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Abstract—Running is one of the most popular sports with hundreds of millions of participants worldwide. Good running form is the key
to fast, efficient, and injury-free running. Existing kinematic analysis technologies, such as high-speed camera systems, are expensive,
difficult to operate, and exclusive to sports physiology laboratories and elite athletes. Miniature MEMS-based motion sensors enable
portable high-precision kinematic analysis, but suffer from high energy consumption hence short battery lifetime, especially for
continued online analysis for running. This paper presents Gazelle, a wearable online analysis system for running that is compact,
lightweight, accurate, and highly energy efficient; intended for runners of all levels. To enable long-term maintenance-free mobile
analysis for running, Sparse Adaptive Sensing (SAS) is proposed, which selectively identifies the best sampling points to maintain high
accuracy while greatly reducing sensing and analysis energy overheads. Experimental results demonstrate 97.7% accuracy with
76.9% to 99% reduced energy consumption (83.6% average reduction under real-world testing) – a one-order-of-magnitude
improvement over existing solutions. SAS enables > 200 days of continuous high-precision operation using only a coin-cell battery.
Since 2014, Gazelle has been used by over 100 elite and recreational runners during daily training and at top-level races like the Kona
Ironman World Championships and New York Marathon.

Index Terms—Wearable technology, energy-efficient analysis, sparse adaptive sensing, running form analysis.
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1 INTRODUCTION

Running is the number one participatory sport. It is1

estimated that there are over 200 million regular runners in2

the world [1], [2]. Runners have a yearly injury rate of 50%–3

70% [3]. There is a consensus among physiologists that poor4

running form has a major impact on injury rates. Analyzing5

and improving running form can reduce injury rate and can6

also help runners to improve performance.7

Sports physiologists and coaches have studied running8

form for over a century [4]. Quantitative assessment of9

running form is mostly constrained to the laboratory en-10

vironment. Sports physiology labs are commonly equipped11

with high-speed video cameras. To perform a test, markers12

are attached to various reference points on the runner’s13

body. Calibration while standing is then performed. The test14

subject finally runs on a treadmill, while the 3D positional15

trajectory of each marker is determined over time [5]. This16

type of analysis has been limited to small-scale research17

studies and the support of elite athletes, due to the high18

equipment cost, the need of a special laboratory environ-19

ment, and the lengthy setup and post processing time. The20

data collected is of limited time duration and is collected in a21

static and controlled environment. Long-term running form22

effects, such as what occurs over the course of training plans23
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lasting weeks and months, and effects due to a runner’s 24

negotiation of natural outdoor terrain and weather are not 25

captured. 26

Economical MEMS inertial measurement units (IMUs), 27

such as accelerometers and gyroscopes, are widely used 28

in mobile phones and are able to accurately sense mo- 29

tion, tracking the acceleration, velocity, and position of the 30

human body. These technologies enable low-cost wearable 31

kinematic-analysis [6], [7], [8], [9]. When paired with wire- 32

less data links, such as Bluetooth Low Energy, IMU sensor 33

platforms enable real-time feedback to the user, allowing 34

runners to learn from the result of form changes in-situ and 35

on-the-fly. However, it is challenging to implement compact, 36

accurate IMU-based kinematic analysis systems for running 37

that both work in realtime and have long battery lifetimes. 38

Energy efficiency is therefore a foremost concern for 39

wearables as 1) their compact form factors leave little space 40

for large batteries, and 2) users are not accepting of wear- 41

able devices needing frequent recharging. Compared with 42

mobile phones, which are typically equipped with batteries 43

storing thousands of mAh of energy, the batteries used 44

in wearables generally only have tens of mAh to a few 45

hundred mAh of energy capacity. In addition, while people 46

typically charge their smart phones everyday, the expected 47

battery lifetime for wearables ranges from weeks to months. 48

For example, running foot pods now in the marketplace 49

(primarily measuring a runner’s speed and distance run) 50

are simplistic in operation and work for one year without 51

recharging. Users attach them to the shoe laces, and do not 52

need to worry about them until it is time to replace the shoes 53

themselves. The expectation of users has already been set. 54

The new device we build must adhere to this standard or be 55

rejected by users. Overall, the energy budget for wearables 56
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Fig. 1: Power consumption of MEMS IMU sensors: ac-
celerometer, gyroscope, and low-power accelerometer cur-
rents are shown across frequency and operational mode.

is orders of magnitude smaller than that of mobile phones.57

The energy consumption of mainstream economical58

MEMS IMUs sensors, although appropriate for mobile59

phones, is not suitable for ultra-compact wearables. Specif-60

ically, economical MEMS IMUs sensors have high active61

and/or idle currents. For instance, mainstream MEMS gyro-62

scopes have active currents in the mA range, which would63

limit the battery lifetime of a wearable to a few days.64

More importantly, the power consumption of MEMS IMUs65

sensors is a function of sampling rate. As shown in Fig. 1, the66

active current of an accelerometer may increase by over an67

order of magnitude at high sampling rates. High-precision68

kinematic analysis potentially requires a high data sampling69

rate, imposing high computation and energy overheads; this70

is the primary barrier to wearable devices supporting high-71

precision running form analysis. There is need for energy-72

efficient sensing and analysis solutions to accommodate eco-73

nomical MEMS IMUs sensors technologies, yet providing74

high-precision running form analysis at runtime.75

This paper presents Gazelle, a wearable kinematic analy-76

sis system with the goal of delivering both short and long77

term quantitative understanding of personal running form78

to all runners, helping people run faster, longer, and safer.79

Gazelle is compact in size, lightweight, and equipped with a80

new sparse adaptive sensing (SAS) algorithm, which utilizes81

the strengths of a low power and a high power accelerome-82

ters, greatly reduces data sensing and analysis overhead, yet83

maintains high running form analysis accuracy. Gyroscope84

is not used in the SAS algorithm due to its infeasible long85

startup time for intra-stride adaptive sensing. We can solve86

this problem by using inter-stride adaptive sensing for gy-87

roscope and we have achieved significant energy reduction88

with high running metric accuracy, however, this beyonds89

the scope of this work and hence is not included in this90

paper.91

The proposed SAS algorithm is motivated by the fact that92

runners tend to maintain a consistent running form across93

many strides, so that sparse sensing at lower sampling94

rates can still capture the targeted running form metrics.95

Furthermore, the sparse sensing process can be adaptive,96

i.e., we can vary the data sampling rate within a detected97

stride by predicting where the critical points exist in time,98

further reducing the number of samples needed for accurate99

analysis. Our experimental study shows that SAS can reduce100

the data sensing and analysis overhead, hence the energy101

consumption, by 76.9% while maintaining 97.7% accuracy. 102

This allows Gazelle to have a small form factor, with a total 103

weight of less than 8 grams, yet offering over 200 days of 104

use on a standard coin-cell battery. 105

This paper makes the following contributions: 106

• The design of Gazelle, a wearable system that is com- 107

pact in size, lightweight, and highly energy efficient 108

for long-term, online running form analysis; 109

• The design of the sparse adaptive sensing (SAS) al- 110

gorithm, which exploits the variability of the running 111

signal to sample adaptively in time, thus reducing 112

energy consumption yet still maintaining high accu- 113

racy; 114

• Real-world evaluation using in-lab experiments and 115

pilot studies with runners during day-to-day training 116

and racing, including our study of eight top profes- 117

sional and amateur athletes using Gazelle during the 118

Kona Ironman World Championship race. 119

The rest of the paper is organized as follows. Section 2 120

reviews prior work. Section 3 presents an overview of 121

the Gazelle system. Section 4 validates our running form 122

analysis approach as compared with a laboratory kinematic 123

analysis system. Section 5 describes our SAS algorithm. 124

Section 6 presents the experimental results and pilot study 125

results. Finally, Section 7 concludes the work. 126

2 RELATED WORK 127

Sports physiologists and coaches have long been study- 128

ing running form and its impact on running performance 129

and safety. High-speed video camera systems and floor- 130

mounted force plates have been the de-facto equipment 131

in sports physiology laboratories and have effectively sup- 132

ported running kinematic research [5], [10], [11], [12], [13], 133

[14]. The limitations of such systems include high cost, time- 134

consuming operation, and their use is confined to the indoor 135

lab-testing scenario. Major sports brands have also devel- 136

oped pedometer-based wearable solutions to help people 137

run better [15], [16], [17], [18]. Gazelle offers longer battery 138

lifetime with much more detailed and comprehensive run- 139

ning form analysis. 140

Recently, researchers have been using wearable sensing 141

technologies to facilitate in-lab running kinematic analysis 142

or out-of-lab studies [6], [7], [8], [19], [20], [21], [22]. Several 143

wearable kinematic analysis prototypes have been devel- 144

oped using IMUs. These projects mainly used the wear- 145

able devices for data collection for offline analysis. There 146

were few studies investigating the power consumption of 147

an IMU-based kinematic analysis system, which showed 148

limited battery lifetime of only a few days [8]. In the 149

general motion or activity sensing area, there exists a lot of 150

research on the problem of energy management [23]. There 151

are mainly two categories of power saving methods: sensor 152

duty-cycling and collaborative sensing with multiple sen- 153

sors [24], [25], [26], [27]. For example, in the mobile sensing 154

framework designed by Wang et al [23], only a minimum set 155

of sensors were powered and appropriate sensor duty cycles 156

were used to significantly improve device battery life. Ganti 157

et al and Zhu et al also utilized sensor duty-cycle to minimize 158

power consumption by detecting the active and idle state of 159
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user [28], [29]. In the E-Gesture work done by Park et al,160

the authors proposed a collaborative sensing technique that161

used accelerometer and gyroscope based gesture detectors,162

and the gyroscope detector was only activated when a valid163

gesture was detected by the accelerometer detector to reduce164

energy consumption [30]. In our work, besides leveraging165

those power saving techniques, we also propose a sparse166

adaptive sensing algorithm with the collaboration of two167

accelerometers to reduce the sensor power consumption168

during active mode. Although our method is tuned for169

online running form analysis, it can also be applied to other170

sensing fields.171

In terms of sparse or adaptive sampling algorithms at172

signal level, various model-based theoretical analysis has173

been conducted in signal processing and wireless commu-174

nication [31], [32], [33], [34], [35]. These work utilized the175

sparsity of the signal, and the local signal time-frequency176

variance to minimize sampling overhead. For example,177

compressed sensing [31], [32], [33] does sparse, random178

sampling based on the sparsity of a signal in a sparse179

domain (e.g., frequency domain) though the signal may not180

be sparse in the time domain. As a result, though these work181

were used in wearable sensing devices, only the sensing part182

can be executed on the wearable device, whilst the sampled183

data must be sent out to mobile phones or PCs with the184

high computing capability needed for reconstruction and185

analysis. The authors of [34], [35] proposed a time-domain186

adaptive sampling framework to predict the next sampling187

point based on historical sampled data and therefore reduce188

the power overhead for signal reconstruction. However,189

though running is a relatively consistent motion from stride190

to stride, the in-stride signal is non-deterministic, changes191

quickly, and varies across runners. It is therefore not practi-192

cal to build a generic running signal model to predict future193

samples.194

To the best of our knowledge, Gazelle is the first wear-195

able solution for online running form analysis with a pri-196

mary focus on energy optimization driven by adaptive de-197

tection and consideration of the repetition and predictability198

of human running. Gazelle works in realtime out in the199

real world, and its performance and energy savings have200

been demonstrated through extensive in-lab experiments201

and outdoor use by real runners.202

3 GAZELLE SYSTEM DESIGN203

The Gazelle wearable system architecture is illustrated in204

Fig. 2. It consists of (1) a system-on-chip with a 16 MHz low-205

power ARM Cortex-M0 and BLE/ANT+ wireless interface,206

Gyro.
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Fig. 2: The Gazelle wearable sensor and system architecture.

Fig. 3: The example chest worn usage scenario of the Gazelle
mobile running analysis system.

(2) a 9-axis MEMS IMU suite with high-precision, high- 207

power accelerometer (HHA), and gyroscope, (3) a stan- 208

dalone ultra-low-power, low-precision accelerometer (LLA), 209

(4) an ultra-low-power watchdog timer, (5) a system power 210

management unit, and (6) a standard CR2032 225 mAh coin- 211

cell battery. 212

With a form factor of 2 cm×3 cm×1 cm and less than 213

8 grams of total weight, Gazelle can be easily worn on 214

different parts of a user’s body, such as the chest, ankle, 215

foot, or elsewhere. As shown in Table 1 below, depending 216

on the specific worn body location, different running met- 217

rics can be obtained. Gazelle’s wireless interface, enables 218

communication with a sport watch or mobile phone, which 219

can provide voice or visual feedback as illustrated in Fig. 3. 220

3.1 Hardware 221

Processing and Communication: With form factor being a 222

primary design driver, minimizing PCB size and power con- 223

sumption is a first order consideration in Gazelle’s hardware 224

design. The nRF51422 is a System-on-Chip (SOC), equipped 225

with a 32-bit ARM Cortex-M0 CPU and a 2.4 GHz ultra-low 226

power RF front end. The RF front end supports concurrent 227

Bluetooth Low Energy (BLE) and ANT+ protocol operation. 228

The nRF51422 allows on-board data processing and enables 229

multi-platform (e.g., ANT+ Sport Watches & BLE Mobile 230

Phones) data sharing. In addition, the nRF51422 provides a 231

flexible power management unit that can be used to further 232

minimize power consumption. For example, depending on 233

the user’s usage pattern, Gazelle can switch between differ- 234

ent states (e.g., idle or active). 235

Sensing: Measurement timing resolution (i.e., accuracy) 236

and flexible sample rate control (i.e., power savings) are the 237

two main driving factors in the design of the sensing hard- 238

ware. Based on our studies of runners’ walking and running 239

signals, the maximum running acceleration can reach 16 g, 240

which occurs when the foot strikes against the ground. We 241

chose the MPU9250 IMU as the main motion sensing unit 242

because it is compact yet meets Gazelle’s sensing precision 243

requirements. The MPU9250 includes an accelerometer and 244
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TABLE 1: Key Running Form Metrics

Metric Definition Chest Hip Foot Ankle Wrist

Stride Time (ST) Duration of a stride Y Y Y Y Y
Ground Contact Time (GCT) Duration foot is in contact with ground Y Y Y Y N
Vertical Oscillation (VO) Amount of bounce up and down Y Y N N N

a gyroscope, supporting flexible individual sensor mode se-245

lection (e.g., standby, on/off), and quick adaption to changes246

in sensor sampling rate. However, one drawback of the247

MPU9250 IMU is the high power consumption, e.g., 400µA248

for the accelerometer in normal mode. Therefore, we added249

an ultra low power, lower accuracy accelerometer whose250

power consumption is two orders of magnitude less than251

that of the MPU9250 IMU. The ADXL362 (3µA at 400 Hz252

and 1.1µA motion activated wake-up mode) is used to de-253

tect user status and running form changes. The information254

gathered from the ADXL362 drives the configuration of the255

high power IMU. This control process is discussed in more256

detail in Section 3.2 and Section 5.4.2.257

In addition to processing, sensing, and communication,258

24/7 reliable operation is needed. Most of the time the sys-259

tem is idle in the OFF mode, and it continuously monitors260

the user’s motion to trigger system wakeup. The nRF51422261

has an internal watchdog timer, but based on our testing,262

it was operational only in the higher current ON mode.263

Therefore, an external ultra low power 100 nA watchdog264

timer, the PCF2123, is incorporated to ensure system health265

while keeping accurate system time.266

3.2 System Workflow267

Gazelle’s software is built on top of the nRF51422’s wireless268

protocol stack and SDK, taking less than 35 KB of flash269

memory. The software enables microsecond-resolution coor-270

dinated event-driven streaming operation, including system271

model checking, error handling, the operations of sensors,272

data processing, data storage, and wireless communication.273

The Gazelle IMUs have built-in features to detect mo-274

tion events, freeing the microprocessor from needing to ac-275

tively read and process sensor data. For example, the ultra-276

low-power, lower-accuracy accelerometer ADXL362 used in277

Gazelle can sample data and alert the microprocessor only278

when the acceleration has exceeded a predefined threshold279

for a predefined length of time. The microprocessor can280

keep track of time while in OFF mode between interrupts281

by reading the elapsed time of the watchdog timer. The282

microprocessor can dynamically change the threshold and283

time window in realtime. Taken together, an effective yet284

extremely low-power finite state machine classifier can be285

constructed. A simple rule-based approach can be used to286

classify user motion activity. To classify a walking/running287

pattern, the microprocessor can first configure the sensor to288

interrupt on a high-acceleration event, such as the impact289

due to a user’s ground strike. Then, the microprocessor can290

reconfigure the sensor to look for a lower acceleration event,291

the toe-off, to occur after a minimum expected time dura-292

tion, i.e., the time the foot spends on the ground. Appro-293

priate time window durations and acceleration thresholds294

are tuned with walking/running datasets representing the295

majority set of walkers/runners.296

When the user’s running motion is detected by the sys- 297

tem’s low power classifier, the sensing hardware is reconfig- 298

ured to capture running signals in high resolution. Captured 299

running signal features are used to drive the sparse adaptive 300

sensing (SAS) algorithm which 1) drives real-time IMU 301

reconfiguration while running, and 2) constructs running 302

metrics on board. Gazelle’s wireless communication with 303

either a sport watch or mobile phone is also triggered which 304

allows the streaming of computed running form results to 305

the user for on-the-fly feedback and post-run analysis. 306

The rest of the paper will focus on the proposed SAS al- 307

gorithm to enable energy-efficient, high-resolution running 308

form sensing and analysis. 309

4 MOBILE RUNNING ANALYSIS 310

Kinematic analysis is used to quantitatively assess human 311

locomotion. Running and walking motions are periodic. 312

Stride by stride, force is produced by multiple muscle 313

groups propelling the body forward and upward, while 314

maintaining body kinematic stability. Gait can be broken 315

down into a repetitive series of strides. A set of kinematic 316

metrics can be measured, and then the musculoskeletal 317

functions can be quantitatively evaluated. In this section, 318

we demonstrate that the Gazelle system can capture such 319

metrics for running with high accuracy when compared 320

with traditional laboratory high-speed video camera sys- 321

tems and force plates. We then motivate the sparse adaptive 322

sensing algorithm, by identifying those features intrinsic to 323

running that uncover opportunities for significant reduction 324

of energy consumption without a significant impact on 325

accuracy. 326

4.1 Gazelle Sensor Accuracy Validation 327

To verify the Gazelle accelerometer accuracy is sufficient for 328

running form analysis in the field, comparative experiments 329

were conducted in a physiology laboratory equipped with 330

a Vicon camera system and a treadmill instrumented with 331

force plates. The Vicon system consists of an array of 8 high 332

speed, high resolution cameras placed in a ring to fully 333

encircle the treadmill and runner under test. At multiple 334

biometric landmarks, e.g. the ankle, knee, and chest, the 335

runner was equipped with an infrared reflector, and a 336

Gazelle device. 337

In each experiment, Gazelle’s high power accelerometer 338

was sampled at 200 Hz while the Vicon cameras captured 339

images at 200 fps and the force plate system ran at 1 kHz. 340

Among the running metrics listed in Table 1, ST, GCT, and 341

VO were each computed from raw Gazelle accelerometer 342

data. To obtain ground truth for these metrics, data from 343

the Vicon cameras and force plates system were processed 344

as follows. Vertical oscillation was measured by subtracting 345

the low to high points of the infrared reflector located 346
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Fig. 4: Running stride acceleration from chest and vertical
height.

on the runner’s chest within each stride. Ground contact347

time was measured by computing the duration between348

foot touchdown and toe-off events. Touchdown and toe-off349

events were determined from force plate data by applying350

a threshold of 50 N for touchdown and 10 N for toe-off to351

the vertical force. Threshold in this range is recommended352

throughout the kinematic analysis literature to eliminate353

false detections due to force plate noise [36], [37], [38]. Stride354

time was obtained by subtracting step-by-step foot touch-355

down event. To extract those corresponding metrics from356

Gazelle, touchdown and toe-off events are also utilized.357

Fig. 4 shows a sample running acceleration collected from358

chest and the vertical height from acceleration integration.359

Touchdown event in the acceleration is identified by the360

zero-crossing right before the impact peak, and toe-off is361

identified as the negative minima after impact peak. Hence,362

ST and GCT can be computed in the same way as those363

obtained from force plates. VO is the difference between364

maximal height and minimal height, while vertical height365

is obtained by double-integrating the acceleration in which366

gravity is removed by a high pass filter.367

The tests consisted of 9 different speed and cadence set-368

tings: the cross product of 5 mph, 6 mph, and 7 mph speeds369

with cadences of 160 spm, 175 spm, and 190 spm. Each set-370

ting was tested for 3 minutes in duration with the treadmill371

set for zero degrees of incline. In addition, a metronome372

was used during each test to assist runners to pace with373

the specified cadence. Gazelle was configured to stream raw374

data from HHA. In existing IMU-based kinematic analysis375

work [19], [20], [39], the IMU sampling rate can vary from376

100 Hz to 200 Hz, and at most 2000 Hz, depending on the377

degree of subtlety the running-form metric of interest has. In378

our experiments, the HHA was configured to a 200 Hz sam-379

pling rate in order to sufficiently capture the running-form380

metrics. To compare the running metrics computed from381

Gazelle data to those computed from the sports physiology382

laboratory camera system data, the definition of accuracy in383

Eqn. 1 was used.384

Accuracy =
1

N

N∑
i=1

(1− |M
i
G −M i

L|
|M i

L|
)×100% (1)

where M i
G and M i

L are the running metric for each385

stride i computed from data measured by Gazelle and 386

the laboratory camera system respectively. Fig. 5 shows 387

representative results from two study participants and Fig. 6 388

shows the error distributions from all speed settings for each 389

metric. This study demonstrates that when compared with 390

the high-speed motion capture system, Gazelle offers over 391

99%, 98%, 97% accuracy on average for ST, VO, GCT re- 392

spectively, at all nine test settings. The results from different 393

settings illustrate that under changes of speed and cadence, 394

Gazelle sensor has similar stability of system accuracy as the 395

laboratory-grade systems. 396

4.2 Opportunities for Energy Savings 397

Energy efficiency is of utmost importance when support- 398

ing online running analysis with wearable sensors. Having 399

demonstrated that Gazelle is able to achieve high accu- 400

racy with regular sampling of acceleration at 200 Hz, we 401

now consider techniques to further reduce the number of 402

samples, and therefore relax the energy requirement, while 403

maintaining high accuracy. The challenge ahead is to answer 404

the following two part question. How many samples are 405

minimally needed, and how to select the reduced sampling set? 406

Stride-by-stride Variance is Low: Running form typically 407

changes gradually over time. In real-world running, it is un- 408

necessary to provide user feedback stride-by-stride. Instead, 409

feedback on running metrics can be provided only when 410

a form change is detected, or at a user defined feedback 411

interval. Therefore, it becomes possible to characterize the 412

current running form by aggregating samples across many 413

strides. Per stride, we can significantly reduce the required 414

data sampling rate, thereby minimizing energy consump- 415

tion, yet still maintain high running form analysis accuracy. 416

This motivates our design of sparse sensing (SS), which 417

consists of three key steps: (1) detect running form changes 418

and group strides with similar running form together, (2) 419

sparsely sample data within the same stride group, and (3) 420

reconstruct a single stride from the sparse samples within 421

each stride group and compute the corresponding running 422

metrics. Since the strides within each group have high 423

similarity, the sparse samples we obtain from individual 424

strides allow reconstruction of one representative stride for 425

each stride group. Intuitively, there are two potential ways 426

to get the representative stride: (1) Combine all samples to 427

reconstruct a full stride signal and compute running metrics 428

from it; (2) Since the results demanded by users are running 429

metrics, metrics from selected strides in the same group can 430

be computed and then the average for each metric can be 431

calculated for user feedback. 432

Intra-stride Variance is Predictable: Given known contex- 433

tual information, such as the foot touchdown, the significant 434

event patterns within each stride are predictable in time. 435

From Fig. 4 in Section 4.1, we can see that, running acceler- 436

ation is a periodic signal, and within one period, the signal 437

changes sharply after the touchdown, while the change is 438

more gradual around toe-off. Therefore, more samples are 439

needed after touchdown, and less around toe-off, to capture 440

sufficient information. The sampling rate can be adapted 441

based on the variance pattern of running acceleration. Ad- 442

ditionally, as is illustrated in Fig. 4, to compute ST, GCT, key 443

points including consecutive zero-crossing points and min- 444

ima are necessary to be captured. Therefore, instead of using 445
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Fig. 5: Comparison of running form metrics captured by Gazelle and a physiology laboratory using Vicon camera and force
plates system.
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Fig. 6: Error distribution for ST, GCT, VO.

a uniform high frequency sampling rate, we can: (1) change446

the sampling rate adaptively by detecting and predicting the447

local variance within a single stride; and (2) based on this448

prediction adaptively sample only the points in time that449

are key to describe the selected running metrics of interest.450

The strategy for how to adaptively capture those key points451

varies based on a user’s metric selection. For example, VO452

is computed through double integration of the acceleration453

signal, presenting a more challenging scenario. Therefore,454

the tradeoff between lost accuracy and power savings from455

adaptive sampling when compared with the fully sampled456

acceleration signal must be identified and minimized per457

metric. This motivates our design of adaptive sensing (AS),458

and when combined with SS, sparse adaptive sensing (SAS),459

which consists of three key steps: (1) detect running form460

intra-variability, (2) adaptively adjust sampling rate based461

on the intra-variability, and (3) reconstruct a single running462

profile from the adaptive samples within a stride group and463

compute the corresponding running form metrics. Given464

the observations above, we conducted theoretical analysis465

to understand the feasibility and potential performance of466

both sparse sensing and adaptive sensing, which we present in467

Section 5. 468

5 SPARSE ADAPTIVE SENSING (SAS) 469

This section describes Gazelle’s sparse adaptive sensing 470

(SAS), used to enable accurate and long-term running anal- 471

ysis under day-to-day real-world conditions. Firstly, we ex- 472

amine the theory behind SAS, then detailing the implemen- 473

tation of SAS. Lastly, we report our experimental results, 474

showing that SAS maintains high accuracy and performance 475

even when delivering an energy savings of from 76.9% to up 476

to 99% over the continuous high frequency sampling case. 477

5.1 Sparse Sensing (SS) 478

Human running acceleration signal can be represented in 479

a sparse domain, e.g., using wavelets. Compressed sensing 480

(CS) [31] can be used to estimate the number of samples re- 481

quired to reconstruct the signal. For example, we can derive 482

the minimum number of samples required to ensure that the 483

running metrics computed from the reconstructed running 484

acceleration signal achieve ≥ 90% accuracy compared with 485

that computed from the 200 Hz uniformly sampled signal, 486

as follows. Given a signal S ∈ Rn, we can first decompose 487

it using wavelets basis Ψ = [ψ1ψ2...ψn], as shown in Eqn. 2. 488

S =
n∑

i=1

ciψi (2)

Assuming ΨS is k sparse, the number of samples required 489

for reconstruction satisfies the following inequality, 490

m ≥ C · µ2(Φ,Ψ) · k · log n, (3)

where C is a small positive constant and µ(Φ,Ψ) = 1. 491

Then, C · k · log n samples are required for perfect signal 492

recovery [31]. From our analysis, 5% (10 Hz on average) of 493
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the n samples need to be preserved to achieve 95% accuracy494

for ST, while around 25% (50 Hz on average) of the samples495

are needed to achieve 95% accuracy for GCT and VO. We496

therefore find theoretical opportunity to reduce sampling497

and processing energy overheads from 75% to 95% whilst498

maintaining 95% accuracy.499

5.2 Adaptive Sensing (AS)500

Measuring the intra-variability of a running stride is an501

essential step in sparse adaptive sensing. Intra-variability502

is a measure of the local variance of a signal. In order to503

quantify intra-variability for use to adaptively control sen-504

sor sampling rate, we use wavelets to analyze the adaptive505

sampling rate required for different segments inside a stride506

signal. As described in Section 5.1, running acceleration can507

be decomposed into wavelets. To estimate the sampling rate,508

the first step is decomposing the signal S as below to get509

the approximate and detailed wavelets coefficients clow and510

chigh [40], [41],511
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Fig. 7: Wavelet-based adaptive sampling rate estimation

clow = (S ∗ h) ↓ 2 (4)
512

chigh = (S ∗ g) ↓ 2 (5)

clow is then quantized in the range of 200 Hz to find adaptive513

sampling rates that correspond to the intra-variability of a514

running signal. Fig. 7 demonstrates a single stride accel-515

eration, the estimated adaptive sampling rates over time,516

and reconstructed signal based on linear interpolation. The517

sampled and reconstructed result can be seen to visually cor-518

respond to the dynamic changes across the original signal.519

When applied to our dataset, the wavelet-based sampling520

rate estimation shows that in order to achieve 90% accuracy521

for the running metrics computed from the reconstructed522

signal, on average, 80 Hz sampling rate is needed.523

5.3 Limitations of CS and Wavelets524

Our analysis from Sections 5.1 and 5.2 shows that both sparse525

sensing and adaptive sensing can be utilized to reduce the526

sampling rate yet still maintain high accuracy for running527

form analysis. However, CS and wavelets adaptive sensing528

are computationally intensive and not well adapted to the529

running signal.530

High computational complexity: According to [32], [33], the531

complexity for CS reconstruction ranges from O(M2N1.5)532

to O(log(k)MN). Although the sparse sampling can be 533

optimized to achieve only 5% CPU time for an 8 MHz 534

wireless sensor node, the reconstruction required 30% CPU 535

time on an iPhone 3GS with a 600 MHz processor [32], which 536

is computationally intensive and not suitable for low-power 537

CPUs. For runners who do not carry mobile phones, it is 538

impractical to use CS on an ultra-low power 16 MHz CPU 539

based wearable device. While the wavelets adaptive sensing 540

reconstruction process can be as simple as performing a 541

linear interpolation. To fit the restrictions of mobile kine- 542

matic analysis, we must further lower our reconstruction 543

complexity. 544

Poor real-time adaptability: Another limitation of CS or 545

wavelets adaptive sensing is when transforming the time 546

domain information to a sparse domain, both lack the ability 547

to adaptively sample data based on running variability and 548

the variability of a user’s on-the-fly selection of running 549

metrics of interest. For example, as demonstrated in Fig. 4, 550

when only GCT is of interest to a runner, CS and wavelets 551

adaptive sensing are not able to capture only the key points 552

for computing GCT to achieve optimal sampling rate. More- 553

over, wavelets adaptive sensing requires offline processing 554

with all signals known beforehand to build a sampling rates 555

model, which works for efficient data storage and transmis- 556

sion, but is not feasible to reduce samples in realtime and 557

hence to reduce power consumption from sensing. 558

Additionally, based on the analysis in Sections 5.1 559

and 5.2, the required sampling rate is not low enough to 560

achieve high energy reduction. Therefore, both methods are 561

not well suited for realtime adaption to a real world running 562

signal, presenting key barriers to their use in a power-aware, 563

low-profile wearable system. 564

5.4 SAS Algorithm Design 565

An alternative to overcome the limitations in Section 5.3 is 566

to conduct all the analysis in the time domain and design an 567

easily-configurable sensing algorithm which can adaptively 568

optimize power and accuracy across the running metrics of 569

interest. In this work, we have designed the SAS algorithm 570

using direct time domain analysis to avoid the high compu- 571

tation complexity of time-frequency domain transformation 572

and reconstruction processes, while preserving real time 573

adaptivity to different running metrics, thus enabling a 574

novel and highly energy efficient long-term running form 575

analysis on the Gazelle wearable device. Fig. 8 shows the 576

overall SAS work flow. A zero-crossing (ZCR) detector and 577

a sampling rate predictor (SRP) are used together to control 578

HHA, and a linear interpolator is applied to reconstruct the 579

samples from the HHA. The detailed design and implemen- 580

tation process is described in the following sections.

LLA Signal ZCR 
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SR Predictor

HHA

SR Timing 
Logic

y1 : 1

y1 : 0

y2 : L

t i+1 
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x i+1 

Metr ics 
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Fig. 8: SAS flow chart. 581
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5.4.1 SAS Design582

The first question to tackle in the SAS flow is when to583

opportunistically acquire the next needed sample from the584

HHA. The largest time interval ti+1 between samples with585

the minimal loss in information is desirable. As mentioned586

earlier, the dependence lies on the variance pattern of the587

acceleration signal. The time interval can be chosen such588

that only the most critical points are captured for signal589

reconstruction. Thus we propose a method to determine an590

optimized ti+1. First, we assume there is a finite set of in-591

tervals {T1, T2, ..., Tl} to select from. Then, by constructing592

a projection from the predicted variance of the signal to the593

set of time intervals, the interval ti+1 can be determined. To594

predict which Tl should be used to acquire the next sample595

from the HHA, the local variance of the signal from the596

LLA, sampling at a higher frequency than the maximum597

HHA frequency, is utilized for prediction. To measure the598

LLA variance, three features are examined: (1) first-order599

difference (FOD), (2) slope ratio (SRO), and (3) second-order600

difference (SOD). FOD measures the sharpness of positive601

or negative slopes, SRO captures inflection points including602

local minima and maxima, and SOD estimates the slope rate603

of change. The FOD, SRO, and SOD features are computed604

as follows.605

FOD = xi − xj (6)
606

SR =
(xi − xj)/(i− j)
(xj − xk)/(j − k)

(7)

607

SOD = FOD(i)− FOD(i− 1) (8)

Fig. 9 shows all three features along with running accel-608

eration. FOD and SOD are sensitive to LLA acceleration609

when the foot is in contact with the ground, where most610

acceleration variance occurs. Additionally, we compared the611

standard deviation of FOD and SOD for the segment in612

each stride (between the two vertical dashed lines in Fig. 9)613

around toe-off events. Compared with SOD, FOD has higher614

standard deviation and hence more sensitive around toe-off615

events. Because FOD has less computation overhead and616

can cover those minima, maxima points that are primarily617

covered by SRO, FOD is preferred for driving the SR Predic- 618

tor. However, signal variance around zero-crossings is not 619

significant enough for FOD alone to predict critical samples; 620

the zero-crossing points are often missed. Thus the ZCR 621

Detector is added to augment the prediction. Combining 622

the ZCR Detector and SR Predictor, high accuracy for all 623

running metrics can be achieved. 624

Next, a set of proper sampling intervals, which can be 625

considered as the pseudo sampling frequencies, is deter- 626

mined for the HHA. Here we refer to the multiplicative 627

inverse of sampling intervals as pseudo sampling rates. This 628

is because in practice, an accelerometer sensor may not sup- 629

port the actual sampling rate needed. One-shot operation is 630

therefore utilized to attain the requisite pseudo sampling 631

rate. A similar approach is used in the work of Feizi et 632

al. [42], where the authors proposed the TANS with finite 633

sample rate (TFR) method. In their work, an offline electro- 634

cardiograph (ECG) signal was divided into three repeating 635

states, whereby each state was strictly assigned a minimally 636

needed sampling rate. TFR requires, for each state, a known 637

signal starting point and approximate number of samples 638

for each state. Although running acceleration and ECG 639

are both periodic, running acceleration has higher variance 640

from stride to stride when compared with beat to beat 641

variance in ECG. For example, higher sampling rate may 642

be required when a runner runs on a hard ground during 643

ground contact time, while a lower sampling rate may be 644

required when running on grass. Assigning a fixed sampling 645

rate to a fixed segment within a stride of running accelera- 646

tion, as done in TFR, limits the lowest sampling rate that 647

can be achieved and not well adapts to the stride by stride 648

running signal. Numerically, there are infinite combinations 649

of possible HHA pseudo sampling rates. However, based on 650

the target running signal, there are other further constraints: 651

(1) The minimal sampling rate needs to ensure at least one 652

sample can be obtained within a stride, and (2) the maximal 653

pseudo sampling rate cannot exceed the sensor’s maximal 654

sampling rate with the consideration of the HHA sensor’s 655

measured startup delay. With those constraints in the design 656

process, we further propose an empirical design criteria for 657

the SR Predictor: We must minimize the number of sampling 658

rates based on the patterns of the SR Predictor. For example, 659

the FOD feature shown in Fig. 9 has the following clear 660

patterns: (1) flat signal appearance and (2) dynamic signal 661

changes with high amplitude. Therefore in our experiments 662

in Section 6, two different boundary sampling rates are used. 663

With this criteria and constraints identified, a set of pseudo 664

sampling rates can be determined using the training data. 665

The resulting average pseudo sampling rate therefore must 666

satisfy the following equation: 667

s̄r ≤ (NTm
∪Nzcr ∪NTt

)∑N
i=1 STi

(9)

whereNTm is the number of samples obtained with minimal 668

interval Tm in the set {T1, T2, . . . , Tl}, and Nzcr is the 669

number of zero-crossing points. And, NTt is the number of 670

transitions between any two different consecutive intervals. 671

This augment to the SR Predictor design is based on the 672

assumption that when an interval transition occurs, the 673

samples close to this transition are important for describing 674

the signal. 675
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Fig. 10 demonstrates the reconstructed signals from the676

SAS algorithm as compared with the compressed sensing677

method. The original 200 Hz signal was reduced to an678

average of 30 Hz for both algorithms. As can be clearly679

observed in the figure, SAS outperforms CS with a lower680

mean squared error of 17.70. While CS can recover the681

overall shape and periodicity of the original signal, it does682

so with much lower signal to noise ratio. In Section 6.1,683

further comparison between SAS and CS are conducted.684

5.4.2 SAS Implementation685

As described in Section 3, Gazelle is equipped with a686

low-accuracy, ultra-low-power accelerometer (LLA) and a687

high-accuracy, high-power accelerometer (HHA). The LLA688

samples continually throughout a run. Even though the689

LLA suffers from high noise, it offers sufficient accuracy690

to continually detect the stride-by-stride timing structure691

and to estimate the similarity of running strides with low692

latency. Also, even though the LLA sensor cannot provide693

absolute accuracy for its acceleration measurement, velocity,694

or position related metrics, it offers sufficient relative accu-695

racy to detect changes of these metrics, and thus the change696

of running form.697

Algorithm 1 SAS Algorithm

1: levels{sampling rates look-up table}
2: maxSr{maximal sampling rate in levels}
3: preSr ← newSr{update previous sampling rate}
4: for all newSample from LLA do
5: if zero-crossing detected then
6: Get a sample from HHA
7: else
8: get recent three |fods|
9: fodMax← max(|fods|)

10: if fodMax > preMax{find maximal |fod|} then
11: preMax← (λ)× fodMax+ (1− λ)× preMax
12: end if
13: end if
14: newSr ← (fodMax/preMax)×maxSr
15: look up closest sampling rate in levels
16: if preSr 6= newSr then
17: if |lastHHA− curLLA| > thr then
18: Get a sample from HHA
19: end if
20: else
21: Sample with newSr
22: end if
23: end for

The LLA consumes 3µA and samples data at 400 Hz, in 698

order to detect zero-crossings and estimate sampling rate be- 699

forehand, which are used to notify the host processor of such 700

events. Although past work has shown lower sampling rates 701

can be sufficient for accurate kinematic analysis, sampling 702

the LLA at lower frequencies (1) negligibly improves battery 703

life (e.g., 1.8µA sampling at 100 Hz saves 0.5% of CR2032 704

capacity per 1000 hours of activity), and (2) reduces system 705

accuracy by increasing the latency to trigger the sampling of 706

the HHA. In order to ensure the HHA’s sampled data is able 707

to catch the acceleration feature detected by the LLA, the de- 708

lay from both the LLA trigger and the startup time from the 709

HHA must be lower than the sampled signal’s bandwidth 710

in Hz. From past work, a commonly used acceleration signal 711

sampling frequency for low-power kinematic analysis is 712

100 Hz. Therefore, a delay from acceleration feature to LLA 713

trigger to HHA sampling of 10 ms or less will lose minimal 714

fidelity. Due to this constraint, utilization of angular velocity 715

data sensed by a gyroscope is not usable in the adaptive SAS 716

algorithm as typically gyroscopes require 20 ms to 80 ms for 717

start up. One solution to utilize a gyroscope with reduced 718

power is by applying a constant duty-cycle. Due to space 719

constraints, we do not consider such use of the gyroscope 720

in this work. Operating the LLA at 400 Hz yields a 2.5 ms 721

sampling delay, leaving up to 7.5 ms for HHA start up 722

time to observe the 10 ms boundary. Therefore, we must 723

find an accelerometer which can satisfy the start-up time 724

constraint while maintaining high accuracy. While data from 725

the MPU9250 was used for the HHA during our algorithm 726

design, the high precision accelerometer from the MPU9250 727

has a maximal 25 ms startup time from sleep mode to active 728

mode, which would then violate this constraint under a 729

real-time implementation. Therefore the HHA used in the 730

pilot study, which provides “first sample correct” and “zero- 731

delay” capabilities, is the LSM6DS3 [43]. The LSM6DS3 was 732

measured to have a 2.38 ms delay from the start of SPI 733

configuration commands while in power down mode to the 734

first activated data ready interrupt signal, thereby meeting 735

the overall real-time 10 ms constraint for signal feature to 736

HHA sampling time delay interval. 737

The samples obtained by the LLA are then used to 738

detect zero-crossings and predict pseudo sampling rates 739

for this HHA used in our study. To achieve the adaptive 740

selection of pseudo sampling rates, the most recent three 741

consecutive absolute values of FOD are computed, and the 742

maximal absolute FOD value is scaled by a global maximal 743

absolute FOD. The scaled value is then used for looking 744

up a proper pseudo sampling rate or time interval, as 745

described in Algorithm 1. The HHA is then brought out 746

of the power down mode and configured for operation at 747

400 Hz, and the first available sample is then acquired from 748

HHA, achieving the selected pseudo sampling rate. The 749

pseudo sampling rate is again updated when the absolute 750

difference between the last HHA sample and current LLA 751

sample exceeds a threshold. This threshold is optional, and 752

only used when lower average sampling rate is necessary. 753

Setting the threshold to a low value can ensure key points 754

are captured while reducing redundant points. For example, 755

in Section 6.1, the threshold is set to 1.8m/s2. Additionally, a 756

low pass filter can be applied to the global maximal absolute 757

FOD to smoothly adapt to local changes in acceleration. 758
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Fig. 11: Running metrics accuracy comparison between CS and SAS.

0 50 100
Current Savings (%)

0

20

40

60

80

Sa
m

pl
es

 (
%

)

Runner 1

7 =
 77.26%

0 50 100
Current Savings (%)

0

20

40

60

80

Sa
m

pl
es

 (
%

)

Runner 2

7 =
 77.80%

0 50 100
Current Savings (%)

0

20

40

60

80
Sa

m
pl

es
 (

%
)

Runner 3

7 =
 78.34%

0 50 100
Current Savings (%)

0

20

40

60

80

Sa
m

pl
es

 (
%

)

Runner 4

7 =
 78.88%

0 50 100
Current Savings (%)

0

20

40

60

80

Sa
m

pl
es

 (
%

)

Runner 5

7 =
 74.24%

0 50 100
Current Savings (%)

0

20

40

60

80

Sa
m

pl
es

 (
%

)

Runner 6

7 =
 74.80%

Fig. 12: Distributions of sample-by-sample current savings
of adaptive SAS LLA + HHA sampling compared to con-
stant 200 Hz HHA sampling, across 30 minute running
sessions from six runners.

Algorithm 1 summarizes the full SAS procedure.759

Using the samples captured by our SAS algorithm, re-760

construction methods can be applied to recover the running761

profile to compute all the running form metrics. Specifi-762

cally, reconstruction is necessary because vertical oscillation763

double-integration of the single stride signal. In this paper,764

we choose linear interpolation as reconstruction method,765

which has low complexity, enabling on-board reconstruc-766

tion. Note that the LLA is also used to estimate stride-767

by-stride running form changes based on stride time, and768

this information is used to group similar strides together to769

further reduce sampling rate. For example, if every stride770

inside a group is close to the mean stride and runner does771

not require stride-by-stride feedback, essentially, only one772

running stride needs to be processed to provide the running773

form metrics. However, as we will show in Section 6.2,774

the actual amount of energy saving depends on a runner’s775

consistency, which varies by the experience and fitness of a776

runner.777

6 EVALUATION778

To evaluate the energy efficiency and accuracy of the Gazelle779

wearable system for online running analysis, we conducted780

both in-lab experiments of the SAS algorithm and in-field 781

pilot studies. 782

6.1 In-lab Experiments 783

For the in-lab experiments, we first compared the accuracy 784

of our proposed SAS algorithm with that of the compressed 785

sensing (CS). Although, due to the intensive computation 786

cost of CS, CS is not an optimal option for on-board sam- 787

pling rate reduction without sufficient hardware support, 788

CS is the leading approach to achieve high accuracy with a 789

low sampling rate. Thus, in this experiment, we primarily 790

compare SAS and CS from the perspective of reconstruction 791

accuracy. In the experiment, seven 30 minute-long running 792

datasets were recorded on an outdoor track. Each runner 793

wore a chest band with the Gazelle device attached to the 794

band in the center front location. In the test, both real- 795

time running metrics and raw acceleration samples col- 796

lected from HHA were streamed to a mobile phone for 797

post validation. The key running metrics: ST, GCT, VO 798

were computed as a comparative baseline from the raw 799

data sampled from HHA over the entire running test. To 800

determine the general trade-offs between sparse (adaptive) 801

sensing rates and energy savings, we computed the average 802

accuracy using stride-by-stride running form metrics, which 803

did not include the added benefits of grouping similar 804

strides together. The accuracy was defined in Eqn. 10. 805

Accuracyavg =
1

N

N∑
n=1

(1−
|Mn
{a} −M

n|
|Mn|

) (10)

where M{a} is the metric computed from either SAS or 806

CS resulted running signal,Mn is the metric computed from 807

full 200 Hz sampled running signal. n = 1, 2...N is the index 808

of each stride for a specific running metric. 809

For CS, the sampling rate was fixed for each experiment; 810

while for SAS, the sampling rate changed dynamically and 811

the average sampling rate was used for comparison. With 812

the results from Fig. 11, it can be referred that SAS out- 813

performs CS in term of achieving lower sampling rate with 814

sufficient accuracy, provide more potential to reduce energy 815

consumption either for online signal processing or wireless 816

transmission. Fig. 11 compares the accuracy between CS and 817

SAS for different running metrics under different sampling 818

rates of the HHA. We can see that SAS outperforms CS in 819

almost all the scenarios. For ST, GCT, and VO, an average 820

sampling rate of 25 Hz is sufficient to maintain higher than 821

99.0%, 98.6%, and 95.1% accuracy respectively, and this is 822
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Fig. 13: Bland-Altman plots for regular 25 Hz sampling and SAS algorithm.
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Fig. 14: Stride by stride performance.

sufficient for runners’ feedback. Compared with our SAS823

method, CS achieves comparable accuracy for stride time,824

but has worse performance for GCT and VO, and cannot825

obtain an average of 90% accuracy when the sampling rate is826

lower than 30 Hz and 40 Hz, respectively. The major reason827

is demonstrated in Fig. 10: CS has much lower signal to828

noise ratio, and therefore error is accumulated when aggre-829

gating the ground contact time, and as vertical oscillation830

requires double integration, error is further accumulated.831

We also conducted power modeling and analysis to832

determine the energy savings of the SAS approach as com-833

pared with the constant 200 Hz approach. Shown in Fig. 12,834

the current per sample was computed for SAS so we can835

compare the resulting dynamic sampling rate of the HHA836

and the static 3µA of the LLA. The average current per837

sample of the HHA can be computed as a combination838

of the current cost for a single conversion of the HHA839

in high-resolution mode (240µA) over the HHA start-up840

time, and the HHA power-down current cost (6µA) for the841

remainder of the sampled interval time for that sample.842

Overall, a average of 25 Hz sampling rate is required for 843

SAS to achieve greater than 97.7% accuracy for all running 844

metrics with over 76.9% energy savings. This represents 845

one order of magnitude improvement over existing wear- 846

able running analysis devices, while outperforming CS in 847

accuracy and achieving significantly lower computational 848

overhead by operating exclusively in the time domain. 849

To further validate the effectiveness of SAS algorithm at 850

25 Hz, we compared its performance with the regular 25 Hz 851

sampling approach. Fig. 13 and Fig. 14 demonstrates that: 852

(1) Regular 25 Hz sampling results in comparable average 853

accuracy compared with SAS algorithm at 25 Hz, however, 854

it has larger error range and its performance varies signifi- 855

cantly from stride to stride. (2) The regular 25 Hz sampling 856

method has more than 7% error in average for VO than SAS 857

algorithm. The reason is that regular 25 Hz sampling is not 858

able to capture most of minima or maxima at sharp transi- 859

tions. Thus, an adaptive, irregular sampling strategy like the 860

SAS algorithm we proposed is necessary to reduce energy 861

consumption while maintain high measurement accuracy. 862

In addition, in an actual usage scenario, runners may 863

have different demands of running metrics, thus the max- 864

imum energy savings can vary for different metric sub- 865

sets. For example, for stride time alone, the LLA active in 866

interrupt-only mode is sufficient to capture these metrics at 867

a 10 Hz sampling rate, and the energy savings can reach 868

99% compared with 200 Hz HHA. In future work, different 869

usage scenarios can be studied. As shown, different running 870

metrics require a different sampling rate to reach an accurate 871

enough measurement. Therefore SAS can be designed to 872

adapt to different sets of running metrics to further mini- 873

mize the power consumption under various usage cases. In 874

summary, our sparse adaptive sensing (SAS) algorithm is 875

energy-efficient and accurate for running form analysis and 876

feedback, and provide a solution for long term running form 877

study, and a potential guide for other similar applications. 878

Note that the accuracy and energy saving numbers 879

above are for stride-by-stride running form analysis. Fur- 880

ther sampling rate reduction can be achieved by grouping 881

strides with similar running profile, which depends on how 882

consistently the runner is running. Next, we further evaluate 883

the energy savings from runners with different experience 884

levels based on pilot studies in real-world running races. 885

6.2 Pilot Study 886

In addition to laboratory testing and outdoor track testing, 887

Gazelle was used in the Ironman World Championships in 888

October 2014 Kona, Hawaii, the world’s premier Ironman 889
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Fig. 15: Gazelle running analytics for top professional and elite triathletes at the Ironman World Championships in Kona,
HI.
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Fig. 16: Stride stability vs. energy savings for eight different
runners in the Kona Ironman World Championships.

race event. In Kona, Gazelle monitored the marathon seg-890

ments of two professional triathletes and six of the world’s891

best athletes in their age brackets. This section will focus892

on reporting and analyzing Gazelle’s results for the eight893

athletes from this race. The focus of this pilot study was894

two-fold: 1) to test consistency of the metrics derived from895

the Gazelle wearable under the energy savings with SAS896

achieved in real world running; and, 2) to understand897

Gazelle’s metrics’ overall usability in terms of running form898

information representation when compared across some of899

the world’s best triathletes under race conditions.900

Energy savings in real world running: Stride-by-stride901

running-form consistency affects the performance and the902

energy savings of SAS. As described in the previous section,903

across 10 runners data collected during in-lab experiments,904

an average of 25 Hz sampling rate was needed to achieve905

over 97% accuracy for all computed running form metrics.906

Running-form consistency varies among runners. Under the907

same stride time variance constraint, better running-form908

consistency leads to larger number of strides per group,909

hence lower data sampling rate and better energy savings.910

Fig. 16 shows the number of groups and the number of911

strides per group for each runner with 1% stride time912

variance. From this figure, Runner 1 shows the highest913

running-form consistency or minimal stride-by-stride vari-914

ance, which leads to the largest number of strides per group,915

hence the lowest data sampling rate (1 Hz), and therefore 916

largest energy savings (84.3%). On the other hand, Runner 7 917

shows the lowest running-form consistency, requiring the 918

highest average data sampling rate (5 Hz), and resulting 919

in the lowest energy savings (82.6%). Overall, an average 920

energy savings of 83.6% was achieved across these eight 921

runners. 922

TABLE 2: RunQuality scores vs race time

Runner RunQuality Race Time Level

Pro Male 90.3 2h:58m:58s 4
Am Male 1 85.6 3h:14m:12s 3
Pro Female 86.2 3h:21m:34s 3
Am Male 2 80.6 3h:41m:51s 2
Am Male 3 74.7 3h:41m:51s 2
Am Female 1 80.5 3h:52m:38s 2
Am Female 2 75.0 4h:07m:16s 2
Am Male 4 62.5 5h:02m:54s 1

Metric report consistency: Based on the high-level met- 923

rics shown Fig. 15, the averaged RunQuality scores for 924

all eight runners are summarized in Table 2 along with 925

each of their race completion times. It can be seen that 926

based on the race time, the runners can be classified into 927

4 run skill levels, and the RunQuality derived from the run 928

form metrics measured by Gazelle is highly consistent with 929

runners’ actual race results, as well as the associated energy 930

savings from Gazelle. This comparison serves to validate 931

the feasibility and methodology of Gazelle wearable under 932

real world use. The following equations describe the high- 933

level metrics, which are constructed post-race in terms of 934

Gazelle’s reported running metrics. 935

• Efficiency = 1
tair×pace , Efficiency estimates how 936

much energy is spent to propel the runner over the 937

distance traveled. 938

• Fatigue =
tground

tair
, Fatigue is an estimate of how tired 939

the runner is. 940

• Performance = Mean( tair

tground
), Performance is an 941

estimate for how much energy a runner is putting 942
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into the ground.943

• Consistency = StdDev( tair

tground
).944

Taken together, RunQuality is an aggregated measure945

of all the four high-level metrics described above. It is a946

simple unity weighted combination of the four, with the947

desirable set {Efficiency, Consistency, Performance} having948

positive unity weight and the undesirable set {Fatigue}949

having negative unity weight. The summation of the two950

sets together is a runner’s RunQuality metric.951

RunQuality = Efficiency + Consistency

+Performance− Fatigue

In the weeks following the Ironman World Championships952

at Kona, athletes and their coaches reviewed the running953

form metrics data that were generated by Gazelle. The954

feedbacks we received were consistent among most athletes955

and coaches that Gazelle was easy to use and the running956

form metrics were useful for both understanding the precise957

places in the race where unexpected events occurred and958

for further improvement of the athletes’ running form and959

racing strategy.960

7 CONCLUSIONS961

In this work, we have designed and developed Gazelle, a962

wearable system targeting long-term, online running form963

analysis. Gazelle leverages small economical sensors to en-964

sure low cost, compact form factor, and light weight. To965

tackle the challenges associated with the high energy con-966

sumption of high-precision motion sensing and analysis, we967

have developed an intelligent sparse adaptive sensing (SAS)968

and running form analysis solution, along with aggressive969

energy management techniques. Experiments using real-970

world running data demonstrate that, compared with uni-971

form sensing at 200 Hz, SAS can achieve 97.7% accuracy and972

76.9% energy saving with only an 25 Hz maximal sampling973

rate. As a result, together with the improvement in usable974

energy capacity due to lower average current draw, Gazelle975

can increase the battery life by one order of magnitude976

using a small coin-cell battery. Through our year-long pilot977

studies, Gazelle has been in use by over a hundred elite978

and recreational runners during day-to-day training and979

various racing events, with satisfactory results. Gazelle is980

in the process of being commercialized.981
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