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Digital Foveation: An Energy-Aware Machine
Vision Framework

Ekdeep Singh Lubana and Robert P. Dick, Member, IEEE

Abstract—In machine vision applications, imaging systems and
analysis algorithms are generally interdependent and energy
intensive. We describe a machine vision energy minimization
framework in which imaging hardware and vision algorithms are
co-designed and tightly integrated. Digital foveation is inspired
by the human vision system, which uses a spatially vary-
ing sensing architecture to generate oculomotory feedback and
capture a series of high-resolution images using the densely sam-
pling fovea. A multiround process with bidirectional information
flow between camera hardware and analysis software optimizes
energy consumption while preserving accuracy. By using existing
hardware mechanisms, namely, row / column skipping, ran-
dom access via readout circuitry, and frame preservation, digital
foveation adapts to the chosen analysis algorithm. It aims to
transmit and process only the necessary parts of the scene
under consideration. This framework is general across a wide
range of embedded machine vision applications and enables large
improvements in energy efficiency. When evaluated for an embed-
ded license plate recognition vision application, it reduces system
energy consumption by 81.3% with at most 0.65% reduction in
accuracy.

Index Terms—Fovea, machine vision, multiresolution process-
ing, multiround analysis.

I. INTRODUCTION

MACHINE vision has transformed numerous practical
domains—including security, healthcare, banking, and

transportation. Its applications are expected to have a mar-
ket value of $15.46 billion by 2022 [1]. However, the high
energy consumptions of most such systems wastes money and
limits deployment scenarios. Thus, efficient image analysis is
essential for energy-constrained machine vision.

Cameras have generally been treated as black boxes; oppor-
tunities to adapt dynamically to the needs of specific imaging
tasks are generally overlooked. We argue for an adaptive
framework that uses energy-efficient techniques to adaptively

Manuscript received April 3, 2018; revised June 8, 2018; accepted
July 2, 2018. Date of current version October 18, 2018. This article was
presented in the International Conference on Hardware/Software Codesign
and System Synthesis, 2018 and appears as part of the ESWEEK-TCAD
special issue. (Corresponding author: Ekdeep Singh Lubana.)

E. S. Lubana is with the Department of Electronics and Communication
Engineering, Indian Institute of Technology, Roorkee, Roorkee 247667, India
(e-mail: ekdeeplubana@gmail.com).

R. P. Dick is with the Electrical Engineering and Computer Science
Department, University of Michigan, Ann Arbor, MI 48105 USA (e-mail:
dickrp@umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2858340

gather problem-specific information in a multiround process,
allowing efficient analysis without degrading accuracy. At the
heart of our approach is the concept of dynamically varying
the regions and resolutions transmitted by the camera under
guidance by multiround image analysis algorithms.

It has been shown that in the presence of scene clutter, clas-
sification algorithms using kernels with fine sampling at the
center and coarse sampling at the periphery perform better
than uniform kernels [2]. A similar structure is found in the
human vision system. The retina uses a central, dense sensing
region called the fovea for high-resolution capture of a small
portion of the scene; while a sparse, peripheral sensing region
captures the rest of the image at low resolution. The low-
resolution data are used for detecting objects of interest and
generating oculomotory feedback. This allows the fovea to be
directed, sequentially, to regions of interest, while efficiently
building scene understanding. By using broad, coarse sam-
pling to detect objects of interest and narrow, high-resolution
sampling at the fovea, the optical sensory system reduces
throughput across the vision pipeline, thus enabling efficient
analysis.

Inspired by the foveated, variable-resolution architecture of
biological vision systems, we developed and evaluated an
algorithmic framework, called digital foveation, for energy-
efficient image sensor control and image analysis. The frame-
work discards information irrelevant to the analysis algorithm,
while preserving details, in an application-oriented manner
(see Fig. 1). In the general case, this system gathers images
at varying resolutions. Under guidance by analysis algorithms,
it determines corresponding locations for application-oriented
transmission and processing. We experimentally evaluated
digital foveation using low-resolution, uniformly sampled
captures to enable identification of regions of interest. In sub-
sequent rounds, the camera captures higher-resolution images
in these regions. A key observation is that varying the resolu-
tions of image regions to reduce camera and analysis energy
consumption across the imaging pipeline requires minimal or
no changes to camera hardware. This enables multiresolu-
tion, multiround analysis analogous to many biological vision
systems.

Using sparse sampling for detection of regions of interest
can result in removal of important information. Thus, the
subsampling routine used should be capable of determining
an ideal resolution to optimize energy consumption under an
accuracy constraint. To this end, Digital foveation may use
object size as a metric to adaptively determine the ideal sub-
sampling levels for a given input, thereby meeting accuracy
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(a) (b)

Fig. 1. (a) Conventional uniform-resolution sampling and processing approach used in most machine vision applications. This is appropriate in image
reproduction applications, where aesthetics are important, but not in energy-constrained machine vision applications. (b) By sampling irrelevant background
information at low resolution and regions of interest at high resolution, energy consumption is dramatically reduced while preserving accuracy.

constraints set by the designer. For example, one might require
the same number of pixels to accurately classify an object
regardless of its original scaling. The approach is detailed in
Section VII

This paper makes the following contributions. It describes
a biologically inspired, multiround, variable-resolution frame-
work for use in energy-efficient machine vision applications.
Our approach uses existing hardware mechanisms, namely,
row/column skipping, random access via readout circuitry, and
frame preservation, to support adaptive control of the active
sensing region (see Section IV). The framework is appropri-
ate for a wide range of vision applications, i.e., any machine
vision application for which it is possible to productively guide
later sampling strategies by using information gathered in prior
samples. The use of an analogous scheme in biological vision
systems suggests that such applications are common. To the
best of our knowledge, this is the first time such an approach
has been modeled, described, and demonstrated.

Using a Sony IMX219 image sensor and Raspberry Pi 3, we
evaluated digital foveation for license plate recognition, which
accounts for roughly 100-billion image captures per year. We
find that energy consumption reduces by 81.3% with at most
0.65% reduction in accuracy (see Section VII).

II. RELATED WORK

This section summarizes related work on energy-aware
machine vision. Most prior work has focused on narrow por-
tions of the system, such as application-oriented circuits in
the imaging pipeline or use of a time-efficient, software-only
approach to multiresolution analysis.

Inspired by multiresolution biological vision systems and
motivated by the need for energy efficiency, early researchers
developed foveated, or retina-like, image sensors. This concept
is distinct from the Digital foveation framework we propose.
In foveated imaging, the resulting bio-mimetic sensors use
custom hardware with spatial pixel distributions similar to
those of retinas, containing a densely sampled central region
(fovea) and sparsely sampled peripheral region. Conventional
image processing algorithms cannot be directly used on the

data acquired by such sensors. Algorithms designed to process
nonuniform resolution images use analogous operations,
e.g., chirp transform instead of discrete Fourier transform.
However, due to their complexity and a lack of translational
invariance, these algorithms have not been extensively stud-
ied [3]. An alternative approach is to use log-polar mapping [4]
to approximate uniformly sampled images and use conven-
tional processing algorithms; however, this is highly inefficient
and thus defeats the purpose for using foveated image sensors.
Further, the use of such sensors requires mechanical gimbals
that impose speed, cost, reliability, and energy penalties [5].

Redeye [6], a convolutional neural network accelerator,
shifted early processing (i.e., convolution operations) to the
analog domain and outputted processed features. While their
simulations indicate 45% reduction in energy consumption,
Redeye ignores practical constraints introduced by the pre-
processing pipeline. Since the (neglected) image signal pro-
cessor (ISP) is programmed to digitally preprocess images
for demosaicing the Bayer filter pattern, removing digital
noise, and providing local contrast enhancement, substantial
energy-relevant changes would be necessary for real-world
use. It would be necessary to either carry out these steps
in the analog domain or to convert between digital and ana-
log domains multiple times, thereby potentially reducing the
reported benefits.

To the best of our knowledge, only LiKamWa et al. [7] have
used existing hardware for reducing energy consumption in
imaging systems. They devised a power model and found that
optimizing camera clock frequency can reduce sensing power
consumption by up to 50%. The power modeling portion of
their work is the foundation for our sensing energy analysis.

Kulkarni et al. [8] demonstrated the energy implications of
using scene captures of varying resolution for multicamera
surveillance networks. This reduces energy consumption by
85% with respect to CMUcam: a widely used, high-resolution
surveillance camera. Their approach, named SensEye, uses
a network of cameras with different resolutions. In contrast,
Digital foveation uses a single camera with images that are
subsampled using existing readout mechanisms to tradeoff
energy consumption, coverage, and resolution.



LUBANA AND DICK: DIGITAL FOVEATION: ENERGY-AWARE MACHINE VISION FRAMEWORK 2373

Fig. 2. Conventional image analysis pipeline. The sensor and ADC convert
incident light to digital data. The ISP then denoises and demosaics the data
and the host/applications processor performs image analysis.

Wang et al. [9] showed the implications of using software-
only, multiround analysis to improve processing time and
energy in computer vision applications. They forego use of
existing hardware resources in the vision pipeline. As a result,
their software-only approach reduces energy consumption by
only 16.1%, when compared with the conventional, high-
and uniform-resolution approach (see Section VI). Digital
foveation reduces energy consumption by 76.3% for the
chosen application of license plate recognition by avoiding
transmission of superfluous data to the applications processor.

III. CONVENTIONAL IMAGE ANALYSIS FRAMEWORK

This section explains the framework used in conventional
machine vision imaging systems to establish a basis for com-
parison with Digital foveation. It also enumerates the elements
involved in the conventional imaging pipeline, shown in Fig. 2.
Our focus is on electronic components; electro-mechanical
components, which are used for focusing light on the image
sensor plane, will not be discussed. Although one might reap
even greater benefits from digital foveation by modifying the
use of focusing machines, this paper demonstrates that large
reductions in energy consumption are possible even without
such changes.

A. Analog Signal Capture (Image Sensor)

The imaging pipeline starts at the image sensor: a 2-D
array of pixels for sensing incoming light. A shutter controls
exposure duration, which can be adjusted by the developer to
improve the signal-to-noise ratio.

Access circuitry is used to acquire pixel values and per-
form analog black level calibration. Digital data are ultimately
transferred to the host processor (see Fig. 2). The analog sig-
nal chain and readout circuitry are the most power-intensive
components in the sensing stage, consuming 70%–80% of
the power [10]. Energy consumed in the readout chain is
related to the readout rates of sensors. Readout chain energy
consumption is proportional to time.

B. Internal Communication Among Units

The mobile industry processor interface (MIPI) is used by
most camera manufacturers for internal communication within

components in the imaging pipeline. It is energy efficient [11]
due to a low power consumption of 40.7 mW and transfer
rate of 4 Gb/s.

C. Digital Processing (Image Signal Processor)

The sensor communicates with an ISP for digital process-
ing. The image, which has a Bayer-pattern morphology, is
demosaiced, producing a “RAW-RGB,” “RAW-YUV,” or other
image format. It is then encoded into a standard, compressed
format, e.g., JPEG, via an encoder pipeline in the ISP.

D. Machine Vision Focused Processing (Host/Applications
Processor)

After digital processing, the compressed image is stored in
local or remote memory of the programmable host (appli-
cation) processor that performs machine vision tasks on the
captured frame. It uses an I/O controller to sense interrupts,
configure registers, and control the pipeline during frame
capture.

Digital signal processing at the ISP and image analysis at
the host processor account for 90%–95% of the total energy.
Therefore, reducing data per analysis task can dramatically
reduce energy consumption; this observation is of critical
importance.

IV. DIGITAL FOVEATION: ENERGY-AWARE FRAMEWORK

FOR IMAGING SYSTEMS

Digital Foveation, a framework inspired by the multiround,
spatially varying-resolution imaging approach used in human
vision and many other biological systems, adapts resolutions
and sensed areas under control of image analysis algorithms.
For example, it might use low-resolution images for detecting
objects of interest and high-resolution images to examine those
objects in detail.

Digital foveation is illustrated in Fig. 3. Each round in
the process consists of image sensing under control of an
application-specific analysis algorithm. The resolution and
bounding box(s) of the image(s) are specified by the algorithm,
generally producing much less data than a high-resolution,
full-scene image. The analysis algorithm then determines
whether enough information is available to complete the
assigned task with adequate accuracy. If not, it guides the next
round based on the information gathered in previous rounds.

We now describe the pipeline of digital foveation when used
in a two-round image analysis process. The pipeline, shown
in Fig. 4, begins with sensing and uses existing subsampling
mechanisms to produce low-resolution images, which are used
to determine locations of regions of interest. We refer to the
vectors bounding the areas of interest as foveal coordinates;
while the bounding box is analogous to the fovea. The foveal
coordinates are provided as feedback to the sensor, which
outputs higher-resolution captures of those regions. Unlike
conventional foveal imaging, our approach permits fully elec-
tronic changes to the position, size, and resolution of the digital
fovea, without using mechanical components, such as gimbals.
There is no reliance on custom (and scarce) image processing
algorithms designed for foveated sensors.
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Fig. 3. Digital foveation: a multiround energy-efficient machine vision framework.

Fig. 4. Region of interest is located using low-resolution subsampled cap-
tures and analyzed using high-resolution captures. Existing camera hardware
mechanisms are used to optimize energy consumption under an accuracy
constraint.

Using a multiround detection approach that avoids waste-
ful pixel sensing, data transfer, and analysis, digital foveation
enables large reductions in data transfer and processing times
(70%–75%, typically) and energy consumptions (75%–85%,
typically). Prior work has shown that multitiered approaches
can improve characterization accuracy but reduce detection
accuracy [9], while greatly reducing energy consumption.

Digital foveation uses several existing sensing mechanisms
to tightly integrate the multiround algorithmic framework with
hardware components.

A. Foveal Coordinates and Image Subsampling

An image sensor of a given resolution can produce lower
resolution images by subsampling, i.e., row/column skipping
and pixel binning. Pixel binning uses additional capacitive cir-
cuitry to average pixel values within a rectangular region,
producing a single red/green/blue tuple. It reduces aliasing
and improves signal-to-noise ratio by using additional aver-
aging circuitry, at the cost of some increase in sensor power
consumption [12].

Row/column skipping ignores selected rows/columns and
requires no additional hardware. Modern CMOS image sen-
sors further disable parts of their readout circuitry (such
as, row/column decoders and ADCs) to reduce energy
consumption at the subsampling stage [12]. Most of our dis-
cussion will assume pixel skipping. However, sensing energy
consumption is small compared with that of the ISP and host
processor, making pixel binning an option.

B. Foveal Capture via Random Access to the Pixel Array

Modern CMOS image sensors allow random access to pixel
arrays by using parallel readout and row/column decoders [13].
Sensors, such as ON Semiconductor’s NOII4SM6600A-
D [14], set readout registers that output specific rectangular
windows using this feature. The row/column skipping mecha-
nism for image subsampling is implemented using this image
sensor feature, too. We use the rectangular window capture
mechanism to extract a high-resolution image of the objects
of interest.

C. Reusing Captured Frames

Image sensors store captured frames in a pixel array, dis-
carding them only when the pipeline is reinitiated via another
capture event [13]. This permits rapid wakeup and readout of
the same image signal; significantly benefitting our multiround
analysis framework. The sensed data can be read again instead
of capturing another frame.

V. ENERGY CHARACTERIZATION

This section explains the power consumption characteristics
of imaging pipeline components and indicates their dependen-
cies on throughput and time. SanMiguel and Cavallaro [15]
described a power modeling approach for smart cam-
era networks that accounts for current activity states of
components and the corresponding activation durations.
Zhang et al. [16] described a parametric power consump-
tion model for mobile embedded systems that accounts for
hardware component activity and power management states.
They found that component power consumptions can generally
be treated as independent, provided that systemic effects that
change activities and power management states are accounted
for. Based on this prior work, we developed a parallel, para-
metric model for the energy consumed by an imaging system
per frame capture. It estimates energy consumption based on
the activity state dependant power consumptions and durations.
In Section VI, we use the model to determine the implications
of our proposed framework on system energy consumption and
latency.

A. Image Sensing

During exposure (Texp), the image sensor is idle, i.e., it
is not processing captured data via the analog signal chain
or outputting it using the readout circuitry. It becomes active
only when readout begins. After outputting the image data,
sensors typically enter standby state, thereby reducing energy
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consumption. The energy consumption per captured frame
is the sum of the state-dependent component power–time
products

Esensor = (
Pele,idle + Pana,idle

)
Texp

+ (
Pele,active + Pana,active

)
Tactive (1)

where Pele,idle and Pele,active are average power consumptions
for an image sensor’s power-intensive elements, excluding the
analog signal chain, in idle and active states. Similarly, Pana,idle
and Pana,active correspond to the analog signal chain’s power
consumption.

Digital logic element, PLL, and I/O controller power con-
sumptions are roughly linear in clock frequency [17]. The
analog signal chain’s idle power consumption is linear in clock
frequency (f ), but also depends on image size (R, in pixels) [7].
This power reduction results from disabling row/column paral-
lel ADCs and decoders when reading subsampled images [12].
Thus, the analog signal chain’s active power consumption
follows:

Pana,active = a1(R) + a2 (2)

where a1 and a2 are constants with units mW/megapixel and
mW, which depend on physical characteristics and external
clock frequency, f .

Typically, the sensor processes and outputs one pixel per
clock period. Active duration is therefore a function of image
resolution, i.e.,

Tactive ≈ R/f . (3)

Using the random access capabilities of image sensors, a
subimage of resolution R2 can be produced from a sensor
of resolution R1 (R2 ≤ R1). The energy required per frame
capture is shown in (1) and (2)

Eframe = a
R1 · R2

f
+ b

R2

f
+ c · Texp (4)

where, a = a1, b = (Pele,active + a2), and c = (Pele,idle +
Pana,idle).

In the conventional framework, sensors transfer the
entire pixel array. However, in digital foveation, only
the region of interest is transferred. Typical machine
vision applications concentrate on a region of interest
varying from 1%–10% of the image size. Thus, our
feedback approach reduces throughput across the vision
pipeline by processing only relevant sections of the
scene.

B. Digital Processing at the Image Signal Processor

The ISP is idle during sensing and active when processing
the image. The last step of processing is encoding, after which
the result is written to memory. The host processor then ini-
tiates the applications pipeline and the ISP becomes idle. As
a result, the energy consumed at this stage is a function of
time required for processing, TISP, which is linear in image
size (see Section VI).

Assuming TISP is the time required for processing and Tapp
is the time for host processor image analysis

Eprocess = PISP,idle
(
Texp + R/f + Tapp

)

+ PISP,active(TISP). (5)

C. Host Processor

The applications pipeline involves the host processor, which
remains idle during image sensing and digital processing, but
activates when processing the image. The I/O controller and
other peripherals used by the host processor are required for
configuring and controlling the camera before, during, and
after image transfer. These remain active during both image
acquisition and analysis. The time required for the application
pipeline (Tapp) is a function of the image size, leading to the
following host processor power consumptions:

Phost,idle = Pcomp + Papp,idle (6)

and

Phost,active = Pcomp + Papp,active. (7)

The energy consumption of these components, Ehost, follows:

Ehost = Phost,idle
(
Texp + R/f + TISP

)

+ Phost,active
(
Tapp

)
. (8)

D. Communication-Dependent Latency

Intercomponent communication latency depends on the total
amount of data transferred, which includes the 20%–50%
overhead resulting from transmitting configuration and con-
trol parameters. An image of resolution R at p bits per pixel
has the following latency:

latency = (1 + h) ·
(

p · R

BR
+ 24R

BR

)
(9)

where h is the overhead proportion, BR is the bit rate, and
(24R/BR) indicates communication of a 24-bit RGB image.
The MIPI interface power consumption (called Pcomm in this
paper) can be multiplied with the communication latency to
calculate the communication interface energy consumption.

Although digital foveation requires more pipeline steps than
conventional frameworks, the dramatic reduction in total trans-
ferred and analyzed data reduces communication latency and
time (see Section VI).

E. Net Energy Consumed

Table I enumerates the energy consumed by image analysis
components and provides energy model parameters for digital
foveation and the conventional imaging framework. R is the
image sensor resolution. The two frameworks are assumed to
use the same ISP and host processor. Digital Foveation uses
a subsampled image of resolution Rd and a high-resolution,
foveated capture of size Rfovea. TISP differs between the frame-
works (see Fig. 5) due to the multiround nature of digital
foveation.
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TABLE I
ENERGY CONSUMED BY CONVENTIONAL AND DIGITAL FOVEATION FRAMEWORKS

(a)

(b)

Fig. 5. Timing diagram for the (a) imaging pipelines for conventional and (b) digital foveation vision frameworks. Both show the times spent by components
in different activity / power management states. Digital Foveation requires less time and energy.

VI. DIGITAL FOVEATION EVALUATION

We evaluated digital foveation on an imaging system com-
posed of a Sony IMX219 image sensor and a Raspberry Pi 3,
which is commonly used in low-budget commercial machine
vision applications. Our evaluation focuses on the energy con-
sumption, accuracy, and latency of digital foveation relative
to the conventional machine vision framework. The license
plate recognition application is considered, but the concepts
in this paper are general across a wide range of machine
vision problems, as shown in Section VII. A morphologi-
cal image processing algorithm is used [18] for license plate
segmentation.

Digital foveation can be used in systems containing GPUs
and field-programmable gate arrays, as well as CPUs, and our
preliminary analysis suggests that similar relative energy sav-
ings are possible. However, describing these experiments and
analysis in detail is beyond the scope of this paper.

We use the power models described in Section V to
determine the energy consumption implications of differing
design decisions. We characterize our test imaging system’s

components to find the required coefficients and durations for
images of varying resolutions.

A. Power Consumed by Image Sensor

The Sony IMX219 has a maximum resolution of
3280×2464 pixels, i.e., 8.08 M-pixels. Its datasheet [19]
reports power consumptions for 3280×2464 and 3280×1844
resolutions at a 12 MHz clock frequency. For constant clock
frequencies and activity states, analog component power con-
sumption is roughly constant; however, the analog signal chain
power consumption depends linearly on output resolution. We
can therefore use the two resolution–power points and (2) to
determine the following relationship between image size and
power:

Pana,active = 8.27 mw/M − pixels · R + 17.364 mW. (10)

We indicate the characteristics of Sony IMX219 in Table II.
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TABLE II
12 MHZ SONY IMX219 POWER CONSUMPTIONS

TABLE III
HOST PROCESSOR AND GPU POWER

Fig. 6. Time required by the Raspberry Pi ISP pipeline is a nearly linear
function of resolution.

B. Power Consumed by Image Signal Processor and Host
Processor

The Raspberry Pi 3 has a dedicated image signal pro-
cessing pipeline embedded in its GPU [20]. Thus, PISP is
approximated by the GPU’s power consumption. The license
plate segmentation algorithm is implemented on an ARM
Cortex A53.

We used an ammeter to measure the values PCPU and PGPU.
Specifically, we characterize PCPU,idle + PGPU,idle, and then
run CPU-intensive tasks to determine PCPU,active + PGPU,idle
and GPU-intensive tasks (using OpenGL ES) to determine
PCPU,idle + PGPU,active. Our measurements are shown in
Table III.

C. Image Signal Processing Pipeline and Detection Models

We now describe our methods for determining image sig-
nal processing time and energy consumptions. We calculate
the effects of resolution on time by using the PiCam and
MMAL encoder libraries, which direct the ISP to process and
encode the image to JPEG and other compressed formats. We
use the MMAL encoder to resize the original image and mea-
sure the effect of throughput reduction on the time required
by the image signal processing pipeline. Our measurements
indicate a linear relation between the two (see Fig. 6).

The host processor determines license plate foveal coor-
dinates, which are used for high-resolution capture. The

Fig. 7. Demonstration of digital foveation in license plate recognition. A
high-resolution image is subsampled and used to identify the region of interest,
which is used in high-resolution capture and analysis.

TABLE IV
TIME CONSUMED BY HOST PROCESSOR

procedure is illustrated in Fig. 7. We report the times required
for processing unsubsampled, 2 × 2 subsampled, and 4 × 4
subsampled images in Table IV.

D. Net Energy Reduction

Using a 4 × 4 subsampled image for detection and a
foveal, high-resolution capture of size 328 × 246 (≈ 1/10
the maximum image resolution) for license plate recognition,
we observe a net 76.5% reduction in energy, compared with
the conventional framework. Image sensor energy is reduced
by 76.7% and ISP plus host processor energy is reduced by
76.3%. Table V contains these results. The digital foveation
communication latency [see (9)] is 6.7% of that for the
conventional framework. This results in 93.3% reduction in
communication-related energy.

Similar savings occur for other image sensors. For example,
replacing the Sony IMX219 image sensor power model with
that of the OmniVision’s OV5620 security camera sensor [7],
results in digital foveation reducing energy consumption by
80.1%. These results suggest that digital foveation is applica-
ble in multiple imaging systems and applications.

E. Comparison With Software-Only Approach

The idea of exploiting subsampled images for reducing
processing time has been considered in other research (see
Section II). Decreased processing time reduces energy con-
sumption even when carried out on the host processor, but
other energy-hungry portions of the pipeline, such as digi-
tal preprocessing on the ISP remain unchanged. Although the
direct contribution of the image sensor to energy consump-
tion is minimal, adaptively controlling its sampling regions
and resolutions enables a dramatic reduction in system-wide
energy consumption, and this benefit cannot be achieved by
downsampling on the host processor. Throughput optimization
in digital foveation reduces image signal processing time from
796.0 to 76.9 ms, saving energy. 4 × 4 image subsampling in
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TABLE V
COMPONENT ENERGY CONSUMPTIONS FOR CONVENTIONAL AND DIGITAL FOVEATION FRAMEWORKS

digital foveation results in 76.3% energy consumption reduc-
tion. However, a software-only approach would have reduced
energy consumption by only 16.1%.

VII. IMPACT ON ACCURACY: CHOOSING THE RIGHT

SUBSAMPLING LEVEL

As shown in Section VI, digital foveation has the potential
to dramatically reduce energy consumption in machine vision
applications. Since state-of-the-art detection algorithms base
themselves on scale-invariant features; they are inherently
robust to image subsampling. However, aggressive subsam-
pling may reduce accuracy if the sampled object is too
small. We are thus faced with the problem of minimizing
energy consumption under a constraint on accuracy. This
general problem can be broken into two classes, depending
on application scenario.

If positions and orientations are constrained such that
objects of interest will occupy a similar number of pixels in
the captured images, a single statically set subsampling level
is adequate to optimize energy-accuracy properties.

In applications, where the object of interest will occupy
dramatically different pixel counts in different images,
multiple (dynamically selected) subsampling resolutions are
required to minimize energy consumption under detection
accuracy bounds.

Thus, we evaluate our proposed methodology on two
applications–one with similarly sized objects of interest
(license plate recognition) and one with variably sized objects
of interest (face detection). We based our analysis on an imag-
ing system using Aptina image sensors characterized in prior
work [7] and a Raspberry Pi 3. Energy per frame is calculated
using the power models described in Section V.

A. Similarly Sized Objects of Interest

We use 2×2 and 4×4 subsampled images of license plates
from a public dataset [21] and process them using a mor-
phological image processing algorithm [18]. An open-source
license plate recognition platform [22] is used to character-
ize the plates. The number of correctly estimated characters
is used as the metric for net detection-plus-characterization
accuracy.

Fig. 8 shows that increased subsampling reduces energy
consumption. For 4×4 subsampled images, detection accuracy
decreases by 9.2%; however, and characterization accuracy
increases by 9.7%. Similarly, for 2 × 2 subsampled images,
detection accuracy decreases by 0.95%, and characterization
accuracy increases by 5.6%. This somewhat counterintuitive

Fig. 8. Energy consumption and accuracy as functions of subsampling resolu-
tion. Bars indicate normalized energy consumptions. Lines indicate impact on
detection accuracy (dashed yellow), characterization accuracy (dotted green),
and aggregate accuracy (solid red) for license plate recognition.

increase was also observed by other researchers [9]. We
attribute it to the removal of feature noise from the scene back-
ground, which affects the detected window in fine-grained,
high-resolution images. Subsampled images focus on global
features that, depending on size, can be best detected at
a particular resolution. Thus, given accuracy and energy
constraints, a developer can determine an ideal application-
dependent subsampling level for similarly sized objects from
the accuracy-subsampling curves in Fig. 8. For example, in
the above analysis, 2 × 2 subsampling reduces energy con-
sumption by 70.1% and increases aggregate accuracy by 4.3%.
Thus, an accuracy- and energy-sensitive application can ben-
efit from 2 × 2 subsampling. A 4 × 4 subsampling level
reduces energy consumption by 81.3% and reduces aggregate
accuracy by 0.65%. For applications in which subsampling
generally decreases aggregate accuracy, the designer faces an
accuracy-constrained energy minimization problem that the
digital foveation framework makes explicit and solvable.

B. Variably Sized Object of Interest

To analyze the effects of digital foveation on detection accu-
racy for variably sized objects of interest, we use FDDB’s
benchmark dataset for face detection [23] and segregate data
into three classes-based upon a parameter, s, that defines the
ratio of the number of pixels occupied by the object of interest
to the image resolution—a metric directly proportional to the
object’s size. The three classes follow: 1) s = 0 − 0.09;
2) s = 0.09 − 0.17; and 3) s = 0.17 − 0.35. The Viola–
Jones face detection algorithm [24] is used for analyzing
images. These images were subsampled until a significant drop
(>10%) was observed in detection accuracy, which occurred
at a subsampling level of 8×8 (see Fig. 9).
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Fig. 9. Detection accuracy for the three categories of images as functions
of subsampling level. One thousand six hundred images from each category
were analyzed.

Fig. 10. Energy consumption and accuracy as a functions of subsampling
resolution. For adaptive-subsampling, aggregate accuracy has been calculated
using (11).

It is easy to claim that 4×4 subsampling is ideal for images
in the third category (s = 0.17−0.35), for the detection accu-
racy drops by only 0.4% at that level; however, if the same
level is used for images in the first category (s = 0 − 0.08),
detection accuracy reduces by 25%. This implies that an
adaptive approach is necessary for choosing a subsampling
level that minimized energy consumption under accuracy con-
straints. To this end, we use highly subsampled images to
determine the sizes of a objects of interest. Based upon object
size, one can determine the subsampling level that minimizes
energy under an accuracy bound as shown in Algorithm 1. We
trained a convolutional neural network classifier, C, on images
from categories X1, X2, . . . , Xn, where n = 3 with 8×8 sub-
sampling. The curves in Fig. 9 are used to determine the ideal
subsampling level, Li, for a given category, Xi. We used a 6%
accuracy degradation constraint. The aggregate accuracy of the
adaptive-subsampling pipeline follows:

〈accuracy〉 =
n∑

i=1

n∑

j=1

P
(
Xj | C = Xi

)
Pd

(
XjLi

)
. (11)

Compared with the conventional approach, the net detec-
tion accuracy drops by 2.5% and energy consumption drops
by 46%. Compared to digital foveation with 4 × 4 subsam-
pling, which reduces energy consumption by 49.8%, object
size adaptive subsampling achieves higher accuracy (96.6%,
compared to 88.9%) with less reduction in energy consumption
(46%, compared to 49.8%). Detailed results can be found in
Fig. 10. We would like to note that the energy reduction is

Algorithm 1 Calculate Ideal Subsampling Level(input G, D)
1: input training data, accuracy constraint, test sample;
2: function CATEGORIZE(training data)
3: compute binning categorization thresholds based on

object size
4: compute detection accuracies for all categories
5: return categorized data and detection accuracies
6: end function
7: L=2;
8:

9: procedure LEVELCALC(categorized data)
10: subsample all images to level L×L
11: store detection accuracy at the given level
12: if accuracy drop across all categories, w.r.t. unsubsam-

pled images > threshold (e.g., 10%) then
13: L = L + 1;
14: LevelCalc(categorized data)
15: else
16: accuracy=100;
17: while accuracy > accuracy constraint do
18: train a classifier at level L subsampling
19: compute accuracy using Equation 11
20: L = L − 1;
21: end while
22: end if
23: end procedure
24:

25: function DETECTOR(test sample, L)
26: subsample test sample to level L×L
27: compute test sample category using trained classifier
28: pass the image through detection algorithm
29: end function

smaller than that for license plate detection because the images
were smaller (400×300, on average). As a result, the exposure
energy for the image sensor was comparable to the processing
energy at the host processor and ISP. Energy savings will typ-
ically be higher in machine vision applications, where images
are typically larger than 1.3 MP.

VIII. MULTIFRAME CAPTURE:
VIDEO-BASED-APPLICATIONS

Section VI shows that by reducing readout and process-
ing time, digital foveation can enable large energy savings
in machine vision applications that would conventionally use
single-frame capture and analysis. Multiresolution methods
for video-based applications have been introduced in the
past, where one camera continuously captures low-resolution
images until an object of interest is found, at which point
a separate camera is activated to capture at higher resolu-
tion [8]. Digital foveation can be adapted to these applications
by analyzing a low-resolution frame for object detection
and thereafter estimating object velocities and future object
locations using the incoming low-resolution buffer frames.

When a particular resolution is selected, the camera must
generate buffers corresponding that resolution. The latency and
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energy consumption for reconfiguration can be large or small,
depending on the camera. For example, the MMAL encoder
library used in this paper generates buffers every time an image
capture is requested [25]. Since we base our analysis on the
total time including configuration, capture, and processing, we
account for configuration latency and energy consumption.
However, it has been previously shown that some Android
cameras can take significant time for pipeline reconfigura-
tion [26]. Thus, pipeline reconfiguration latency may or may
not constrain video frame rate, depending on camera.

IX. CONCLUSION

We described digital foveation, an adaptive framework to
minimize energy consumption in machine vision applications.
It is inspired by the use of variable-resolution sensing oculo-
motory feedback in the human vision system. Digital foveation
exploits existing hardware mechanisms guided by image anal-
ysis management algorithms to control a multiround process
that expends energy only on the most useful data from the
image. In an example license plate recognition system, the
approach reduces energy consumption by 81.3% with at most
0.65% reduction in aggregate accuracy.
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