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ABSTRACT
System lifetime reliability is an important design considera-
tion for many real-time embedded systems. Increasing inte-
grated circuit power density and the subsequent rise in chip
temperature negatively impact the lifetime reliability of such
systems. Although existing thermal-aware methods are ef-
fective in reducing temperature, they may not increase, and
may even hamper, the system lifetime reliability. The com-
plicated relationship between temperature and system life-
time requires that reliability be considered explicitly during
system design. This paper presents a reliability-aware uti-
lization control framework for homogeneous multicore soft
real-time systems. The framework employs a model predic-
tive controller to increase the system lifetime by manipulat-
ing the processor utilization. An online heuristic algorithm
is introduced to adjust the controller’s sampling window in
order to reduce the effects of thermal cycling on reliability.
Simulation results show that the proposed approach can im-
prove the system mean time to failure by at least 43% and
as much as 369% compared to existing techniques.

Categories and Subject Descriptors
B.8.2 [PERFORMANCE AND RELIABILITY]: Per-
formance Analysis and Design Aids

Keywords
System-level design; Reliability optimization; Dynamic volt-
age and frequency scaling

1. INTRODUCTION
Multicore systems provide high performance and power

efficiency. However, due to CMOS technology scaling, mul-
ticore chips increasingly have higher power density and tem-
perature, which, in turn, reduces system lifetime [5].

There have been a number of research efforts on increasing
system lifetime by controlling temperature (e.g., [2, 10, 12]).
However, since device lifetime is dependent not only on tem-
perature, but also on temperature variation (thermal cy-
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cling) [5], temperature reduction strategies alone are subop-
timal for maximizing system mean time to failure (MTTF)
[6]. Hence, a number of papers have proposed techniques
to increase system MTTF directly [1, 3, 4]. Coskun et al.
presented a reliability-aware job scheduling and power man-
agement approach for multicore systems [1]. However, their
work does not consider real-time requirements. Based on
wear sensors, Hartman et al. designed a run-time based task
mapping algorithm to improve the MTTF of real-time sys-
tems [3]. Unfortunately, wear sensors are not yet widely
available and can only detect a limited set of integrated cir-
cuit (IC) failure mechanisms [11]. Compared to these stud-
ies, our approach considers IC-dominant failure mechanisms
to improve the lifetime reliability of soft real-time systems.

In this paper, we aim to improve the lifetime reliability
of homogeneous multicore systems without sacrificing real-
time performance. Since system MTTF depends on both
temperature and thermal cycling, we introduce a reliability-
aware utilization control framework, called RUC, that jointly
optimizes these two factors at the same time. RUC is com-
posed of a global utilization control (GUC) to reduce tem-
perature and a sampling window control (SWC) to reduce
thermal cycling. Our main contributions are as follow.

(i) We show that increasing utilization via decreasing exe-
cution speed reduces runtime temperature. We exploit
this observation to design a model predictive controller
(MPC) that keeps the system utilization at a desired
value (known as utilization set point) to improve the
MTTF without increasing deadline miss rates. The
design of MPC considers the real-time constraints as
well as MTTF dependency on core temperatures.

(ii) An important parameter in MPC design is the sam-
pling window length (Lsw) which impacts system reli-
ability as it affects both core temperatures and thermal
cycles. A larger sampling window reduces thermal cy-
cling but increases core temperatures. To achieve the
desired trade off between temperature and thermal cy-
cling, we introduce a heuristic to dynamically adjust
Lsw of the MPC.

We conducted a large set of simulations to assess the effec-
tiveness of our approach. Compared to existing temperature-
aware and utilization control mechanisms, our proposed frame-
work achieves, on average, 43% improvement in MTTF, and
up to 369% improvement, while allowing more task sets to
satisfy real-time constraints.

2. PRELIMINARIES
We consider four main IC-dominant failure mechanisms in

this paper: electromigration (EM), stress migration (SM),
time dependent dielectric breakdown (TDDB), and thermal
cycling (TC) [6]. Figs. 1(a), (b), and (c) depict the MTTF
of an example system as a function of amplitude (e.g., the
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Figure 1: System MTTF due to: (a) amplitude of
thermal cycle; (b) period of thermal cycles; (c) peak
temperature of thermal cycles; and (d) temperature
but no thermal cycles.

difference between the highest (peak) and lowest (valley)
temperature), period, and peak temperature, of thermal cy-
cles, respectively, according to a reliability modeling tool
[13] with default settings. For comparison purposes, Fig.1
(d) shows the system MTTF due to temperature alone with-
out thermal cycles. As can be seen from Fig.1, the sys-
tem MTTF is generally higher with lower temperature and
smaller thermal cycles, but the precise reliability model is
somewhat more complicated.

We focus on homogeneous multicore systems in this paper.
Let M = {ρ1, ρ2, ..., ρm} denote the m cores. We assume
that these cores have identical thermal and electrical char-
acteristics and initial wear state. The system MTTF of the
multicore system is min{MTTF of core ρi}, i = 1, ...,m, and
the MTTF of core ρi (MTTFi) can be calculated based on
the core’s failure rate, or using existing reliability modeling
tools, e.g., [13]. For the multicore system under considera-
tion, it has been proven that the system MTTF is maximized
if the power is distributed evenly among the cores [11].

Power consumption is the fundamental cause of rising
temperature and hence system failure. When a core per-
forms operations, it dissipates dynamic (Pdyn) and leakage
power (Pleak), but when idle only consumes leakage power
[10]. Suppose the utilization of a core in a given time inter-
val ∆t is U = ∆ta

∆t
, where ∆ta is the amount of time that

the core executes operations, the average power (P̄ ) can be
calculated as

P̄ = U × Pdyn + Pleak

= U × V α0 × f × α1 + (α2(f, V ) + α3(f, V )× T )× V,
(1)

where V and f are the core’s voltage and frequency, re-
spectively. α0 ≥ 1, α1 > 0, and α2, α3 are some volt-
age/frequency dependent parameters [10].

In term of workloads, we assume that tasks are periodic
and already mapped to cores and that no migration is al-
lowed. Workloads may change over time. Tasks on each core
are scheduled by a real-time scheduling policy such as earli-
est deadline first (EDF) or rate monotone (RM) [8]. In a soft
real-time system, the late completion of tasks is acceptable
but should be avoided. The job of the jth task is denoted by
τj , which is associated with a tuple {ej , dj} where ej is the
execution time and dj is the relative deadline (as well as the
period). For a given time duration, thereafter referred to as
sampling window k (SWk), if core ρi’s frequency is fixed at
fi(k), its utilization can be calculated as

Ui(k) =
∑

τj∈Γ(k)

ej

dj
=

∑
τj∈Γ(k)

e∗j + e′j/f(k)

dj
. (2)

where e′j reflects the portion of job execution that is de-
pendent on the core’s frequency, and e∗j is the independent
portion. Γ(k) is the set of jobs executed in SWk.

3. PROBLEM FORMULATION
We will use a control theoretic approach to improve the

system MTTF by controlling task utilization. Compared to
temperature control and MTTF control, utilization control
is easier to implement and already widely used in soft real-
time systems [9, 12].
Theorem 1. If in a given time duration, SWk, core tem-
peratures are constant, then a higher frequency/voltage pair
used in SWk leads to a higher temperature but a lower uti-
lization.

Theorem 1 indicates that any method to control utiliza-
tion through manipulations of core’s frequency and utiliza-
tion is also effective in temperature management. Before for-
mulating the utilization control problem, we introduce some
notation: f̄(k) is the average frequency over all cores; Us

is the utilization set point; Umax is the upper bound on the
utilization to ensure schedulability; fmin and fmax are the
lowest and highest core’s frequencies allowed, respectively.
We aim to solve the following problem:

min
∑
ρi∈M

(Us − Ui(k))2. (3)

The solution to (3) must satisfy the following constraints:


Ui(k) ≤ Umax for ρi ∈M , (4)

−fth ≤ fi(k)− f̄(k) ≤ fth for ρi ∈M , and (5)

fmin ≤ fi(k) ≤ fmax for ρi ∈M . (6)

The first constraint ensures no cores exceed the schedula-
bility bound. According to the system reliability discus-
sion given in Section 2 and [11], the second constraint is in-
troduced to bound the differences in the cores’ frequencies,
which in turn bound the temperature differences among the
cores. The bound on frequency difference, fth, is typically
set to 0.1 GHz. The third constraint is used to satisfy the
cores’ operating requirement.

4. DESIGN OF RUC
4.1 RUC framework

We propose a mechanism to improve system MTTF by
solving the optimization problem in Equations (3)-(6) and
dynamically adjusting the length of sampling window. We
refer to the overall framework as RUC. RUC consists of
two main components: global utilization control (GUC) and
sampling window control (SWC). GUC reduces temperature
by using an MPC, which dynamically adjusts core frequen-
cies to enforce the utilization set point. SWC minimizes
thermal cycles by dynamically adjusting Lsw.

At the end of SWk, the utilization of each core is mea-
sured. Based on the utilization and MPC settings, MPC
solves the optimization problem defined in Equations (3)-
(6). The solution consists of the cores’ frequencies in the
next sampling window and is sent to each core before the
start of SWk+1. At the end of SWk, the measured tem-
perature values are sent to and saved in SWC. Specifically,
the temperature measured in the most recent s sampling
windows are saved. We refer to the s sampling windows
as one profiling window. At the end of each profiling win-
dow, a temperature profile is generated. SWC then analyzes
this temperature profile and determines whether to increase
or reduce the sampling window length in the next profiling
window.
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4.2 Global utilization control
In this section, we discuss our GUC design to solve the

constrained optimization problem in Equations (3)-(6) using
an MPC. The basic idea behind any MPC is to optimize a
cost function. Hence, we first make a comparison between
the constrained optimization problem in Equations (3)-(6)
and an MPC cost function optimization problem. After this,
we transform the MPC cost function optimization problem
to a standard quadratic programming problem to be solved
by some existing solvers.

According to control theory, the design of MPC is to min-
imize a cost function for a given SWk,

J(k) =

N2∑
i=N1

δi[U(k+i)−ρ(k+i)]2+

Nu∑
j=1

λj [
1

∆f(k + j − 1)
]2, (7)

where N1, N2, Nu, i, and j are integers, δi is the tracking
error weight, and λi is the control penalty error [12]. The
user specified reference trajectory ρ(k + i) defines the ideal
trajectory along which the utilization should converge to the
set point. The first term in the cost function (7) is a vari-
ation of the function in Equation (3). The second term in
Equation (7) minimizes the changes in the manipulated vari-
able and does not affect the final result of the optimization
problem. Hence, minimizing the cost function (7) under the
constraints in Equations (4)-(6) would also lead to the opti-
mal solution to the problem defined in Equations (3)-(6).

We propose using a quadratic programming solver to solve
the optimization problem. A standard quadratic program-
ming problem can be written as

min
ε
{

1

2
εTΩε+ ζT ε}, s.t.

{
A× ε ≤ b
Aeq × ε = beq
lb ≤ ε ≤ ub

, (8)

where Ω, A, and Aeq are matrices, ζ, b, beq, lb, and ub are
vectors, and ε denotes the change in a core’s frequency. The
key point in MPC design is to transform the problem defined
in Equations (4)-(7) to the standard quadratic programming
format in Equation (8). Based on ε and the core’s frequency
inside SWk, the core’s frequency at SWk+1 can be directly
calculated. We omit the details of the transformation to
save space. After the transformation, we can directly solve
the quadratic programming problem using a standard solver,
e.g., quadprog tool in Matlab.

4.3 Sampling window control
The proposed GUC aims to reduce the temperature of

the entire multicore chip and to balance the temperature
differences among cores, but may introduce thermal cycles.
Since a core’s frequency and voltage can change from one
sampling window to another, sampling window length, Lsw
directly impacts thermal cycles. It is difficult to precisely
model how the sampling window length affects system reli-
ability, and the complicated reliability model makes finding
the best sampling window too time consuming for online
use. Hence, to judiciously balance the impact of temper-
ature against that of thermal cycles on system MTTF, we
design an efficient online heuristic based on binary search to
adjust Lsw at runtime.

Since a core’s temperature is constant inside each sam-
pling window if a core’s frequency is fixed, the aging effect
of thermal cycles can be ignored if we only consider a single
sampling window. In SWC, we use the concept of profil-
ing window to adjust Lsw. A profiling window is composed
of s sampling windows with the same length and whose s
temperature points, each corresponding to the temperature
of the respective sampling window, make up a temperature
profile. At the end of each profiling window, we estimate
the system MTTF from the temperature profile using a reli-
ability modelling tool [13]. In our experimental evaluations,

Algorithm 1: SWC
1: initialize Ranges, Rangee, cur, pre, and set i = 1
2: while True then
3: if at the end of SWi then
4: measure temperature Tk(i) for each core
5: i← i+ 1
6: if i = s then
7: TP (cur)← {Ti(1), · · · , Tm(i)}
8: calculate MTTFcur
9: if cur is the first profiling window then
10: Lcsw ← Rangee
11: else
12: Lcsw ← (Ranges +Rangee)/2
13: if MTTFcur ≥MTTFpre then
14: Rangee ← (Ranges +Rangee)/2
15: else
16: Ranges ← (Ranges +Rangee)/2
17: i← 1, update cur and pre
18: end while

we find that s = 100 achieves an precise system MTTF with
an acceptable overhead in MTTF calculation. We store and
compare the system MTTF in current and previous sam-
pling window, and use the binary search to find the most
appropriate sampling windows length.

To find Lsw, let [Ranges, Rangee] denote the binary search
range. We initially setRanges, which is also the lower bound
of Lsw, to 1 second to keep the overhead due to RUC under
1% of the sampling window length (based on an Intel Core i5
2.6 GHz and 2 GB memory). To determine an initial value
for Rangee, we observe that since GUC expects a constant
temperature in a given sampling window, so the sampling
window length must be smaller than some constant CHW ,
which depends on runtime environment and hardware plat-
form and is typically on the order of 10 seconds. Moreover,
since different hyperperiods (HP s) of a given periodic task
set have the same workload, a core’s frequency remains the
same across different HP s if Lsw = HP and utilization set
point is fixed. Since a larger Lsw leads to higher temperature
due to slow frequency scaling, the appropriate value for Lsw
should be less than or equal to HP . As a result, we initial-
ize Rangee to min{HP , CHW }. The pseudo code for SWC
is given in Alg.1, where Lcsw is Lsw in the current sampling
window, and cur and pre represent the current and previous
profiling window. The search ranger, [Ranges, Rangee], is
updated in each iteration until the most appropriate value
for Lsw is found.

5. EVALUATION
We have conducted a large number of simulation runs to

evaluate the effectiveness of RUC. An event-driven simu-
lator was implemented to simulate task execution. Tasks
are scheduled using EDF [8] and executed to completion
even if they have missed their deadlines. Each benchmark
is composed of 50 randomly generated task sets. In each
benchmark, the utilization level is kept constant. The uti-
lization levels of the task set considered are 50,60,...,90%.
For the task set Γ, the utilization level is defined to be
Ulevel =

∑
τi∈Γ

ei
di

. It is not necessary to evaluate the effec-

tiveness of RUC under low utilization levels since the lowest
frequency level would allow all the deadlines to be met while
minimizing the core temperatures. To model different task
behaviors, we studied two cases: fixed and variable task ex-
ecution times. For the latter case, actual execution times
of jobs are obtained by multiplying the specified execution
times by a random value in the range [0.9, 1.1].

The hardware platform consists of 4 homogeneous cores
and each of them is an ALPHA 21264 microprocessor, since
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Figure 2: MTTF and FS values obtained by RUC,
UC, and TA when tasks’ execution times are fixed.

0 

20 

40 

60 

80 

100 

120 

0 

2 

4 

6 

8 

10 

12 

14 

50% 60% 70% 80% 90% 
D

ea
si

bl
e 

So
lu

tio
ns

 (%
) 

Sy
st

em
 M

T
T

F 
(y

ea
rs

) 

Utilization Level 

RUC TA(80°C) UC(1s) UC(2s) UC(4s) UC(8s) 
RUC TA(80°C) UC(1s) UC(2s) UC(4s) UC(4s) 

MTTF: 
FS: 

Figure 3: MTTF and FS values obtained by RUC,
UC, and TA when tasks’ execution times vary dy-
namically.

it is the only publicly available processor with well estab-
lished power and thermal models [10]. The processor pa-
rameters and constants are listed in Table I. The initial tem-
perature is assumed to be 330◦F (56.85◦C) and the ambient
temperature is 318.15◦F (45◦C). The runtime temperature
is calculated using Hotspot [7].

Table 1: Processor Parameters and Constants [10]
Voltage (V) Frequency (GHz) α1 α2 α3

0.7 1.00 1.422 0.1903 15.0
0.8 1.25 2.916 0.2111 15.0
0.9 1.5 5.41 0.234 15.0
1.0 1.75 9.702 0.2592 15.0
1.1 2.00 17.22 0.2867 15.0

We compare the performance of RUC against two repre-
sentative controller based mechanisms: utilization control
(UC) and temperature-aware (TA). Similar to the existing
work [9], UC controls a core’s frequency to force the utiliza-
tion to converge to a chosen set point, but it has a fixed
Lsw. In our simulations, Lsw of 1 second (UC(1s)), 2 sec-
onds (UC(2s)), 4 seconds (UC(4s)) and 8 seconds (UC(8s))
are used. As for TA [12], each core’s temperature is con-
trolled to converge to its chosen set point. The temperature
set point is 80◦C, which is below the temperature thresh-
old for hardware throttling [12]. We compare RUC and TA
to show that temperature reduction alone is suboptimal in
maximizing system MTTF.

We compare RUC, UC and TA in terms of MTTF and
real-time performance. Real-time performance is measured
by the percentage of feasible solutions (FS), which is the
ratio of the number of task sets satisfying their real-time re-
quirements over the total number of task sets. For UC and
RUC, the utilization set point is 90% [9]. When tasks exe-
cution times are fixed (see Fig.2), the average MTTF values
due to RUC for the 5 benchmarks are 11.42, 9.73, 8.43, 6.98,
and 3.42 years, respectively. RUC increases MTTF values
by up to nearly 364% and at least 52%. In addition, using
RUC always results in the highest FS compared to the other

mechanisms in all the benchmarks. These results show that
by controlling utilization and adjusting the sampling window
length, more real-time task sets can be feasibly scheduled
while maximizing system lifetime. RUC exhibits a similar
improvement when tasks’ execution times vary at runtime
(see Fig.3). Its average MTTF values are 11.43, 9.74, 8.40,
6.78, and 3.22 years for the five benchmarks. RUC improves
system MTTF by 43%-369% while maintaining FS at a high
level. We can conclude that for a variety of different runtime
environments, RUC improves system lifetime and increases
the schedulability of real-time tasks.

6. CONCLUSIONS
We proposed a reliability-aware utilization control frame-

work to maximize the lifetime of multicore systems under
soft real-time constraints. After observing the relationship
between reliability and temperature, our mechanism jointly
minimizes core temperatures, the temperature differences
among cores, and thermal cycling. It uses a model predictive
controller to control the core utilization by adjusting a core’s
frequency/voltage within each sampling window. We also
introduced a heuristic to dynamically determine the length
of a sampling window. Simulation results reveal that our
approach is indeed effective in increasing the lifetime of soft
real-time systems. As future work, we plan to extend our
mechanism to heterogeneous multicore and hard real-time
systems.
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