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Abstract—Running is one of the most popular sports with hundreds of millions of participants worldwide. Good running form is the key

to fast, efficient, and injury-free running. Existing kinematic analysis technologies, such as high-speed camera systems, are expensive,

difficult to operate, and exclusive to sports physiology laboratories and elite athletes. Miniature MEMS-based motion sensors enable

portable high-precision kinematic analysis, but suffer from high energy consumption hence short battery lifetime, especially for

continued online analysis for running. This paper presents Gazelle, a wearable online analysis system for running that is compact,

lightweight, accurate, and highly energy efficient; intended for runners of all levels. To enable long-term maintenance-free mobile

analysis for running, Sparse Adaptive Sensing (SAS) is proposed, which selectively identifies the best sampling points to maintain high

accuracy while greatly reducing sensing and analysis energy overheads. Experimental results demonstrate 97.7 percent accuracy with

76.9 to 99 percent reduced energy consumption (83.6 percent average reduction under real-world testing)-a one-order-of-magnitude

improvement over existing solutions. SAS enables > 200 days of continuous high-precision operation using only a coin-cell battery.

Since 2014, Gazelle has been used by over 100 elite and recreational runners during daily training and at top-level races like the Kona

IronmanWorld Championships and New York Marathon.

Index Terms—Wearable technology, energy-efficient analysis, sparse adaptive sensing, running form analysis
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1 INTRODUCTION

RUNNING is the number one participatory sport. It is esti-
mated that there are over 200 million regular runners

in the world [1], [2]. Runners have a yearly injury rate of
50-70 percent [3]. There is a consensus among physiologists
that poor running form has a major impact on injury rates.
Analyzing and improving running form can reduce injury
rate and can also help runners to improve performance.

Sports physiologists and coaches have studied running
form for over a century [4]. Quantitative assessment of run-
ning form is mostly constrained to the laboratory environ-
ment. Sports physiology labs are commonly equipped with
high-speed video cameras. To perform a test, markers are
attached to various reference points on the runner’s body. Cal-
ibration while standing is then performed. The test subject
finally runs on a treadmill, while the 3D positional trajectory
of eachmarker is determined over time [5]. This type of analy-
sis has been limited to small-scale research studies and the
support of elite athletes, due to the high equipment cost, the
need of a special laboratory environment, and the lengthy
setup and post processing time. The data collected is of

limited timeduration and is collected in a static and controlled
environment. Long-term running form effects, such as what
occurs over the course of training plans lasting weeks and
months, and effects due to a runner’s negotiation of natural
outdoor terrain andweather are not captured.

Economical MEMS inertial measurement units (IMUs),
such as accelerometers and gyroscopes, are widely used in
mobile phones and are able to accurately sensemotion, track-
ing the acceleration, velocity, and position of the human
body. These technologies enable low-cost wearable kine-
matic-analysis [6], [7], [8], [9]. When paired with wireless
data links, such as Bluetooth Low Energy, IMU sensor plat-
forms enable real-time feedback to the user, allowing run-
ners to learn from the result of form changes in-situ and on-
the-fly. However, it is challenging to implement compact,
accurate IMU-based kinematic analysis systems for running
that bothwork in realtime and have long battery lifetimes.

Energy efficiency is therefore a foremost concern forwear-
ables as 1) their compact form factors leave little space for
large batteries, and 2) users are not accepting of wearable
devices needing frequent recharging. Comparedwithmobile
phones, which are typically equipped with batteries storing
thousands of mAh of energy, the batteries used in wearables
generally only have tens of mAh to a few hundred mAh of
energy capacity. In addition, while people typically charge
their smart phones everyday, the expected battery lifetime
for wearables ranges from weeks to months. For example,
running foot pods now in the marketplace (primarily mea-
suring a runner’s speed and distance run) are simplistic in
operation and work for one year without recharging. Users
attach them to the shoe laces, and do not need toworry about
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them until it is time to replace the shoes themselves. The
expectation of users has already been set. The new device we
build must adhere to this standard or be rejected by users.
Overall, the energy budget for wearables is orders of magni-
tude smaller than that of mobile phones.

The energy consumption of mainstream economical
MEMS IMUs sensors, although appropriate for mobile
phones, is not suitable for ultra-compact wearables. Specifi-
cally, economical MEMS IMUs sensors have high active
and/or idle currents. For instance, mainstreamMEMS gyro-
scopes have active currents in the mA range, which would
limit the battery lifetime of a wearable to a few days. More
importantly, the power consumption of MEMS IMUs sen-
sors is a function of sampling rate. As shown in Fig. 1, the
active current of an accelerometer may increase by over an
order of magnitude at high sampling rates. High-precision
kinematic analysis potentially requires a high data sampling
rate, imposing high computation and energy overheads;
this is the primary barrier to wearable devices supporting
high-precision running form analysis. There is need for
energy-efficient sensing and analysis solutions to accommo-
date economical MEMS IMUs sensors technologies, yet pro-
viding high-precision running form analysis at runtime.

This paper presents Gazelle, a wearable kinematic analysis
system with the goal of delivering both short and long term
quantitative understanding of personal running form to all
runners, helping people run faster, longer, and safer. Gazelle
is compact in size, lightweight, and equipped with a new
sparse adaptive sensing (SAS) algorithm, which utilizes the
strengths of a low power and a high power accelerometers,
greatly reduces data sensing and analysis overhead, yetmain-
tains high running form analysis accuracy. Gyroscope is not
used in the SAS algorithm due to its infeasible long startup
time for intra-stride adaptive sensing. We can solve this prob-
lem by using inter-stride adaptive sensing for gyroscope and
we have achieved significant energy reductionwith high run-
ning metric accuracy, however, this beyonds the scope of this
work and hence is not included in this paper.

The proposed SAS algorithm is motivated by the fact that
runners tend to maintain a consistent running form across
many strides, so that sparse sensing at lower sampling rates
can still capture the targeted running form metrics. Further-
more, the sparse sensing process can be adaptive, i.e., we
can vary the data sampling rate within a detected stride by
predicting where the critical points exist in time, further

reducing the number of samples needed for accurate analy-
sis. Our experimental study shows that SAS can reduce the
data sensing and analysis overhead, hence the energy con-
sumption, by 76.9 percent while maintaining 97.7 percent
accuracy. This allows Gazelle to have a small form factor,
with a total weight of less than 8 grams, yet offering over
200 days of use on a standard coin-cell battery.

This paper makes the following contributions:

� The design of Gazelle, a wearable system that is com-
pact in size, lightweight, and highly energy efficient
for long-term, online running form analysis;

� The design of the sparse adaptive sensing algorithm,
which exploits the variability of the running signal
to sample adaptively in time, thus reducing energy
consumption yet still maintaining high accuracy;

� Real-world evaluation using in-lab experiments and
pilot studies with runners during day-to-day train-
ing and racing, including our study of eight top pro-
fessional and amateur athletes using Gazelle during
the Kona Ironman World Championship race.

The rest of the paper is organized as follows. Section 2
reviews prior work. Section 3 presents an overview of the
Gazelle system. Section 4 validates our running form analy-
sis approach as compared with a laboratory kinematic anal-
ysis system. Section 5 describes our SAS algorithm.
Section 6 presents the experimental results and pilot study
results. Finally, Section 7 concludes the work.

2 RELATED WORK

Sports physiologists and coaches have long been studying
running form and its impact on running performance and
safety. High-speed video camera systems and floor-mounted
force plates have been the de-facto equipment in sports physi-
ology laboratories and have effectively supported running
kinematic research [5], [10], [11], [12], [13], [14]. The limitations
of such systems include high cost, time-consuming operation,
and their use is confined to the indoor lab-testing scenario.
Major sports brands have also developed pedometer-based
wearable solutions to help people run better [15], [16], [17],
[18]. Gazelle offers longer battery lifetime with much more
detailed and comprehensive running form analysis.

Recently, researchers have been using wearable sensing
technologies to facilitate in-lab running kinematic analysis
or out-of-lab studies [6], [7], [8], [19], [20], [21], [22]. Several
wearable kinematic analysis prototypes have been devel-
oped using IMUs. These projects mainly used the wearable
devices for data collection for offline analysis. There were
few studies investigating the power consumption of an
IMU-based kinematic analysis system, which showed lim-
ited battery lifetime of only a few days [8]. In the general
motion or activity sensing area, there exists a lot of research
on the problem of energy management [23]. There are
mainly two categories of power saving methods: sensor
duty-cycling and collaborative sensing with multiple sen-
sors [24], [25], [26], [27]. For example, in the mobile sensing
framework designed by Wang et al. [23], only a minimum
set of sensors were powered and appropriate sensor duty
cycles were used to significantly improve device battery
life. Ganti et al. and Zhu et al. also utilized sensor duty-cycle
to minimize power consumption by detecting the active and

Fig. 1. Power consumption of MEMS IMU sensors: Accelerometer, gyro-
scope, and low-power accelerometer currents are shown across fre-
quency and operational mode.
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idle state of user [28], [29]. In the E-Gesture work done
by Park et al., the authors proposed a collaborative sensing
technique that used accelerometer and gyroscope based
gesture detectors, and the gyroscope detector was only acti-
vated when a valid gesture was detected by the accelerome-
ter detector to reduce energy consumption [30]. In our
work, besides leveraging those power saving techniques,
we also propose a sparse adaptive sensing algorithm with
the collaboration of two accelerometers to reduce the sensor
power consumption during active mode. Although our
method is tuned for online running form analysis, it can
also be applied to other sensing fields.

In terms of sparse or adaptive sampling algorithms at
signal level, various model-based theoretical analysis has
been conducted in signal processing and wireless communi-
cation [31], [32], [33], [34], [35]. These work utilized the spar-
sity of the signal, and the local signal time-frequency
variance to minimize sampling overhead. For example,
compressed sensing [31], [32], [33] does sparse, random
sampling based on the sparsity of a signal in a sparse
domain (e.g., frequency domain) though the signal may not
be sparse in the time domain. As a result, though these
work were used in wearable sensing devices, only the sens-
ing part can be executed on the wearable device, whilst the
sampled data must be sent out to mobile phones or PCs
with the high computing capability needed for reconstruc-
tion and analysis. The authors of [34], [35] proposed a time-
domain adaptive sampling framework to predict the next
sampling point based on historical sampled data and there-
fore reduce the power overhead for signal reconstruction.
However, though running is a relatively consistent motion
from stride to stride, the in-stride signal is non-determin-
istic, changes quickly, and varies across runners. It is there-
fore not practical to build a generic running signal model to
predict future samples.

To the best of our knowledge, Gazelle is the first wear-
able solution for online running form analysis with a pri-
mary focus on energy optimization driven by adaptive
detection and consideration of the repetition and predict-
ability of human running. Gazelle works in realtime out in
the real world, and its performance and energy savings

have been demonstrated through extensive in-lab experi-
ments and outdoor use by real runners.

3 GAZELLE SYSTEM DESIGN

The Gazelle wearable system architecture is illustrated in
Fig. 2. It consists of (1) a system-on-chip with a 16 MHz
low-power ARM Cortex-M0 and BLE/ANT+ wireless inter-
face, (2) a nine-axis MEMS IMU suite with high-precision,
high-power accelerometer (HHA), and gyroscope, (3) a
standalone ultra-low-power, low-precision accelerometer
(LLA), (4) an ultra-low-power watchdog timer, (5) a system
power management unit, and (6) a standard CR2032
225 mAh coin-cell battery.

With a form factor of 2 cm�3 cm�1 cm and less than
8 grams of total weight, Gazelle can be easily worn on dif-
ferent parts of a user’s body, such as the chest, ankle, foot,
or elsewhere. As shown in Table 1 below, depending on the
specific worn body location, different running metrics can
be obtained. Gazelle’s wireless interface, enables communi-
cation with a sport watch or mobile phone, which can pro-
vide voice or visual feedback as illustrated in Fig. 3.

3.1 Hardware

Processing and Communication: With form factor being a pri-
mary design driver, minimizing PCB size and power con-
sumption is a first order consideration in Gazelle’s hardware
design. The nRF51422 is a System-on-Chip (SOC), equipped
with a 32-bit ARM Cortex-M0 CPU and a 2.4 GHz ultra-low
power RF front end. The RF front end supports concurrent
Bluetooth Low Energy (BLE) and ANT+ protocol operation.
The nRF51422 allows on-board data processing and enables

Fig. 2. The Gazelle wearable sensor and system architecture.

TABLE 1
Key Running Form Metrics

Metric Definition Chest Hip Foot Ankle Wrist

Stride Time (ST) Duration of a stride Y Y Y Y Y
Ground Contact Time (GCT) Duration foot is in contact with ground Y Y Y Y N
Vertical Oscillation (VO) Amount of bounce up and down Y Y N N N

Fig. 3. The example chest worn usage scenario of the Gazelle mobile
running analysis system.
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multi-platform (e.g., ANT+ Sport Watches & BLE Mobile
Phones) data sharing. In addition, the nRF51422 provides a
flexible power management unit that can be used to further
minimize power consumption. For example, depending on
the user’s usage pattern, Gazelle can switch between differ-
ent states (e.g., idle or active).

Sensing: Measurement timing resolution (i.e., accuracy)
and flexible sample rate control (i.e., power savings) are the
two main driving factors in the design of the sensing hard-
ware. Based on our studies of runners’ walking and running
signals, the maximum running acceleration can reach 16 g,
which occurs when the foot strikes against the ground. We
chose the MPU9250 IMU as the main motion sensing unit
because it is compact yet meets Gazelle’s sensing precision
requirements. The MPU9250 includes an accelerometer and
a gyroscope, supporting flexible individual sensor mode
selection (e.g., standby, on/off), and quick adaption to
changes in sensor sampling rate. However, one drawback of
the MPU9250 IMU is the high power consumption, e.g.,
400 mA for the accelerometer in normal mode. Therefore, we
added an ultra low power, lower accuracy accelerometer
whose power consumption is two orders of magnitude less
than that of the MPU9250 IMU. The ADXL362 (3 mA at
400 Hz and 1.1 mAmotion activated wake-up mode) is used
to detect user status and running form changes. The informa-
tion gathered from the ADXL362 drives the configuration of
the high power IMU. This control process is discussed in
more detail in Sections 3.2 and 5.4.2.

In addition to processing, sensing, and communication,
24/7 reliable operation is needed. Most of the time the sys-
tem is idle in the OFF mode, and it continuously monitors
the user’s motion to trigger system wakeup. The nRF51422
has an internal watchdog timer, but based on our testing, it
was operational only in the higher current ONmode. There-
fore, an external ultra low power 100 nA watchdog timer,
the PCF2123, is incorporated to ensure system health while
keeping accurate system time.

3.2 SystemWorkflow

Gazelle’s software is built on top of the nRF51422’s wireless
protocol stack and SDK, taking less than 35 KB of flashmem-
ory. The software enables microsecond-resolution coordi-
nated event-driven streaming operation, including system
model checking, error handling, the operations of sensors,
data processing, data storage, andwireless communication.

The Gazelle IMUs have built-in features to detect motion
events, freeing the microprocessor from needing to actively
read and process sensor data. For example, the ultra-low-
power, lower-accuracy accelerometer ADXL362 used in
Gazelle can sample data and alert the microprocessor only
when the acceleration has exceeded a predefined threshold
for a predefined length of time. The microprocessor can
keep track of time while in OFF mode between interrupts
by reading the elapsed time of the watchdog timer. The
microprocessor can dynamically change the threshold and
time window in realtime. Taken together, an effective yet
extremely low-power finite state machine classifier can be
constructed. A simple rule-based approach can be used to
classify user motion activity. To classify a walking/running
pattern, the microprocessor can first configure the sensor to
interrupt on a high-acceleration event, such as the impact

due to a user’s ground strike. Then, the microprocessor can
reconfigure the sensor to look for a lower acceleration event,
the toe-off, to occur after a minimum expected time dura-
tion, i.e., the time the foot spends on the ground. Appropri-
ate time window durations and acceleration thresholds are
tuned with walking/running datasets representing the
majority set of walkers/runners.

When the user’s running motion is detected by the sys-
tem’s low power classifier, the sensing hardware is reconfig-
ured to capture running signals in high resolution. Captured
running signal features are used to drive the sparse adaptive
sensing algorithm which 1) drives real-time IMU reconfigu-
ration while running, and 2) constructs running metrics on
board. Gazelle’s wireless communication with either a sport
watch or mobile phone is also triggered which allows the
streaming of computed running form results to the user for
on-the-fly feedback and post-run analysis.

The rest of the paper will focus on the proposed SAS
algorithm to enable energy-efficient, high-resolution run-
ning form sensing and analysis.

4 MOBILE RUNNING ANALYSIS

Kinematic analysis is used to quantitatively assess human
locomotion. Running and walking motions are periodic.
Stride by stride, force is produced bymultiplemuscle groups
propelling the body forward and upward, whilemaintaining
body kinematic stability. Gait can be broken down into a
repetitive series of strides. A set of kinematic metrics can be
measured, and then the musculoskeletal functions can be
quantitatively evaluated. In this section, we demonstrate
that the Gazelle system can capture such metrics for running
with high accuracy when compared with traditional labora-
tory high-speed video camera systems and force plates. We
then motivate the sparse adaptive sensing algorithm, by
identifying those features intrinsic to running that uncover
opportunities for significant reduction of energy consump-
tionwithout a significant impact on accuracy.

4.1 Gazelle Sensor Accuracy Validation

To verify the Gazelle accelerometer accuracy is sufficient for
running form analysis in the field, comparative experiments
were conducted in a physiology laboratory equipped with a
Vicon camera system and a treadmill instrumentedwith force
plates. The Vicon system consists of an array of eight high
speed, high resolution cameras placed in a ring to fully encir-
cle the treadmill and runner under test. At multiple biometric
landmarks, e.g., the ankle, knee, and chest, the runner was
equippedwith an infrared reflector, and aGazelle device.

In each experiment, Gazelle’s high power accelerometer
was sampled at 200 Hz while the Vicon cameras captured
images at 200 fps and the force plate system ran at 1 kHz.
Among the running metrics listed in Table 1, ST, GCT, and
VO were each computed from raw Gazelle accelerometer
data. To obtain ground truth for these metrics, data from
the Vicon cameras and force plates system were processed
as follows. Vertical oscillation was measured by subtracting
the low to high points of the infrared reflector located on
the runner’s chest within each stride. Ground contact time
was measured by computing the duration between foot
touchdown and toe-off events. Touchdown and toe-off
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events were determined from force plate data by applying a
threshold of 50 N for touchdown and 10 N for toe-off to the
vertical force. Threshold in this range is recommended
throughout the kinematic analysis literature to eliminate
false detections due to force plate noise [36], [37], [38]. Stride
time was obtained by subtracting step-by-step foot touch-
down event. To extract those corresponding metrics from
Gazelle, touchdown and toe-off events are also utilized.
Fig. 4 shows a sample running acceleration collected from
chest and the vertical height from acceleration integration.
Touchdown event in the acceleration is identified by the
zero-crossing right before the impact peak, and toe-off is
identified as the negative minima after impact peak. Hence,
ST and GCT can be computed in the same way as those
obtained from force plates. VO is the difference between
maximal height and minimal height, while vertical height is
obtained by double-integrating the acceleration in which
gravity is removed by a high pass filter.

The tests consisted of nine different speed and cadence set-
tings: the cross product of 5 , 6 , and 7 mph speeds with

cadences of 160 , 175 , and 190 spm. Each setting was tested
for 3 minutes in duration with the treadmill set for zero
degrees of incline. In addition, ametronomewas used during
each test to assist runners to pace with the specified cadence.
Gazelle was configured to stream raw data from HHA. In
existing IMU-based kinematic analysis work [19], [20], [39],
the IMU sampling rate can vary from 100 to 200 Hz, and at
most 2,000 Hz, depending on the degree of subtlety the run-
ning-form metric of interest has. In our experiments, the
HHA was configured to a 200 Hz sampling rate in order to
sufficiently capture the running-form metrics. To compare
the running metrics computed from Gazelle data to those
computed from the sports physiology laboratory camera sys-
temdata, the definition of accuracy in Eqn. (1) was used.

Accuracy ¼ 1

N

XN
i¼1

1� jM
i
G �Mi

Lj
jMi

Lj
� �

�100%; (1)

where Mi
G and Mi

L are the running metric for each stride i
computed from data measured by Gazelle and the labora-
tory camera system respectively. Fig. 5 shows representa-
tive results from two study participants and Fig. 6 shows
the error distributions from all speed settings for each

Fig. 4. Running stride acceleration from chest and vertical height.

Fig. 5. Comparison of running form metrics captured by Gazelle and a physiology laboratory using Vicon camera and force plates system.

Fig. 6. Error distribution for ST, GCT, and VO.
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metric. This study demonstrates that when compared with
the high-speed motion capture system, Gazelle offers over
99, 98, 97 percent accuracy on average for ST, VO, GCT
respectively, at all nine test settings. The results from differ-
ent settings illustrate that under changes of speed and
cadence, Gazelle sensor has similar stability of system accu-
racy as the laboratory-grade systems.

4.2 Opportunities for Energy Savings

Energy efficiency is of utmost importance when supporting
online running analysis with wearable sensors. Having
demonstrated that Gazelle is able to achieve high accuracy
with regular sampling of acceleration at 200 Hz, we now
consider techniques to further reduce the number of sam-
ples, and therefore relax the energy requirement, while
maintaining high accuracy. The challenge ahead is to
answer the following two part question. How many samples
are minimally needed, and how to select the reduced sampling set?

Stride-by-Stride Variance is Low. Running form typically
changes gradually over time. In real-world running, it is
unnecessary to provide user feedback stride-by-stride.
Instead, feedback on running metrics can be provided only
when a form change is detected, or at a user defined feedback
interval. Therefore, it becomes possible to characterize the
current running form by aggregating samples across many
strides. Per stride, we can significantly reduce the required
data sampling rate, thereby minimizing energy consump-
tion, yet still maintain high running form analysis accuracy.
This motivates our design of sparse sensing (SS), which con-
sists of three key steps: (1) detect running form changes and
group strides with similar running form together, (2)
sparsely sample data within the same stride group, and (3)
reconstruct a single stride from the sparse samples within
each stride group and compute the corresponding running
metrics. Since the strides within each group have high simi-
larity, the sparse samples we obtain from individual strides
allow reconstruction of one representative stride for each
stride group. Intuitively, there are two potential ways to get
the representative stride: (1) Combine all samples to recon-
struct a full stride signal and compute running metrics from
it; (2) Since the results demanded by users are running met-
rics, metrics from selected strides in the same group can be
computed and then the average for each metric can be calcu-
lated for user feedback.

Intra-Stride Variance is Predictable. Given known contex-
tual information, such as the foot touchdown, the significant
event patterns within each stride are predictable in time.
From Fig. 4 in Section 4.1, we can see that, running accelera-
tion is a periodic signal, and within one period, the signal
changes sharply after the touchdown, while the change is
more gradual around toe-off. Therefore, more samples are
needed after touchdown, and less around toe-off, to capture
sufficient information. The sampling rate can be adapted
based on the variance pattern of running acceleration. Addi-
tionally, as is illustrated in Fig. 4, to compute ST, GCT, key
points including consecutive zero-crossing points and min-
ima are necessary to be captured. Therefore, instead of
using a uniform high frequency sampling rate, we can: (1)
change the sampling rate adaptively by detecting and pre-
dicting the local variance within a single stride; and (2)
based on this prediction adaptively sample only the points

in time that are key to describe the selected running metrics
of interest. The strategy for how to adaptively capture those
key points varies based on a user’s metric selection. For
example, VO is computed through double integration of the
acceleration signal, presenting a more challenging scenario.
Therefore, the tradeoff between lost accuracy and power
savings from adaptive sampling when compared with the
fully sampled acceleration signal must be identified and
minimized per metric. This motivates our design of adaptive
sensing (AS), and when combined with SS, sparse adaptive
sensing, which consists of three key steps: (1) detect running
form intra-variability, (2) adaptively adjust sampling rate
based on the intra-variability, and (3) reconstruct a single
running profile from the adaptive samples within a stride
group and compute the corresponding running form met-
rics. Given the observations above, we conducted theoreti-
cal analysis to understand the feasibility and potential
performance of both sparse sensing and adaptive sensing,
which we present in Section 5.

5 SPARSE ADAPTIVE SENSING

This section describes Gazelle’s sparse adaptive sensing, used
to enable accurate and long-term running analysis under day-
to-day real-world conditions. First, we examine the theory
behind SAS, then detailing the implementation of SAS. Lastly,
we report our experimental results, showing that SAS main-
tains high accuracy and performance even when delivering
an energy savings of from 76.9 percent to up to 99 percent
over the continuous high frequency sampling case.

5.1 Sparse Sensing

Human running acceleration signal can be represented in a
sparse domain, e.g., using wavelets. Compressed sensing
(CS) [31] can be used to estimate the number of samples
required to reconstruct the signal. For example, we can
derive the minimum number of samples required to ensure
that the running metrics computed from the reconstructed
running acceleration signal achieve � 90 percent accuracy
compared with that computed from the 200 Hz uniformly
sampled signal, as follows. Given a signal S 2 Rn, we can
first decompose it using wavelets basis C ¼ ½c1c2 . . .cn�, as
shown in Eqn. (2).

S ¼
Xn
i¼1

cici: (2)

AssumingCS is k sparse, the number of samples required
for reconstruction satisfies the following inequality,

m � C � m2ðF;CÞ � k � logn; (3)

where C is a small positive constant and mðF;CÞ ¼ 1.
Then, C � k � logn samples are required for perfect signal
recovery [31]. From our analysis, 5 percent (10 Hz on
average) of the n samples need to be preserved to achieve
95 percent accuracy for ST, while around 25 percent
(50 Hz on average) of the samples are needed to achieve
95 percent accuracy for GCT and VO. We therefore find
theoretical opportunity to reduce sampling and process-
ing energy overheads from 75 to 95 percent whilst main-
taining 95 percent accuracy.
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5.2 Adaptive Sensing

Measuring the intra-variability of a running stride is an
essential step in sparse adaptive sensing. Intra-variability is
a measure of the local variance of a signal. In order to quan-
tify intra-variability for use to adaptively control sensor
sampling rate, we use wavelets to analyze the adaptive sam-
pling rate required for different segments inside a stride sig-
nal. As described in Section 5.1, running acceleration can be
decomposed into wavelets. To estimate the sampling rate,
the first step is decomposing the signal S as below to get the
approximate and detailed wavelets coefficients clow and
chigh [40], [41],

clow ¼ ðS � hÞ # 2 (4)

chigh ¼ ðS � gÞ # 2; (5)

clow is then quantized in the range of 200 Hz to find adaptive
sampling rates that correspond to the intra-variability of a
running signal. Fig. 7 demonstrates a single stride accelera-
tion, the estimated adaptive sampling rates over time, and
reconstructed signal based on linear interpolation. The sam-
pled and reconstructed result can be seen to visually corre-
spond to the dynamic changes across the original signal.
When applied to our dataset, the wavelet-based sampling
rate estimation shows that in order to achieve 90 percent
accuracy for the running metrics computed from the recon-
structed signal, on average, 80 Hz sampling rate is needed.

5.3 Limitations of CS and Wavelets

Our analysis from Sections 5.1 and 5.2 shows that both
sparse sensing and adaptive sensing can be utilized to reduce
the sampling rate yet still maintain high accuracy for run-
ning form analysis. However, CS and wavelets adaptive
sensing are computationally intensive and not well adapted
to the running signal.

High Computational Complexity. According to [32], [33],
the complexity for CS reconstruction ranges from

OðM2N1:5Þ to Oðlog ðkÞMNÞ. Although the sparse sampling
can be optimized to achieve only 5 percent CPU time for an
8 MHz wireless sensor node, the reconstruction required 30
percent CPU time on an iPhone 3GS with a 600 MHz proces-
sor [32], which is computationally intensive and not suitable
for low-power CPUs. For runners who do not carry mobile
phones, it is impractical to use CS on an ultra-low power

16 MHz CPU based wearable device. While the wavelets
adaptive sensing reconstruction process can be as simple as
performing a linear interpolation. To fit the restrictions of
mobile kinematic analysis, we must further lower our
reconstruction complexity.

Poor Real-Time Adaptability. Another limitation of CS or
wavelets adaptive sensing is when transforming the time
domain information to a sparse domain, both lack the abil-
ity to adaptively sample data based on running variability
and the variability of a user’s on-the-fly selection of running
metrics of interest. For example, as demonstrated in Fig. 4,
when only GCT is of interest to a runner, CS and wavelets
adaptive sensing are not able to capture only the key points
for computing GCT to achieve optimal sampling rate. More-
over, wavelets adaptive sensing requires offline processing
with all signals known beforehand to build a sampling rates
model, which works for efficient data storage and transmis-
sion, but is not feasible to reduce samples in realtime and
hence to reduce power consumption from sensing.

Additionally, based on the analysis in Sections 5.1
and 5.2, the required sampling rate is not low enough to
achieve high energy reduction. Therefore, both methods are
not well suited for realtime adaption to a real world running
signal, presenting key barriers to their use in a power-
aware, low-profile wearable system.

5.4 SAS Algorithm Design

An alternative to overcome the limitations in Section 5.3 is
to conduct all the analysis in the time domain and design an
easily-configurable sensing algorithm which can adaptively
optimize power and accuracy across the running metrics of
interest. In this work, we have designed the SAS algorithm
using direct time domain analysis to avoid the high compu-
tation complexity of time-frequency domain transformation
and reconstruction processes, while preserving real time
adaptivity to different running metrics, thus enabling a
novel and highly energy efficient long-term running form
analysis on the Gazelle wearable device. Fig. 8 shows the
overall SAS work flow. A zero-crossing (ZCR) detector and
a sampling rate predictor (SRP) are used together to control
HHA, and a linear interpolator is applied to reconstruct the
samples from the HHA. The detailed design and implemen-
tation process is described in the following sections.

5.4.1 SAS Design

The first question to tackle in the SAS flow is when to
opportunistically acquire the next needed sample from the
HHA. The largest time interval tiþ1 between samples with
the minimal loss in information is desirable. As mentioned
earlier, the dependence lies on the variance pattern of the
acceleration signal. The time interval can be chosen such

Fig. 7. Wavelet-based adaptive sampling rate estimation.

Fig. 8. SAS flow chart.
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that only the most critical points are captured for signal
reconstruction. Thus we propose a method to determine an
optimized tiþ1. First, we assume there is a finite set of inter-
vals fT1; T2; . . . ; Tlg to select from. Then, by constructing a
projection from the predicted variance of the signal to the
set of time intervals, the interval tiþ1 can be determined. To
predict which Tl should be used to acquire the next sample
from the HHA, the local variance of the signal from the
LLA, sampling at a higher frequency than the maximum
HHA frequency, is utilized for prediction. To measure the
LLA variance, three features are examined: (1) first-order dif-
ference (FOD), (2) slope ratio (SRO), and (3) second-order differ-
ence (SOD). FOD measures the sharpness of positive or
negative slopes, SRO captures inflection points including
local minima and maxima, and SOD estimates the slope rate
of change. The FOD, SRO, and SOD features are computed
as follows:

FOD ¼ xi � xj (6)

SR ¼ ðxi � xjÞ=ði� jÞ
ðxj � xkÞ=ðj� kÞ (7)

SOD ¼ FODðiÞ � FODði� 1Þ: (8)

Fig. 9 shows all three features along with running accelera-
tion. FOD and SOD are sensitive to LLA acceleration when
the foot is in contact with the ground, where most accelera-
tion variance occurs. Additionally, we compared the stan-
dard deviation of FOD and SOD for the segment in each
stride (between the two vertical dashed lines in Fig. 9)
around toe-off events. Compared with SOD, FOD has
higher standard deviation and hence more sensitive around
toe-off events. Because FOD has less computation overhead
and can cover those minima, maxima points that are pri-
marily covered by SRO, FOD is preferred for driving the SR
Predictor. However, signal variance around zero-crossings
is not significant enough for FOD alone to predict critical
samples; the zero-crossing points are often missed. Thus the
ZCR Detector is added to augment the prediction. Combin-
ing the ZCR Detector and SR Predictor, high accuracy for all
running metrics can be achieved.

Next, a set of proper sampling intervals, which can be
considered as the pseudo sampling frequencies, is deter-
mined for the HHA. Here we refer to the multiplicative
inverse of sampling intervals as pseudo sampling rates.
This is because in practice, an accelerometer sensor may not
support the actual sampling rate needed. One-shot opera-
tion is therefore utilized to attain the requisite pseudo sam-
pling rate. A similar approach is used in the work of Feizi
et al. [42], where the authors proposed the TANS with finite
sample rate (TFR) method. In their work, an offline electro-
cardiograph (ECG) signal was divided into three repeating
states, whereby each state was strictly assigned a minimally
needed sampling rate. TFR requires, for each state, a known
signal starting point and approximate number of samples
for each state. Although running acceleration and ECG are
both periodic, running acceleration has higher variance
from stride to stride when compared with beat to beat vari-
ance in ECG. For example, higher sampling rate may be
required when a runner runs on a hard ground during
ground contact time, while a lower sampling rate may be
required when running on grass. Assigning a fixed sam-
pling rate to a fixed segment within a stride of running
acceleration, as done in TFR, limits the lowest sampling rate
that can be achieved and not well adapts to the stride by
stride running signal. Numerically, there are infinite combi-
nations of possible HHA pseudo sampling rates. However,
based on the target running signal, there are other further
constraints: (1) The minimal sampling rate needs to ensure
at least one sample can be obtained within a stride, and (2)
the maximal pseudo sampling rate cannot exceed the
sensor’s maximal sampling rate with the consideration of
the HHA sensor’s measured startup delay. With those con-
straints in the design process, we further propose an empiri-
cal design criteria for the SR Predictor: We must minimize
the number of sampling rates based on the patterns of the
SR Predictor. For example, the FOD feature shown in Fig. 9
has the following clear patterns: (1) flat signal appearance
and (2) dynamic signal changes with high amplitude. There-
fore in our experiments in Section 6, two different boundary
sampling rates are used. With this criteria and constraints
identified, a set of pseudo sampling rates can be determined
using the training data. The resulting average pseudo sam-
pling rate therefore must satisfy the following equation:

�sr 	 ðNTm [Nzcr [NTtÞPN
i¼1 STi

; (9)

where NTm is the number of samples obtained with minimal
interval Tm in the set fT1; T2; . . . ; Tlg, and Nzcr is the number
of zero-crossing points. And,NTt is the number of transitions
between any two different consecutive intervals. This aug-
ment to the SR Predictor design is based on the assumption
that when an interval transition occurs, the samples close to
this transition are important for describing the signal.

Fig. 10 demonstrates the reconstructed signals from the
SAS algorithm as compared with the compressed sensing
method. The original 200 Hz signal was reduced to an aver-
age of 30 Hz for both algorithms. As can be clearly observed
in the figure, SAS outperforms CS with a lower mean
squared error of 17.70. While CS can recover the overall
shape and periodicity of the original signal, it does so with

Fig. 9. SAS features.
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much lower signal to noise ratio. In Section 6.1, further com-
parison between SAS and CS are conducted.

5.4.2 SAS Implementation

As described in Section 3, Gazelle is equipped with a low-
accuracy, ultra-low-power accelerometer (LLA) and a high-
accuracy, high-power accelerometer (HHA). The LLA sam-
ples continually throughout a run. Even though the LLA
suffers from high noise, it offers sufficient accuracy to con-
tinually detect the stride-by-stride timing structure and to
estimate the similarity of running strides with low latency.
Also, even though the LLA sensor cannot provide absolute
accuracy for its acceleration measurement, velocity, or posi-
tion related metrics, it offers sufficient relative accuracy to
detect changes of these metrics, and thus the change of run-
ning form.

Algorithm 1. SAS Algorithm

1: levels{sampling rates look-up table}
2: maxSr{maximal sampling rate in levels}
3: preSr newSr{update previous sampling rate}
4: for all newSample from LLA do
5: if zero-crossing detected then
6: Get a sample from HHA
7: else
8: get recent three jfodsj
9: fodMax maxðjfodsjÞ
10: if fodMax > preMax{find maximal jfodj} then
11: preMax ð�Þ � fodMaxþ ð1� �Þ � preMax
12: end if
13: end if
14: newSr ðfodMax=preMaxÞ �maxSr
15: look up closest sampling rate in levels
16: if preSr 6¼ newSr then
17: if jlastHHA� curLLAj > thr then
18: Get a sample from HHA
19: end if
20: else
21: Sample with newSr
22: end if
23: end for

The LLA consumes 3 mA and samples data at 400 Hz, in
order to detect zero-crossings and estimate sampling rate
beforehand, which are used to notify the host processor of
such events. Although past work has shown lower sam-
pling rates can be sufficient for accurate kinematic analysis,
sampling the LLA at lower frequencies (1) negligibly
improves battery life (e.g., 1.8 mA sampling at 100 Hz saves
0.5 percent of CR2032 capacity per 1,000 hours of activity),
and (2) reduces system accuracy by increasing the latency

to trigger the sampling of the HHA. In order to ensure the
HHA’s sampled data is able to catch the acceleration feature
detected by the LLA, the delay from both the LLA trigger
and the startup time from the HHA must be lower than the
sampled signal’s bandwidth in Hz. From past work, a com-
monly used acceleration signal sampling frequency for low-
power kinematic analysis is 100 Hz. Therefore, a delay from
acceleration feature to LLA trigger to HHA sampling of
10 ms or less will lose minimal fidelity. Due to this con-
straint, utilization of angular velocity data sensed by a gyro-
scope is not usable in the adaptive SAS algorithm as
typically gyroscopes require 20 to 80 ms for start up. One
solution to utilize a gyroscope with reduced power is by
applying a constant duty-cycle. Due to space constraints,
we do not consider such use of the gyroscope in this work.
Operating the LLA at 400 Hz yields a 2.5 ms sampling
delay, leaving up to 7.5 ms for HHA start up time to observe
the 10 ms boundary. Therefore, we must find an accelerom-
eter which can satisfy the start-up time constraint while
maintaining high accuracy. While data from the MPU9250
was used for the HHA during our algorithm design, the
high precision accelerometer from theMPU9250 has a maxi-
mal 25 ms startup time from sleep mode to active mode,
which would then violate this constraint under a real-time
implementation. Therefore the HHA used in the pilot study,
which provides “first sample correct” and “zero-delay”
capabilities, is the LSM6DS3 [43]. The LSM6DS3 was mea-
sured to have a 2.38 ms delay from the start of SPI configu-
ration commands while in power down mode to the first
activated data ready interrupt signal, thereby meeting the
overall real-time 10 ms constraint for signal feature to HHA
sampling time delay interval.

The samples obtained by the LLA are then used to detect
zero-crossings and predict pseudo sampling rates for this
HHA used in our study. To achieve the adaptive selection
of pseudo sampling rates, the most recent three consecutive
absolute values of FOD are computed, and the maximal
absolute FOD value is scaled by a global maximal absolute
FOD. The scaled value is then used for looking up a proper
pseudo sampling rate or time interval, as described in Algo-
rithm 1. The HHA is then brought out of the power down
mode and configured for operation at 400 Hz, and the first
available sample is then acquired from HHA, achieving the
selected pseudo sampling rate. The pseudo sampling rate is
again updated when the absolute difference between the
last HHA sample and current LLA sample exceeds a thresh-
old. This threshold is optional, and only used when lower
average sampling rate is necessary. Setting the threshold to
a low value can ensure key points are captured while reduc-
ing redundant points. For example, in Section 6.1, the
threshold is set to 1.8 m/s2. Additionally, a low pass filter
can be applied to the global maximal absolute FOD to
smoothly adapt to local changes in acceleration. Algorithm 1
summarizes the full SAS procedure.

Using the samples captured by our SAS algorithm, recon-
struction methods can be applied to recover the running
profile to compute all the running form metrics. Specifically,
reconstruction is necessary because vertical oscillation dou-
ble-integration of the single stride signal. In this paper, we
choose linear interpolation as reconstruction method, which
has low complexity, enabling on-board reconstruction. Note

Fig. 10. Reconstructed signals from CS and SAS.
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that the LLA is also used to estimate stride-by-stride running
form changes based on stride time, and this information is
used to group similar strides together to further reduce sam-
pling rate. For example, if every stride inside a group is close
to the mean stride and runner does not require stride-by-
stride feedback, essentially, only one running stride needs to
be processed to provide the running formmetrics. However,
as we will show in Section 6.2, the actual amount of energy
saving depends on a runner’s consistency, which varies by
the experience and fitness of a runner.

6 EVALUATION

To evaluate the energy efficiency and accuracy of the
Gazelle wearable system for online running analysis, we
conducted both in-lab experiments of the SAS algorithm
and in-field pilot studies.

6.1 In-Lab Experiments

For the in-lab experiments, we first compared the accuracy of
our proposed SAS algorithm with that of the compressed
sensing. Although, due to the intensive computation cost of
CS, CS is not an optimal option for on-board sampling rate
reductionwithout sufficient hardware support, CS is the lead-
ing approach to achieve high accuracy with a low sampling
rate. Thus, in this experiment, we primarily compare SAS and
CS from the perspective of reconstruction accuracy. In the
experiment, seven 30 minute-long running datasets were
recorded on an outdoor track. Each runner wore a chest band
with the Gazelle device attached to the band in the center
front location. In the test, both real-time running metrics and
raw acceleration samples collected fromHHAwere streamed
to a mobile phone for post validation. The key running met-
rics: ST, GCT, VO were computed as a comparative baseline
from the rawdata sampled fromHHAover the entire running
test. To determine the general trade-offs between sparse
(adaptive) sensing rates and energy savings, we computed
the average accuracy using stride-by-stride running form
metrics, which did not include the added benefits of grouping
similar strides together. The accuracywas defined as

Accuracyavg ¼ 1

N

XN
n¼1

1�
jMn
fag �Mnj
jMnj

 !
; (10)

where Mfag is the metric computed from either SAS or CS
resulted running signal, Mn is the metric computed from
full 200 Hz sampled running signal. n ¼ 1; 2 . . .N is the
index of each stride for a specific running metric.

For CS, the sampling rate was fixed for each experiment;
while for SAS, the sampling rate changed dynamically and
the average sampling rate was used for comparison. With
the results from Fig. 11, it can be referred that SAS outper-
forms CS in term of achieving lower sampling rate with suf-
ficient accuracy, provide more potential to reduce energy
consumption either for online signal processing or wireless
transmission. Fig. 11 compares the accuracy between CS
and SAS for different running metrics under different sam-
pling rates of the HHA. We can see that SAS outperforms
CS in almost all the scenarios. For ST, GCT, and VO, an
average sampling rate of 25 Hz is sufficient to maintain
higher than 99.0, 98.6, and 95.1 percent accuracy respec-
tively, and this is sufficient for runners’ feedback. Com-
pared with our SAS method, CS achieves comparable
accuracy for stride time, but has worse performance for
GCT and VO, and cannot obtain an average of 90 percent
accuracy when the sampling rate is lower than 30 Hz and
40 Hz, respectively. The major reason is demonstrated in
Fig. 10: CS has much lower signal to noise ratio, and there-
fore error is accumulated when aggregating the ground con-
tact time, and as vertical oscillation requires double
integration, error is further accumulated.

We also conducted power modeling and analysis to
determine the energy savings of the SAS approach as com-
pared with the constant 200 Hz approach. Shown in Fig. 12,
the current per sample was computed for SAS so we can

Fig. 11. Running metrics accuracy comparison between CS and SAS.

Fig. 12. Distributions of sample-by-sample current savings of adaptive
SAS LLA + HHA sampling compared to constant 200 Hz HHA sampling,
across 30 minute running sessions from six runners.
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compare the resulting dynamic sampling rate of the HHA
and the static 3 mA of the LLA. The average current per
sample of the HHA can be computed as a combination of
the current cost for a single conversion of the HHA in high-
resolution mode (240 mA) over the HHA start-up time, and
the HHA power-down current cost (6 mA) for the remainder
of the sampled interval time for that sample. Overall, a aver-
age of 25 Hz sampling rate is required for SAS to achieve
greater than 97.7 percent accuracy for all running metrics
with over 76.9 percent energy savings. This represents one
order of magnitude improvement over existing wearable
running analysis devices, while outperforming CS in accu-
racy and achieving significantly lower computational over-
head by operating exclusively in the time domain. To
further validate the effectiveness of SAS algorithm at 25 Hz,
we compared its performance with the regular 25 Hz sam-
pling approach. Figs. 13 and 14 demonstrates that: (1) Regu-
lar 25 Hz sampling results in comparable average accuracy
compared with SAS algorithm at 25 Hz, however, it has
larger error range and its performance varies significantly
from stride to stride. (2) The regular 25 Hz sampling
method has more than 7 percent error in average for VO

than SAS algorithm. The reason is that regular 25 Hz sam-
pling is not able to capture most of minima or maxima at
sharp transitions. Thus, an adaptive, irregular sampling
strategy like the SAS algorithm we proposed is necessary to
reduce energy consumption while maintain high measure-
ment accuracy.

In addition, in an actual usage scenario, runnersmay have
different demands of running metrics, thus the maximum
energy savings can vary for different metric subsets. For
example, for stride time alone, the LLA active in interrupt-
only mode is sufficient to capture these metrics at a 10 Hz
sampling rate, and the energy savings can reach 99 percent
compared with 200 HzHHA. In future work, different usage
scenarios can be studied. As shown, different running met-
rics require a different sampling rate to reach an accurate
enough measurement. Therefore SAS can be designed to
adapt to different sets of runningmetrics to furtherminimize
the power consumption under various usage cases. In sum-
mary, our sparse adaptive sensing algorithm is energy-effi-
cient and accurate for running form analysis and feedback,
and provide a solution for long term running form study,
and a potential guide for other similar applications.

Note that the accuracy and energy saving numbers above
are for stride-by-stride running form analysis. Further sam-
pling rate reduction can be achieved by grouping strides
with similar running profile, which depends on how consis-
tently the runner is running. Next, we further evaluate the
energy savings from runners with different experience lev-
els based on pilot studies in real-world running races.

6.2 Pilot Study

In addition to laboratory testing and outdoor track testing,
Gazelle was used in the Ironman World Championships in
October 2014 Kona, Hawaii, the world’s premier Ironman
race event. In Kona, Gazelle monitored the marathon seg-
ments of two professional triathletes and six of the world’s
best athletes in their age brackets. This section will focus on
reporting and analyzing Gazelle’s results for the eight ath-
letes from this race. The focus of this pilot study was two-
fold: 1) to test consistency of the metrics derived from the
Gazelle wearable under the energy savings with SAS
achieved in real world running; and, 2) to understand
Gazelle’s metrics’ overall usability in terms of running form
information representation when compared across some of
the world’s best triathletes under race conditions.

Energy Savings in Real World Running. Stride-by-stride
running-form consistency affects the performance and the
energy savings of SAS. As described in the previous section,
across 10 runners data collected during in-lab experiments,
an average of 25 Hz sampling rate was needed to achieve

Fig. 13. Bland-Altman plots for regular 25 Hz sampling and SAS algorithm.

Fig. 14. Stride by stride performance.
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over 97 percent accuracy for all computed running form
metrics. Running-form consistency varies among runners.
Under the same stride time variance constraint, better run-
ning-form consistency leads to larger number of strides per
group, hence lower data sampling rate and better energy
savings. Fig. 16 shows the number of groups and the num-
ber of strides per group for each runner with 1 percent
stride time variance. From this figure, Runner 1 shows the
highest running-form consistency or minimal stride-by-
stride variance, which leads to the largest number of strides
per group, hence the lowest data sampling rate (1 Hz), and
therefore largest energy savings (84.3 percent). On the other
hand, Runner 7 shows the lowest running-form consistency,
requiring the highest average data sampling rate (5 Hz), and
resulting in the lowest energy savings (82.6 percent). Over-
all, an average energy savings of 83.6 percent was achieved
across these eight runners.

Metric Report Consistency. Based on the high-level metrics
shown Fig. 15, the averaged RunQuality scores for all eight
runners are summarized in Table 2 along with each of their
race completion times. It can be seen that based on the race
time, the runners can be classified into four run skill levels,
and the RunQuality derived from the run form metrics mea-
sured by Gazelle is highly consistent with runners’ actual
race results, as well as the associated energy savings from
Gazelle. This comparison serves to validate the feasibility
and methodology of Gazelle wearable under real world use.
The following equations describe the high-level metrics,
which are constructed post-race in terms of Gazelle’s
reported running metrics.

� Efficiency ¼ 1
tair�pace, Efficiency estimates how much

energy is spent to propel the runner over the dis-
tance traveled.

� Fatigue ¼ tground
tair

, Fatigue is an estimate of how tired

the runner is.

� Performance ¼Meanð tair
tground

Þ, Performance is an esti-

mate for how much energy a runner is putting into
the ground.

� Consistency ¼ StdDevð tair
tground

Þ.
Taken together, RunQuality is an aggregated measure of

all the four high-level metrics described above. It is a simple
unity weighted combination of the four, with the desirable
set {Efficiency, Consistency, Performance} having positive
unity weight and the undesirable set {Fatigue} having nega-
tive unity weight. The summation of the two sets together is
a runner’s RunQuality metric

RunQuality ¼ Efficiencyþ Consistency

þ Performance� Fatigue:

In the weeks following the Ironman World Champion-
ships at Kona, athletes and their coaches reviewed the run-
ning form metrics data that were generated by Gazelle.
The feedbacks we received were consistent among most
athletes and coaches that Gazelle was easy to use and the
running form metrics were useful for both understanding
the precise places in the race where unexpected events

Fig. 16. Stride stability versus energy savings for eight different runners
in the Kona Ironman World Championships.

Fig. 15. Gazelle running analytics for top professional and elite triathletes at the IronmanWorld Championships in Kona, HI.

TABLE 2
RunQuality Scores versus Race Time

Runner RunQuality Race Time Level

Pro Male 90.3 2 h:58 m:58 s 4
AmMale 1 85.6 3 h:14 m:12 s 3
Pro Female 86.2 3 h:21 m:34 s 3
AmMale 2 80.6 3 h:41 m:51 s 2
AmMale 3 74.7 3 h:41 m:51 s 2
Am Female 1 80.5 3 h:52 m:38 s 2
Am Female 2 75.0 4 h:07 m:16 s 2
AmMale 4 62.5 5 h:02 m:54 s 1

2542 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 9, SEPTEMBER 2017

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 21,2022 at 16:51:21 UTC from IEEE Xplore.  Restrictions apply. 



occurred and for further improvement of the athletes’ run-
ning form and racing strategy.

7 CONCLUSIONS

In this work, we have designed and developed Gazelle, a
wearable system targeting long-term, online running
form analysis. Gazelle leverages small economical sensors
to ensure low cost, compact form factor, and light weight.
To tackle the challenges associated with the high energy
consumption of high-precision motion sensing and analy-
sis, we have developed an intelligent sparse adaptive
sensing and running form analysis solution, along with
aggressive energy management techniques. Experiments
using real-world running data demonstrate that, com-
pared with uniform sensing at 200 Hz, SAS can achieve
97.7 percent accuracy and 76.9 percent energy saving
with only an 25 Hz maximal sampling rate. As a result,
together with the improvement in usable energy capacity
due to lower average current draw, Gazelle can increase
the battery life by one order of magnitude using a small
coin-cell battery. Through our year-long pilot studies,
Gazelle has been in use by over a hundred elite and recre-
ational runners during day-to-day training and various
racing events, with satisfactory results. Gazelle is in the
process of being commercialized.
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