pi+1vk] across different phases; i.e., repli-
cate threads in each temporal phase and ensure that communication
only flows forward in time.

CETA allows a user to set threshold value for the minimal vol-
ume of communicated data that will appear in the communication
graph. Starting from Figure 6(a), data volume filtering may be used
to eliminate edges with data volumes of less than 1,000 B thereby
producing Figure 6(b). CETA also permits filtering by thread PID.

Finally, CETA’s Simics module supports on-line control by sim-
ulated applications via Simics magic instructions. Magic instruc-
tions are valid instructions for the simulated machine that never
occur in normal code. They are detected by the simulator and may
be used to trigger events. Magic instruction may be inserted into
the high-level language or assembly source code of an application,
controlling whether CETA’s Simics module traces or ignores com-
munication. This enables users to focus CETA’s communication
graph extraction on particular regions of code.

4. CETA EVALUATION
In Section 2, we used a number of graphs to illustrate the opera-

tion of CETA. These examples were intentionally kept small to ease
explanation. In this section, we present a run-time communication
graph automatically extracted from the MPGenc benchmark. In
addition, statistics are provided for other applications in the ALP-
Bench benchmarks suite [12]. For example, the number of vertices
are reported in order to illustrate the use of CETA on substantial
multithreaded applications and point out some of the information
that it can provide to synthesis algorithms and designers.

1.1040

2.1041

385

2.1039

704

1.1039

36

2.1040

1734

0.1039

1

3.1040

4

4.1039

642

3.1039

4.1040

409

3.1041

396665

5.1042

108612774

5.1040

337

4.1041

10644

6.1044

117

6.1039

609

6.1045

164

6.1040

841434 723938

6.1042

209

5.1041

4 12 164

5.1045

529417

5.1044

140105 88

5.1039

154 1055190677

7.1039

1248

7.1047

2106

7.1040

29773362 24 1966 22903106

6.1041

3119 1936 40

6.1047

4128 253

8.1050

4

8.1042

9.1050

24784

8.1039

89632

8.1044

2840

8.1040

1088

9.1039

10.1040

4

11.1039

957

10.1050

144

11.1040

156

10.1041

32 16

10.1047

87780

10.1045

2152

10.1039

1165

12.1040

145

13.1052

2404

12.1042

24

12.1045

33008

12.1044

8217

12.1041

8

12.1039

135427

14.1049

113

14.1040

229

13.1050

132

13.1042

74433

13.1041

17187

13.1040

2715

13.1039

170059 90

15.1040

16

15.1050

242 1225

14.1050

237

14.1042

6200

14.1041

4

14.1044

720

14.1052

20

14.1039

84 36939

16.1040

88

15.1049

6

15.1039

56

17.1054

2919

16.1050

129

16.1041

36

16.1047

49154

16.1045

2632

16.1049

27

16.1052

16

16.1039

222734

18.1048

133

18.1039

3439

18.1040

241

17.1050

16

18.1049

36 339224

17.1042

172832

17.1041

49620 448

17.1040

1376493 2883

17.1045

72

17.1044

1073

17.1049

55441826

17.1048

124 3648290

17.1052

3547

17.1039

2484110477445

17.1047

24

19.1040

72

19.1039

6 88 60631617

18.1041

28 76

18.1047

3305

18.1054

13744

20.1040

109

20.1039

269

19.1052

8

19.1047

11712

19.1049

10

19.1054

7520

21.1039

82

20.1049

5

20.1047

4896

20.1054

864

22.1040

4

22.105022.1039

Figure 7: Portion of directed acyclic communication graph for ALPBench MPGenc.

Figure 7 illustrates a portion of the directed acyclic communi-
cation graph produced by CETA for the MPGenc benchmark in
the ALPBench benchmarks suite. Each node is labeled with its

corresponding temporal phase and PID. For example, 1.1040 is
Step 1 for PID 1040. In total, we used 30 phases for the MPGenc
phase partitioning, each of which was 1,000,000 CPU cycles long.

Table 2: ALPBench Statistics Generated by CETA
File CPU Simulation

Applications Vertices size time time
(KB) (mins) (mins)

MPGenc 16 4.9 0.077 20
MPGdec 13 2.8 0.009 3
Tachyon 27 150 2.725 50
Sphinx3 34 5600 1.406 851
FaceRec 3 380 35.073 5060

In Figure 7, we show only 23 temporal phases due to space con-
straints. Compile-time parameters were chosen to allow MPGenc
to use eight threads.

The graph in Figure 7 starts from PIDs 1039 and 1040: the main
thread and the master thread. These threads communicate heav-
ily with newly-created threads via shared memory. For example,
PID 1050 is created in Step 8 and receives a high volume of data
from the main thread, as well as other threads. During Step 9 the
main thread receives no data because it is waiting for the other
threads to complete local computations. In Step 11, after these local
computations are finished, a large volume of data flows from other
threads to the main and master threads. This results from the main
and master threads reading the data computed by other threads.

CETA’s main memory requirements are the result of the two
Hash Map tables described in Section 3.3. CETA requires approx-
imately eight bytes of memory for every unique physical address
written during the simulation of an application. For MPGenc and
Tachyon, the total memory required is approximately 246 MB and
2.87 GB, respectively.

In addition to communication patterns, CETA can also extract
other information. Table 2 shows the number of vertices, the size
of output file containing PID-to-PID dataflow information, the CPU
time required from the viewpoint of the simulated application, and
the actual time required for simulation for a number of bench-
marks in the ALPBench suite. We used 1,000,000 CPU cycles
as the temporal phase duration. The number of vertices is the
number of the threads. This number is influenced by the ALP-
Bench NUM THREADS variable, which allows a user to specify
the number of threads used by the benchmark applications. A
NUM THREADS value of eight was used for all benchmarks in Ta-
ble 2. The sizes of the PID-to-PID dataflow files range from 2.8 KB
to 306 KB. The time needed to transform output file into DOT for-
mat, and translate between graph formats, is less than two seconds
for all applications. Simulation time is reported for CETA running
on a 1 GHz AMD Sempron with 1 GB of RAM.

CETA is based on instruction-level simulation. This has some
advantages, e.g., non-intrusiveness and no requirement for special-
purpose hardware. However, there are also disadvantages. CETA
faces the same simulation time problems as the host instruction-
level simulator. When analyzing long-running applications, users
of CETA can sample by enabling and disabling CETA during simu-
lation using either magic instructions or Simics commands, or sim-
ply tolerate long simulation time for some applications.

In summary, CETA is capable of automatically extracting com-
munication graphs from large multithreaded applications, e.g., MP-
Genc, MPGdec, Tachyon, and Sphinx3.

5. CONCLUSIONS
This article has presented CETA: a software package that au-

tomatically extracts communication graphs from threaded applica-
tions. CETA is composed of an instruction-level processor sim-
ulator module and a number of graph transformation scripts. It
currently supports the analysis of applications for which either
the source code or executables are available. The current release
supports extraction of communication graphs from multithreaded
Linux applications running on the Intel x86 architecture. CETA
includes transformation routines to produce graphs suitable for
a number of purposes, ranging from application optimization, to

multiprocessor synthesis, to developing thread assignment poli-
cies. It has been used to automatically extract runtime commu-
nication graphs from a number of multithreaded applications in
the ALPBench benchmark suite. CETA is freely available for
academic and non-profit use at http://www.eecs.northwestern.edu/
˜dickrp/projects.html.

6. REFERENCES
[1] “AM”. Finding out which process is running on top of an OS.

Posting to Simics user’s forum at http://www.simics.net.

[2] CHEN, D.-K., SU, H.-M., AND YEW, P.-C. The impact of
synchronization and granularity on parallel systems. In Proc. Int.
Symp. Computer Architecture (May 1990), pp. 239–248.

[3] COUMERI, S. L., AND THOMAS, D. E. A simulation environment
for hardware-software codesign. In Proc. Int. Conf. Computer
Design (Oct. 1995), pp. 58–63.

[4] DICK, R. P., RHODES, D. L., AND WOLF, W. TGFF: Task graphs
for free. In Proc. Int. Wkshp. Hardware/Software Co-Design (Mar.
1998), pp. 97–101.

[5] GANSNER, E., KOUTSOFIOS, E., AND NORTH, S. Drawing graphs
with dot. Tech. rep., AT&T Bell Labs, Feb. 2002.

[6] GURUMURTHI, S., SIVASUBRAMANIAM, A., IRWIN, M. J.,
VIJAYKRISHNAN, N., KANDEMIR, M., LI, T., AND JOHN, L. K.
Using complete machine simulation for software power estimation:
The SoftWatt approach. In Proc. Int. Symp. High Performance
Computer Architecture (Feb. 2002), pp. 141–150.

[7] HU, J., AND MARCULESCU, R. Energy-aware mapping for
tile-based NoC architectures under performance constraints. In Proc.
Asia & South Pacific Design Automation Conf. (Mar. 2003),
pp. 233–239.

[8] KIANZAD, V., AND BHATTACHARYYA, S. S. CHARMED: A
multi-objective co-synthesis framework for multi-mode embedded
systems. In Proc. Int. Conf. on Application-Specific Systems,
Architectures and Processors (Sept. 2004), pp. 28–40.

[9] KIRSCHBAUM, A., BECKER, J., AND GLESNER, M. Run-time
monitoring of communication activities in a rapid prototyping
environment. In Proc. Int. Wkshp. Rapid System Prototyping (June
1998), pp. 52–57.

[10] MAGNUSSON, P. S., DAHLGREN, F., GRAHN, H., KARLSSON,
M., LARSSON, F., LUNDHOLM, F., MOESTEDT, A., NILSSON, J.,
STENSTRÖM, P., AND WERNER, B. SimICS/sun4m: A virtual
workstation. In Proc. USENIX Conf. (June 1998).

[11] PRAKASH, S., AND PARKER, A. SOS: Synthesis of
application-specific heterogeneous multiprocessor systems. J.
Parallel & Distributed Computing 16 (Dec. 1992), 338–351.

[12] SASANKA, R., ADVE, S. V., CHEN, Y.-K., AND DEBES, E. The
energy efficiency of CMP vs. SMT for multimedia workloads. In
Proc. Int. Conf. Supercomputing (June 2004).

[13] SCHMITZ, M. T., AL-HASHIMI, B. M., AND ELES, P. Iterative
schedule optimization for voltage scalable distributed embedded
systems. ACM Trans. Embedded Computing Systems 3, 1 (Feb.
2004), 182–217.

[14] SIMUNIC, T., BENINI, L., AND DE MICHELI, G. Cycle-accurate
simulation of energy consumption in embedded systems. In Proc.
Design Automation Conf. (June 1999), pp. 867–872.

[15] VALLERIO, K. S., AND JHA, N. K. Task graph transformation to
aid system synthesis. In Proc. Int. Conf. on Circuits & Systems (May
2002), pp. 695–698.

[16] VETTER, J. Dynamic statistical profiling of communication activity
in distributed applications. In Proc. Int. Conf. on Measurement and
Modeling of Computer Systems (June 2002), pp. 240–250.

[17] XU, Z., R.LARUS, J., AND MILLER, B. P. Shared-memory
performance profiling. In Proc. Symp. on Principles and Practice of
Parallel Programming (June 1997), pp. 240–251.

[18] YANG, P., WONG, C., MARCHAL, P., CATTHOOR, F., DESMET,
D., VERKEST, D., AND LAUWEREINS, R. Energy-aware runtime
scheduling for embedded-multiprocessor SOCs. IEEE Design & Test
of Computers 18, 5 (Sept. 2001).

[19] YU, Y., AND PRASANNA, V. K. Energy-balanced task allocation
for collaborative processing in networked embedded systems. In
Proc. Conf. on Language, Compiler and Tool Support for Embedded
Systems (June 2003).

