
0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X XX 1

On-Line Resource Management for Improving
Reliability of Real-Time Systems on “Big–Little”

Type MPSoCs
Yue Ma, Student Member, IEEE, Junlong Zhou, Member, IEEE, Thidapat Chantem, Senior Member, IEEE,

Robert P. Dick, Member, IEEE, Shige Wang, Senior Member, IEEE, and X. Sharon Hu, Fellow, IEEE

Abstract—Heterogeneous MPSoCs consisting of cores with
different performance/power characteristics are widely used in
many real-time embedded systems where both soft-error relia-
bility and lifetime reliability are key concerns. Although existing
efforts have investigated related problems, they either focus on
one of the two reliability concerns or propose time-consuming
scheduling algorithms that cannot adequately address runtime
workload and environmental variations. This paper introduces
an on-line framework which is adaptive to runtime variations
and maximizes soft-error reliability while satisfying the lifetime
reliability constraint for soft real-time systems executing on
MPSoCs that are composed of high-performance cores and low-
power cores. Based on each core’s executing frequency and
utilization, the framework performs workload migration between
high-performance cores and low-power cores to reduce power
consumption and improve soft-error reliability. Experimental
results based on different hardware platforms show that the
proposed approach reduces the probability of failures due to
soft errors by at least 17% and 50% on average compared to
a number of representative existing approaches that satisfy the
same lifetime reliability constraints.

Keywords—Soft-error reliability; Lifetime reliability; Heteroge-
neous MPSoC; Real-time embedded system.

I. INTRODUCTION

To address power/energy concerns, various heterogeneous
multiprocessor systems on a chip (MPSoCs) have been intro-
duced [1]. A popular MPSoC architecture that is often used
in power/energy-conscious real-time embedded applications

Manuscript received XX. XX, XX; revised XX. XX, XX; accepted XX. XX,
XX. This work was supported in part by National Natural Science Foundation
of China under Grant 61802185 and Natural Science Foundation of Jiangsu
Province under Grant BK20180470. Corresponding author: Junlong Zhou.

Y. Ma and X. S. Hu are with the Department of Computer Science and
Engineering, University of Notre Dame, Notre Dame, IN 46556 USA (e-mail:
yma1@nd.edu; shu@nd.edu).

J. Zhou is with the School of Computer Science and Engineering, Nan-
jing University of Science and Technology, Nanjing 210094 China (e-mail:
jlzhou@njust.edu.cn).

T. Chantem is with the Department of Electrical and Computer Engineering,
Virginia Polytechnic Institute and State University, Arlington, VA 22203 USA
(e-mail: tchantem@vt.edu).

R. P. Dick is with the Department of Electrical Engineering and Com-
puter Science, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
dickrp@umich.edu).

S. Wang is with General Motors R&D, Warren, MI, 48090 USA (e-mail:
shige.wang@gm.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

is composed of pairs of high-performance (HP) cores and
low-power (LP) cores. Following the terminology introduced
by ARM [2], we refer to this architecture as the “big–
little” architecture. Nvidia’s variable symmetric multiprocess-
ing (vSMP) [3] is such an example. Such HP and LP cores
present unique performance, power/energy, and reliability
tradeoffs, which are investigated in this paper.

Resource management in heterogeneous MPSoCs has been
widely studied [4]–[8], but few work targets the “big–little”
architecture [9]–[12]. In this architecture, HP (LP) cores are
homogeneous and both HP and LP cores have the same
instruction set architecture (ISA). However, “big–little” type
MPSoCs may support different execution models. In one
model, represented by Nvidia’s TK1 [13] and Samsung’s
Exynos 5410 [14], one HP core is paired with one LP core,
and the HP and LP cores in the one pair cannot work
simultaneously. In another model, represented by Nvidia’s
TX2 [15] and NXP’s i.MX8 [16], although HP and LP cores
can work simultaneously, all HP (all LP) cores must execute at
the same frequency. We aim to design a resource management
framework that is adaptive to different execution models.

Since many real-time embedded systems are deployed in
critical applications and are expensive as well as inconvenient
to replace, lifetime reliability due to permanent faults1 as well
as soft-error reliability due to transient faults are important
design considerations. Although there exist several efforts
that either target soft-error reliability [17]–[19] or lifetime
reliability [8], [20]–[23], only a few papers have examined
both soft-error reliability and lifetime reliability together [24]–
[27]. In addition, runtime workload variations further compli-
cate the problem of improving the system overall reliability.
Hence, designing an on-line approach considering both lifetime
reliability and soft-error reliability becomes necessary.

This paper systematically addresses reliability concerns for
real-time systems running on “big–little” type MPSoCs. Since
transient faults occur much more frequently than permanent
faults [28], we focus on increasing soft-error reliability without
sacrificing lifetime reliability. Specifically, we solve the prob-
lem of maximizing soft-error reliability while satisfying tem-
perature, real-time, and lifetime reliability requirements. Our
problem is motivated by many real world applications such as
mobile devices and in-vehicle infotainment systems [29]. We

1Intermittent faults are unlikely to be strongly dependent on power con-
sumption and therefore are out of the scope of this work.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X XX

are particularly interested in developing an on-line framework
to address unavoidable workload and environment variations.

Our on-line framework, referred to as DRIF (Dynamic Reli-
ability Improvement Framework), solves the problem outlined
above by dynamically and judiciously scaling core frequencies
to increase soft-error reliability. By leveraging the power and
performance features of the “big–little” type MPSoCs, we
dynamically migrate workload and activate the most power-
efficient cores to execute tasks. Meanwhile, in order to reduce
the computational overhead to check whether the lifetime
reliability caused by a thermal profile is larger than a life-
time reliability constraint, we design a tool, referred to as
LTR-Checker, which is computational efficient to use at run
time.

Our paper makes three main contributions. (i) We propose
a computationally efficient method to determine whether a
given temporal thermal profile would respect the corresponding
lifetime reliability threshold. (ii) By performing extensive ex-
periments on a hardware platform, we experimentally establish
a suitable task migration guideline allowing tasks executed
on most power efficient cores. (iii) We develop an on-line
framework to maximize soft-error reliability under tempera-
ture, real-time, and lifetime reliability constraints by scaling
cores’ frequencies and selecting the most power efficient cores
to execute tasks.

We have implemented and validated DRIF on two hardware
boards containing Nvidia’s TK1 [13] chip and TX2 [15] chip,
respectively. Based on the results obtained from running the
MiBench benchmark suite [30], we show that DRIF increases
the no soft error occurring time at least 2 more days than
existing approaches.

The rest of the paper is organized as follows. We review
related work in Section II. Section III introduces the various
system models. We experimentally explore the power features
of HP and LP cores, and establish a task migration guideline
in Section IV. Section V formulates the problem and pro-
vides an overview of our framework. Section VI describes
the LTR-Checker. Section VII describes DRIF in detail.
Sections VIII and IX describe our experimental setup and
results, respectively. Section X concludes the paper.

II. RELATED WORK

As a special type of heterogeneous MPSoCs, the “big–little”
type MPSoCs use two types of cores: the LP cores offer
high power efficiency while the HP cores provide maximum
computing performance [2]. This type of MPSoCs provides
flexibility to balance the performance and power, and facilitates
ease of use [31]. Since different execution models introduce
unique constraints, e.g., HP core and LP core in the same pair
cannot work simultaneously, or all HP (all LP) cores must
execute at the same frequency, most resource management ap-
proaches for heterogeneous MPSoCs are not applicable for the
“big–little” architecture [5], [21], [23], [32], [33]. Focusing on
the “big–little” architecture, Liu et al. [9] proposed an iterative
approach for mapping multi-threaded applications on MPSoCs
composing of multiple core types to achieve high performance
and power efficiency. Annamalai et al. [10] designed a novel

technique to dynamically swap threads between HP cores and
LP cores and change the core frequency to achieve a high
throughput/Watt. Considering the constraints for HP cores and
LP cores, Carroll et al. [11] investigated the mechanisms for
frequency scaling, and proposed a technique to reduce energy
consumption. Singla et al. [12] designed an on-line method to
predict and reduce power and runtime temperature for “big–
little” type MPSoCs. While the above work considers the
specific features of the “big–little” architecture, none of them
focuses on lifetime reliability or soft-error reliability.

There exist several efforts that directly aim to increase soft-
error reliability [17], [18], [34], [35] or lifetime reliability [7],
[21], [36], [37]. In order to improve soft-error reliability,
Zhao et al. proposed a method to allocate recoveries for
tasks [17], [18] while Nahar et al. assigned redundancies to
tasks statically [38]. Fan et al. proposed a dynamic voltage
and frequency scaling (DVFS) based method to reduce power
consumption under soft-error reliability constraint. Although
these methods are effective at improving and ensuring soft-
error reliability, they usually reduce lifetime reliability with
a high operating temperature. For periodic tasks running on
an MPSoC, Huang et al. proposed an analytical model to
estimate lifetime reliability of MPSoCs and a task mapping
and scheduling algorithm to guard against aging effects [21].
Bolchini et al. dynamically determined the most effective map-
ping of tasks to minimize network-on-chip energy consumption
and maximize lifetime reliability [36]. Das et al. proposed a
machine learning based algorithm to handle inter- and intra-
application variations and reduce peak temperature and thermal
cycling [7]. These methods are designed to increase lifetime
reliability but weaken soft-error reliability.

Our proposed framework considers soft-error reliability and
lifetime reliability, both of which have not typically been
examined together. The work by Das et al. aims to jointly
improve soft-error reliability and lifetime reliability by map-
ping tasks to all cores and scaling core frequencies [24].
However, their solution is too computationally intensive to
use at run time. Kapadia et al. proposed a framework to
optimize performance and energy [25]. Although transient and
permanent faults are considered, their work does not increase
reliability but only focuses on reducing power under lifetime
reliability and soft-error reliability constraints. Zhou et al.
proposed an off-line technique to maximize system availability
by allocating replications of tasks and determining the core
frequency statically [26]. Although these works consider both
lifetime reliability and soft-error reliability, they are off-line
approaches and ignore the specific features of “big-little” type
MPSoCs. In this paper, we focus on “big-little” type MPSoCs
and propose to maximize soft-error reliability under lifetime
reliability constraint.

III. SYSTEM MODELS

In this section, we present the hardware platform as well as
the task and reliability models used in our framework.

A. Hardware Model
We consider on “big–little” type MPSoCs with n HP and

m LP cores. We assume that both HP cores and LP cores



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

MA et al.: IMPROVE RELIABILITY FOR BIG-LITTLE MPSOCS 3

support DVFS and have multiple frequency levels [13], [15].
A core dissipates static power when it is idle and consumes
additional active power when it performs operations [33]. Both
active and static power are related to the core’s frequency. Let

the utilization of a core in a given time interval |t| be u = |ta|
|t| ,

where |ta| is the amount of time that the core performs
operations [33]. A core’s utilization is commonly used to
estimate real-time performance and soft-error reliability.

We consider two execution models of “big–little” MPSoCs
in this paper. In the first execution model, referred to as
Hetero-Paired model and represented by Nvidia’ TK1 [13]
and Samsung’s Exynos 5410 [14], HP cores and LP cores are
paired, and the paired HP core and LP core cannot be active
simultaneously. In the second execution model, referred to as
Homo-Grouped model and represented by Nvidia’s TX2 [15]
and NXP’s i.MX8 [16], all cores can work simultaneously,
but HP (LP) cores must execute at the same frequency. There
exist other execution models, where HP and LP cores can
run simultaneously with their own core frequencies, but such
models are not widely supported by MPSoCs.

B. Task Model
We assume that MPSoCs execute independent periodic tasks

with soft deadlines such as those found in multimedia and
communication applications. A task is associated with a tuple
τi = {di, eHi , eLi } where di is the deadline, and eHi and
eLi represent the worst-case execution time when running on
an HP core and LP core, respectively. Generally eHi ≤ eLi .
Since all the jobs of the ith task have the same properties,
τi also denotes the jobs of the ith task. Tasks on each core
are scheduled according to a real-time scheduling policy such
as earliest deadline first or rate monotonic scheduling [39].
In this paper, we adopt a mapping approach where tasks are
assigned to cores at design time to balance the workload of
cores [40]. We guarantee the real-time constraint by ensuring
that the utilization of each core is lower than utilization bound
for schedulability [8], [41].

C. Soft-error Reliability
In this paper, we aim to maximize reliability in the presence

of soft errors caused by transient faults. The soft-error relia-
bility of a single core in a time interval is the probability that
soft errors occur during the time interval [26],

r(f, t) = e−λ(f)×u×|t|. (1)

The f is the core frequency, |t| is the length of time interval,
and u is the core’s utilization in this time interval. λ(f) is the
average fault rate depending on f [26],

λ(f) = λ0 × 10
d(fmax−f)
fmax−fmin . (2)

λ0 is the average faults rate at highest core frequency. fmin

and fmax are the minimum and maximum core frequency and
d (d > 0) is a hardware specific constant that indicates the
sensitivity of fault rates to frequency scaling. This model indi-
cates that improving core frequency is effective in improving
soft-error reliability.

For a “big–little” type MPSoC with n active HP cores and
m active LP cores, the soft-error reliability in the ith time
interval, ti, is

R(ti) =

n∏
j=1

rHP
j (fj , ti)×

m∏
j=1

rLP
j (fj , ti), (3)

where rHP
j (fj , ti) and rLP

j (fj , ti) are the soft-error reliability

of the jth HP (LP) core in the time interval ti. The aim of
this paper is to maximize soft-error reliability of the MPSoC
in each time interval.

D. Lifetime Reliability

Lifetime reliability, which is typically measured by the
mean-time-to-failure (MTTF), is dependent on multiple wear-
out effects [23]. For the sake of simplicity, we consider elec-
tromigration (EM) as the primary source of permanent faults in
this paper. Other device fault mechanisms can be incorporated
using the sum-of-fault rate model [22], [24]. Since the tasks
are executed periodically, the temperature variance with respect
to time will be also periodical after the system stabilization,
so we assume the thermal profiles are same in each task set’s
hyperperiod, hp. Based on the thermal profile in a hyperperiod,
the MTTF can be calculated by

MTTF = |hp| ×
∞∑
i=0

e−(i×A)β , (4)

where |hp| is the length of the hyperperiod and β is the slope
parameter in the Weibull distribution [21]. A is a temperature-
related parameter. If one hyperperiod can be divided by p time
intervals of the same length, and the operating temperature is
constant in each time interval, we calculate A as

A =

p∑
i=1

|t|
α(Ti)

, (5)

where |t| and Ti are the length of the time interval and the
temperature at the ith time interval, respectively. α(Ti) relates
to the arrival rate of permanent faults and depends on the
hardware and temperature Ti [21].

IV. EMPIRICAL STUDY: POWER CONSUMPTION OF CORES

In this section, we describe the “big–little” type MPSoCs
consisting of HP and LP cores, especially explore their unique
power features. We first observe that executing tasks on an
LP core may consume more power and energy than executing
on an HP core. We provide a measurement-based method to
quantitatively compare the power and energy consumption of
HP and LP cores. Based on this method and the measurement
results, we establish a suitable task mapping and migration
guideline to migrate tasks between cores and reduce a chip’s
power consumption.

Whereas the primary goal of “big–little” MPSoCs is to
reduce power consumption by executing a light workload on
the LP cores, an LP core may consume more power than an



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X XX

Denver (HP) Core ARM (LP) Core

0
0.1
0.2
0.3
0.4
0.5

20% 40% 60% 80% 100%

Po
w

er
 (W

)

Core Utilization

0.345GHz

0
0.1
0.2
0.3
0.4
0.5

20% 40% 60% 80% 100%

Po
w

er
 (W

)

Core Utilization

0.652GHz

0
0.1
0.2
0.3
0.4
0.5

20% 40% 60% 80% 100%

Po
w

er
 (W

)

Core Utilization

0.960GHz

0

0.2

0.4

0.6

0.8

20% 40% 60% 80% 100%

Po
w

er
 (W

)

Core Utilization

1.267GHz

0
0.2
0.4
0.6
0.8

1

20% 40% 60% 80% 100%

Po
w

er
 (W

)

Core Utilization

1.574GHz

0

0.5

1

1.5

20% 40% 60% 80% 100%

Po
w

er
 (W

)

Core Utilization

1.881GHz

Fig. 1. The power consumption of an HP (Denver) core and an LP (ARM)
core under different utilization and frequency levels.

HP core. To totally capture the power consumption behav-
ior of “big–little” MPSoCs, we have conducted a series of
measurement-based experiments. We measure the power con-
sumption of the HP core and LP core2 in Nvidia’s TX2 [15].
We use FLUKE AC/DC current clamp meters [43] and Na-
tional Instruments USB-6216 data acquisition system [44] to
acquire power consumption when cores execute at different
core frequencies and at different utilizations.

To generally evaluate the power features of HP and LP
cores, we propose a measurement-based method to quanti-
tatively compare power consumption of HP and LP cores.
This method measures and compares the power consumption
of cores with different frequencies and utilizations, and the
comparison results can guide the mapping of tasks. A low
utilization means that the workload is light, a core consumes
less active power, and the leakage power may be dominated.
In order to maintain the core’s utilization at a specific level, we
develop a feedback-based tool which can maintain the core’s
utilization at a specific value.

The measured power consumptions are illustrated in Fig. 1.
The results show that for any core frequency, both HP and
LP cores have a higher power consumption with a heavier
workload. However, LP cores are not always power efficient.
The LP core consumes less power than the HP core only
when the core frequency is low and the workload is light. For

2Note that TX2 is composed of ARM Cortex A57 cores geared for
multithreading, and Nvidia’ Denver cores for high single-thread performance
with dynamic code optimization [42]. In this measurement, we only consider
single-thread applications for TX2, therefore the Denver core is an HP core
and the ARM core is an LP core.

other platforms such as Nvidia’s TK1 [13], we have similar
observations that the LP core has a lower power than the HP
core only when the utilization and core frequency are low [27].
One possible reason to explain this phenomenon is that the
HP and LP core have different microarchitectures, such as on
TX2. Meanwhile, although HP and LP cores on TK1 have the
same microarchitecture, the transistors in the HP core and LP
core have different threshold voltages. The LP core consumes
low leakage power but requires high voltage to operate at
high frequencies. On the contrary, the HP core can work at
high frequency with a low voltage. The measurement results
reveal that in order to reduce power consumption of MPSoCs,
we should keep the workload light in the LP cores, and it is
necessary to migrate tasks between HP and LP cores if cores’
utilizations vary at run time.

Based on the data collected from our extensive experiments,
we can establish a suitable task mapping and migration guide-
line guiding the selection of cores for executing workload
to balance the power consumption and performance. This
guideline indicates that whether the LP core or the HP core
consumes less power for each given core frequency and core
utilization. With this guideline, we should map and migrate
tasks to the core consuming less power. As an example,
TABLE I presents the guideline for Nvidia TX2. In this table,
“HP” (“LP”) indicates the HP (LP) core is more power efficient
with the corresponding core frequency and utilization, so the
workload should be executing on an HP (LP) core. Note that
due to small variations in ambient temperature, as well as chip
operating voltage and current, the power consumption may
vary slightly even for exactly the same workload. Therefore,
it is insufficient to conclude that a core always consumes less
power when its measured power is lower than that of another
core by a small amount. We treat two measured power values
as the same if their difference is smaller than 0.1 W, which is
the resolution of our sensors. In TABLE I, “-” indicates that
the difference in power consumption of an HP core and an LP
core is smaller than this threshold. In this case, workload can
run either on an HP core or an LP core.

In our work to dynamically improve reliability, we will
use this guideline to migrate tasks between HP and LP cores
at run time to guarantee tasks are always executed on the
most power efficient cores. This task migration reducing power
consumption and temperature allows the cores to execute at a
high core frequency and achieves a high soft-error reliability.

V. PROBLEM FORMULATION AND FRAMEWORK

OVERVIEW

In this section, we first formulate the problem addressed in
this paper and then describe our solution DRIF at high level.

TABLE I. TASK MAPPING AND MIGRATION GUIDELINE

Utilization Core Frequency (in GHz)
1.881 1.574 1.267 0.960 0.652 0.345

100% HP - - LP LP LP

80% - - LP LP LP LP

60% - LP LP LP LP LP

40% - LP LP LP LP LP

20% LP LP LP LP LP LP



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

MA et al.: IMPROVE RELIABILITY FOR BIG-LITTLE MPSOCS 5

A. Problem Formulation

The problem that we aim to solve is motivated by ap-
plications such as in-vehicle infotainment systems. For such
systems, tasks are expected to complete before their deadlines,
and both lifetime and soft-error reliability are critical to guar-
antee the safety of human drivers and passengers [29]. At the
same time, the infotainment and other in-vehicle computational
subsystems should be power efficient especially for electric
vehicles [45]. Furthermore, the workload in these systems can
vary significantly at run time due to variations in input data
and the environment.

Before formulating the problem, we first introduce two
definitions.

Definition 1. A sampling window (SW ) is defined as a time
interval during which the temperature is constant.

Definition 2. A profiling window (PW ) is composed of
multiple equal-length sampling windows.

We determine the core frequencies and cores’ workloads for
each sampling window, and the profiling window is used to es-
timate lifetime reliability. The soft-error reliability, frequency,
utilization, and operating temperature of the jth HP (LP) core
at the ith sampling window are denoted by r(SWi, HPj)
(r(SWi, LPj)), f(SWi, HPj) (f(SWi, LPj)), u(SWi, HPj)
(u(SWi, LPj)), and T (SWi, HPj) (T (SWi, LPj)).

Assume that a profiling window is composed of p sampling
windows and the MPSoC has n HP cores and m LP cores3. Our
objective is to maximize the system-level soft-error reliability
in each profiling window,

R =

p∏
i=1

(

n∏
j=1

r(SWi, HPj)×
m∏
j=1

r(SWi, LPj)), (6)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T (SWi, HPj) ≤ Tth, ∀SWi, ∀HPj (7)

T (SWi, LPj) ≤ Tth, ∀SWi, ∀LPj (8)

u(SWi, HPj) ≤ uth, ∀SWi, ∀HPj (9)

u(SWi, LPj) ≤ uth, ∀SWi, ∀LPj (10)

MTTF (TP (PW )) ≥ MTTFth. (11)

The first two constraints require the temperature of both
HP and LP cores are less than the thresholds Tth in any
sampling window. Note that this temperature constraint also
limits the power consumption of the system. The third and
forth constraints capture the real-time requirement, where uth

is the upper bound on utilization to satisfy schedulability.
The last constraint requires the MTTF resulting from the
thermal profile, TP (PW ), to be not less than a threshold
MTTFth. For soft real-time systems, temporarily violating the
real-time and lifetime reliability constraints is acceptable, but
the temperature constraint must be satisfied to avoid thermal
throttling.

Different execution models of “big-little” type MPSoCs in-
troduce different execution related constraints. For the Hetero-
Paired execution model, the paired HP core and LP core cannot

3m is equal to n for MPSoCs with Homo-Grouped execution model.

work simultaneously. If the jth HP core is paired with the jth

LP core, one of them must be idle, i.e.,

f(SWi, HPj)× f(SWi, LPj) = 0. (12)

We assume that a core whose frequency is 0 is powered-off.
For the Homo-Grouped execution model, all HP (LP) cores
should have the same core frequency, i.e.,{

f(SWi, HPj) = f(SWi, HPj+1), ∀j (13)

f(SWi, LPj) = f(SWi, LPj+1), ∀j. (14)

Our framework is applicable to both execution models and
dynamically improves the soft-error reliability under the tem-
perature, real-time, and lifetime reliability constraints in each
profiling window.

In order to solve the formulated problem, there are two
main challenges that we need to overcome: (i) since the
history (i.e., tasks’ execution times) does not always reflect
the future, it is possible for the constraints to be violated
when using history-based predictions, and (ii) a highly efficient
algorithm is needed to avoid excessive overhead. We address
these challenges by proposing an on-line framework to (i)
obtain system runtime status, and (ii) dynamically migrate
tasks between cores, power off idle cores, and determine core
frequencies based on the system status in history.

B. Overview of Reliability Improvement Framework

As stated earlier in the paper, to better respond to workload
and environmental changes that are unavoidable in real-time
embedded systems, we aim to develop an on-line approach
to solve the problem defined in Eq. (6)–(11) by taking
into consideration of execution models given in Eq. (12) or
Eq. (13)–(14). The basic idea of our framework, DRIF, is
to incrementally solve the optimization problem by using the
history of system states in the previous profiling window. The
system state includes which cores are active and each active
core’s frequency, operating temperature, and utilization. Note
that our method can be easily applied to any arbitrary history
window size. DRIF consists of three main components: a
schedule generator (SG), which is triggered at the beginning
of each profiling window, a schedule executor (SE), which is
triggered at the beginning of each sampling window, and a
state collector (SC), which collects the system state in each
sampling window (see Fig. 2).
DRIF works as follows. In each sampling window, SC

collects and saves the system state. At the end of each profiling
window, the system state during this profiling window is sent
to SG. Based on the state information, SG then generates a
solution, called schedule, which specifies cores’ workloads and
frequencies for each sampling window in the next profiling
window (see Section VII-A). The migration guideline given
in TABLE I is used by SG to migrate tasks between cores
to achieve a lower power consumption as well as operating
temperature. In order to reduce the computational cost, SG
relies on LTR-Checker to efficiently check whether the
lifetime reliability constraint is satisfied. In each sampling
window, SE either adopts the schedule generated by SG or



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X XX

State Collector (SC)

Schedule Generator (SG)
Schedule Executor (SE)

system state

schedule

schedule

HP cores + LP cores

DRIF

temperature

at each sampling window
at each profiling window

system state

Migration  Guideline

LTR-Checker

Fig. 2. High-level overview of DRIF.

modifies the schedule to adapt to runtime variations (see
Section VII-B).

We highlight the effectiveness of DRIF. First of all, DRIF is
adaptive to different types of “big–little” MPSoCs and different
number of cores and/or pairs of cores. Meanwhile, considering
that the workload in systems may vary at runtime, DRIF peri-
odically obtain the status of each core. Based on the obtained
runtime status, DRIF determines the most appropriate cores
to execute tasks satisfying the real-time, lifetime reliability
and operating temperature constraints. In order to reduce the
computational overhead, we propose heuristics to periodically
migrate tasks and tune core frequencies in linear time. Note
that the execution order of tasks in each core can be determined
by some existing scheduling policies. DRIF is adaptive to and
can work on any scheduling policy such as rate monotonic
and earliest deadline first [39]. The details of our DRIF are
elaborated in the next section.

VI. LTR-CHECKER: A TOOL TO CHECK LIFETIME

RELIABILITY CONSTRAINT

In this section, we design a tool LTR-Checker, which
computational efficiently checks whether the lifetime reliability
caused by a given thermal profile in a task set’s hyperperiod
is larger than a pre-specified constraint, MTTFth. Calculating
MTTF by using Eq. (4) is extremely time consuming and
may not be practical to use at runtime. Hence, the target
of LTR-Checker is reducing the runtime computational
overhead by allowing some calculations are operated offline.

We first introduce a concept called super hyperperiod, sp,
which is a set of multiple adjacent hyperperiods. Let the length
of a super hyperperiod be |sp|, and |sp| = |hp|×k, where k is
a positive integer. Since one super hyperperiod is composed of
multiple adjacent hyperperiods and thermal profiles are same
in each super hyperperiod, the lifetime reliability can also be
expressed as

MTTF = |sp| ×
∞∑
i=0

e−(i×A�)β , (15)

where

A� =

k×p∑
i=1

|t|
α(Ti)

. (16)

For a given thermal profile in the hyperperiod, LTR-Checker
checks whether the corresponding MTTF is larger than
MTTFth. LTR-Checker reduces the online computational
overhead by operating the accumulation offline and only
calculating A� online.

The aim of the offline part in LTR-Checker is to find a
threshold for A�, referred to as A�

th, such that if A� ≤ A�
th,

the corresponding MTTF is larger than MTTFth. We first
arbitrarily determine the length of super hyperperiod |sp|.
Since |hp| is usually in seconds and MTTFth is in years,
setting |sp| to months can satisfy that |sp| can be evenly
divided by any possible |hp|. After determining the value of
|sp|, we can find the threshold A�

th such that

|sp| ×
∞∑
i=0

e−(i×A�
th)

β

= MTTFth. (17)

If the A� caused by a thermal profile is smaller than A�
th, the

corresponding system’s MTTF is larger than MTTFth.

The online part of LTR-Checker calculates A� based on
the thermal profile in a hyperperiod. With the determined |sp|,
we first find the relationship between A (in Eq. (5)) and A�,
which is described in Lemma 1.

Lemma 1. If one super hyperperiod is composed of k hyper-
periods, i.e., |sp| = k × |hp|, then A� = A× k.

Proof: Since thermal profiles are same in each hyper-
period, each hyperperiod’s ith time interval has the same
temperature, i.e., Ti = Ti+p = · · · = Ti+kp. Furthermore,
α(Ti) = α(Ti+p) = · · · = α(Ti+kp). Hence,

A� =

kp∑
i=1

|t|
α(Ti)

= k ×
p∑

i=1

|t|
α(Ti)

= A× k. (18)

Since |sp| is arbitrarily determined offline and |hp| is
constant for a given task set, we only need to calculate A in
order to obtain A�. A can be obtained by using Eq. (5), and
its computational overhead only depends on the value of |hp|,
which is much smaller than |sp| and MTTFth. Comparing
to obtain MTTF directly by using Eq. (4) and Eq. (5), the
online operation of LTR-Checker is only obtaining A by
using Eq. (5). Hence, LTR-Checker dramatically reduces
the online computational overhead and it can be easily used
even when the computational resources are limited. In DRIF,
we require the length of the profiling window is multiple of
the length of the task set’s hyperperiod, and the SG utilizes
the LTR-Checker to determine whether a given operating
temperature can guarantee the lifetime reliability constraint.

VII. DESIGN OF RELIABILITY IMPROVEMENT

FRAMEWORK

We provide the details of our framework DRIF to improve
the soft-error reliability under the temperature, real-time, and
lifetime reliability constraints.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

MA et al.: IMPROVE RELIABILITY FOR BIG-LITTLE MPSOCS 7

Algorithm 1 Schedule Generator for Homo-Grouped MPSoCs

1: hf (lf ): the cores with high (low) core frequencies
2: l(lf, SWi): frequency level of lf cores at sampling window SWi

3: TPj : thermal profile in the qth profiling window
4: procedure GENERATORHOG(Sc(PWj), St(PWj))
5: if MTTF(TPj) < MTTFth then
6: for each sampling window SWi do
7: if u(l(hf, SWi)− 1) < uth then
8: l(hf, SWi) = l(hf, SWi)− 1
9: else if u(l(hf, SWi)− 1) < uth then

10: l(lf, SWi) = l(lf, SWi)− 1
11: end if
12: end for
13: else
14: for each sampling window SWi do
15: if T (l(lf, SWi) + 1) < Tth then
16: l(H,SWi) = l(H,SWi) + 1
17: end if
18: end for
19: end if
20: for each sampling window SWi do
21: Sc�(SWi) ←migrate workload based on TABLE I
22: end for
23: Sc(PWj+1) ← {Sc�(SW1), . . . , Sc

�(SWp)}
24: end procedure

A. Schedule Generator

The goal of SG is to generate a schedule, i.e., each core’s
workload and frequency, for the next profiling window based
on the system status in the current profiling window. Although
it is possible to use an optimization solver to generate an
optimal schedule for the problem defined in Eq. (6)–(11), such
a solver would be too time consuming for online use. Instead,
we design a computational effective heuristic migrating tasks
and dynamically scaling core frequencies.

As pointed out earlier, we assume that the workload has
already been mapped and the workload is balanced between
cores. Considering the runtime variations of workload, SG
determines the frequencies of all cores to maximize soft-
error reliability and meet all constraints in Eq. (7)–(11) by
considering the execution models of “big–little” MPSoCs
given in Eq. (12) or Eq. (13)–(14).

Before we present the algorithm in SG, we first introduce
some concepts. System state, St(PWj), denotes the state in
the profiling window PWj , which includes the utilization, fre-
quency, and operating temperature of each core in the sampling
windows of PWj . St(SWi), a subset of St(PWj), represents
the state in the sampling window SWi. System schedule,
Sc(PWj), specifies each core’s workload and frequency in
all sampling windows in PWj . Similarly, Sc(SWi) represents
schedule in the sampling window SWi.
SG is invoked at the end of each profiling window and takes

St(PWj) and Sc(PWj) as inputs. SG generates a schedule
for Homo-Grouped MPSoCs (in Alg. 1) or for Hetero-Paired
MPSoCs (in Alg. 2), respectively. We provide the details to
generate a schedule for Homo-Grouped MPSoCs first. The idea
is that we check whether the lifetime reliability constraint is
satisfied, and try to increase core frequencies if the lifetime

Algorithm 2 Schedule Generator for Hetero-Paired MPSoCs

1: ρk: the kth active core
2: l(ρk, SWi): HP’s frequency level at sampling window SWi

3: TPj : thermal profile in the qth profiling window
4: procedure GENERATORHEP(Sc(PWj), St(PWj))
5: if MTTF(TPj) < MTTFth then
6: for each sampling window SWi do
7: Sort core with their core frequencies
8: for ρk (starting form the core with high frequency) do
9: if u(l(ρk, SWi)− 1) < uth then

10: l(ρk, SWi) = l(ρk, SWi)− 1
11: break
12: end if
13: end for
14: end for
15: else
16: for each sampling window SWi do
17: Sort core with their core frequencies
18: for ρk (starting form the core with low frequency) do
19: if T (l(ρk, SWi) + 1) < Tth then
20: l(ρk, SWi) = l(ρk, SWi) + 1
21: break
22: end if
23: end for
24: end for
25: end if
26: for each sampling window SWi do
27: Sc�(SWi) ←migrate workload based on TABLE I
28: end for
29: Sc(PWj+1) ← {Sc�(SW1), . . . , Sc

�(SWp)}
30: end procedure

reliability is larger than its constraint, otherwise, reduce core
frequencies (in Lines 5–19). Since all HP (LP) cores run at the
same core frequency, we use hl (lf ) to represent cores running
at high (low) core frequencies. For each sampling window, if
the system status in the previous profiling window, St(PWj),
violates the lifetime reliability constraint, SG reduces the core
frequencies of cores running at high frequency if doing so does
not violate the real-time constraint (in Lines 7–8). Otherwise,
reduce the core frequencies of cores with low core frequency
if not violate the real-time constraint (in Lines 9–10). Mean-
while, if St(PWj) meets the lifetime reliability constraint,
SG increases frequencies for cores with low core frequency to
improve soft-error reliability under the temperature constraint
(in Lines 14–18). After determining core frequencies, SG
migrates tasks between cores to reduce the power consumption
and temperature (in Lines 20–22). We provide the details of
task migration in Alg. 3. After determining core frequencies
and migrating tasks between cores, the schedule for the next
profiling window, Sc(PWj+1), is generated (in Line 23). The
computational complexity to determine the core frequencies
for Homo-Grouped MPSoCs is O(p) where p is the number
of sampling windows in a profiling window.
SG generates a schedule for Hetero-Paired MPSoCs in

Alg. 2. If the system status in the previous profiling window,
St(PWj), violates the lifetime reliability constraint, SG tries
to reduce the core frequency for the core which executes at
the highest frequency if doing so does not violate the real-



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X XX

Algorithm 3 Migrate Workload

1: Ty(ρj): the type of ρj , its HP or LP
2: u(ρj , SWi): ρj’s utilization at SWi

3: u(ρj ,W ): ρj’s utilization if executing workload W
4: e

ρp
k : the execution time of task τk on core ρp

5: procedure MIGRATE(Sc(SWi), St(SWi), TABLE I)
6: if Homo-Grouped MPSoCs then
7: for each core (ρj) do
8: τk: the task on ρj with shortest execution time
9: ρp: the lowest utilization core at different type of ρj

10: Search TABLE I with u(ρj , SWi) and f(ρj , SWi)
11: T ← the type of the most power efficient core
12: while Ty(ρj) �= T do
13: if u(ρp) +

e
ρp
k
dk

< uth then
14: Migrate τk to core ρp
15: end if
16: T ← search TABLE I
17: end while
18: end for
19: end if
20: if Hetero-Paired MPSoCs then
21: for each active core ρj do
22: T ← search TABLE I with u(ρj) and f(ρj)
23: W : the workload on ρj
24: ρp: ρj’s paired core
25: if Ty(ρj) �= T and u(W,ρp) < uth then
26: Migrate all workload to ρp paired core
27: end if
28: end for
29: end if
30: for each core ρj do
31: if ρj’s workload is empty then
32: Power off ρj
33: end if
34: end for
35: end procedure

time constraint (in Lines 6–14). On the contrary, if St(PWj)
satisfies the lifetime reliability constraint, SG increases the
core frequency of cores with low core frequency under the
temperature constraint (in Lines 16-24). Similar to Homo-
Grouped MPSoCs, SG migrates tasks (in Lines 26–28) and
finally generates a new schedule Sc(PWj+1) (in Line 29).
The computational complexity of Alg. 2 is O(p× (n+m)×
log(n +m)) where p is the number of sampling windows in
a profiling window, and n and m are the number of HP cores
and LP cores, respectively.

We provide the details on how to migrate tasks and select
power efficient cores to execute tasks are in Alg. 3. This
task migration algorithm is called by Alg. 1 and Alg. 2
at each sampling window, and its inputs are the migration
guideline given in TABLE I, the system status, and schedule
at each sampling window. The key idea is that we search the
migration guideline with each core’s utilization and frequency,
and migrate tasks based on the search results. For the Homo-
Grouped MPSoCs, for a core, ρj , if the migration guideline
indicates we should tune ρj’s utilization to save power, we
migrate the task with shortest execution to an LP or HP core
(in Lines 6-19). We iteratively migrate tasks between cores

until the results of search migration guideline match the types
of all cores. For the Hetero-Paired MPSoCs, the paired HP and
LP cores work exclusively. Hence, if tasks are ready optimally
mapped to each pair initially, we only need to select the HP or
LP core to use for each pair. If the searching results from the
task migration guideline do not match the type of the active
core ρj , migrate all tasks on ρj to its paired core if doing so
does not violate the real-time constraint (in Lines 20–29). For
both Homo-Grouped and Hetero-Paired MPSoCs, if a core’s
workload is empty, power off this core to save energy (in Lines
30–34). For the Homo-Grouped MPSoCs, the computational
complexity of Alg. 3 is O(℘× (m+ n)), where ℘, m, n are
the number of tasks, HP cores, and LP cores, respectively. For
Hetero-Paired MPSoCs, the complexity is O(m+ n).

B. Schedule Executor
The schedule executor, SE, determines the active cores’

frequencies at the beginning of each sampling window. A
straightforward approach is to simply follow the schedule
generated by SG. However, since the schedule Sc(PWj+1)
is generated based on the system status St(PWj), but the
utilization in the profiling window PWj can be different
from that in the PWj+1, Sc(PWj+1) may actually violate
some or all of the constraints during run time. For soft
real-time systems, it is acceptable to temporarily violate the
real-time and lifetime reliability constraints in Eq. (9)–(11)
as they can be compensated in the next profiling window.
However, violating the temperature constraint may either cause
timing faults or unexpected throttling. Therefore, SE should be
designed to avoid the occurrence of such a case.
SE adjusts core frequency for each core. At the beginning

of each sampling window, SE receives the initial temperatures
from SC, which is the temperature of the previous sampling
window, and gets the cores’ frequencies from Sc(PWj+1).
We can statically design a table that for all possible initial
temperatures and core frequencies. This table indicates the
worst-case temperature in a sampling window by assuming
the core utilization is 100%. SE checks whether the worst-
case temperature can remain below the thermal threshold. If
not, we reduce the core frequency one level lower than that
specified in the schedule Sc(PWj+1). Since we establish such
a table statically, the computational complexity of SE is O(1).

VIII. EXPERIMENTAL SETUP

To evaluate the proposed DRIF, we conducted experiments
to compare with two representative approaches. In this section,
we present the platforms, workloads, and the frameworks used
for comparison in our experiments.

A. Comparison Targets
We compared the performance of DRIF to two representa-

tive frameworks. The multi-objective optimization of system
reliability (MOO) finds the Pareto-optimization of soft-error
reliability and lifetime reliability by using a genetic algo-
rithm [24]. Since the genetic algorithm based solver is too
costly to be used at runtime, core frequencies are determined



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

MA et al.: IMPROVE RELIABILITY FOR BIG-LITTLE MPSOCS 9

off-line and cannot be changed on-line. In order to evaluate the
benefits of migrating tasks between cores, we compare DRIF
with a framework, called simplified DRIF (S-DRIF), which
scales core frequencies as in DRIF, but does not migrate tasks
between cores.

Three metrics are considered in the comparison. The prob-
ability of failures (PoF) due to soft errors quantifies the soft-
error reliability. The PoF is defined as 1 − R, where R is
the system-level soft-error reliability. An approach achieving
a lower PoF is the same as achieving a higher soft-error
reliability. We used the percentage of feasible solutions for
real-time constraint (FS-RT) to describe the capability of
satisfying real-time constraint. In experiments, the jobs of
each task are periodically released. We checked which job
meeting its deadline and the percentage of FS-RT is quantified
as the ratio of the number of jobs meeting its deadline over
the total number of all jobs. Similarly, the percentage of
feasible solution for lifetime reliability constraint (FS-LTR)
describes the capability of satisfying lifetime reliability. In
experiments, we utilized LTR-Checker to check whether the
lifetime reliability is satisfied at each profiling window. The
percentage of FS-LTR is quantified as the ratio of the number
of profiling windows achieving a higher lifetime reliability
than the lifetime reliability constraint over the total number
of profiling windows.

B. Experimental Platforms

The experiments are conducted on two boards containing
Nvidia’s TK1 [13] and TX2 [15] chip, respectively. The TK1
chip provides 4 HP cores and 1 LP core, but the HP cores
and the LP core cannot work simultaneously. Hence, the TK1
chip is a Hetero-Paired type MPSoC, and it only provides 1
HP–LP core pair. In our experiments, the workload for TK1 is
designed to be light enough to fit on one HP or LP core.
The TX2 chip includes 2 HP cores (with Nvidia’s Denver
microarchitecture [42]) and 4 LP cores (with ARM Cortex
A57 microarchitecture). Hence, TX2 chip is a Homo-Grouped
type MPSoC. Note that we only consider single-thread tasks,
so the Denver core has a better performance than the ARM
core [42].

We obtained the chip’s operating temperature by reading
their integrated thermal sensors. Note that although TK1 and
TX2 only report one CPU temperature, it is enough to show
that DRIF can achieve a lower temperature and guarantee the
temperature constraint. For both HP and LP cores in TK1,
we use the core frequencies 1.092 GHz, 0.96 GHz, 0.828 GHz,
0.696 GHz, and 0.564 GHz. For TX2, we select the core
frequencies 1.881 GHz, 1.574 GHz, 1.267 GHz, 0.960 GHz,
0.652 GHz, and 0.345 GHz.

C. Workloads

We now discuss the tasks set for experiments on TK1
and TX2. Considering the low performance of cores in TK1,
we chose 3 tasks from Mibench benchmark suite [30] and
measured their execution times when the core’s frequency is
1.092 GHz (see TABLE II). TK1 only provides one 1 HP–LP

TABLE II. TASKS’ EXECUTION TIMES ON TK1

Tasks Execution time
HP ARM Core LP ARM Core

qsort 145 ms 145 ms

blowfish 150 ms 152 ms

crc32 195 ms 196 ms

TABLE III. TASKS’ EXECUTION TIMES ON TX2

Tasks Execution time
Denver Core ARM Core

cjpeg 24 ms 33 ms

qsort 49 ms 69 ms

dijkstra 47 ms 64 ms

blowfish 26 ms 52 ms

susan 52 ms 78 ms

stringsearch 2 ms 3 ms

crc32 30 ms 75 ms

patricia 12 ms 16 ms

core pair, so tasks execute either on the HP core or the LP
core. For experiments on TX2, we used 2 ARM cores and 1
Denver core to execute 8 tasks from Mibench [30]. We first
measured the execution times of the tasks on an ARM and
Denver core with the highest core frequency (see TABLE III).
Based on the measurements, we mapped these tasks to ARM
and Denver cores and balanced the workloads of cores (see
TABLE IV). Note that although TX2 provides 4 ARM cores
and 2 Denver cores, we only used 1 Denver core and 2 ARM
cores because the workload is light. If allocating the selected
tasks to 3 ARM cores and/or 2 Denver cores, the workload of
each core is such light that a core can always execute at the
highest frequency. Meanwhile, we aim at independent tasks
and the soft-error reliability achieved by DRIF is related to
a cores utilization but independent to the number of cores.
Hence, executing tasks on 2 ARM cores and 1 Denver core
is sufficient to validate the capability of DRIF in improving
soft-error reliability.

We designed two task groups. In the first group, tasks are
frame-based and share the same period and deadline. For
experiments on TX2, tasks’ periods and deadlines are 150 ms,
200 ms, 250 ms, and 300 ms, and for experiments on TK1,
they are 700 ms, 800 ms, 900 ms, and 1000 ms. In the second
group, a task’s deadline and period are set to be the same
but random in the ranges between 150 ms–200 ms, 200 ms–
250 ms, 250 ms–300 ms for TX2, and for TK1, the ranges are
700 ms–800 ms, 800 ms–900 ms, 900 ms–1000 ms. We used the
deadline-monotonic scheduling policy to schedule tasks where
a task with shorter deadline is assigned a higher priority and
executed earlier [39]. Also, change from tasks to jobs to be
consistent. Such setups ensure that tasks are schedulable, and

TABLE IV. THE TASK ALLOCATION FOR TX2

Tasks Mapping to
cjpeg ARM Core 0

qsort ARM Core 0

dijkstra ARM Core 1

blowfish ARM Core 1

susan Denver Core 0

stringsearch Denver Core 0

crc32 Denver Core 0

patricia Denver Core 0



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X XX

1

10

100

1000

700 800 900 1000

Po
F

(x
10

-6
)

Period (ms)

DRIF S-DRIF MOO

0

20

40

60

80

100

120

700 800 900 1000Pe
rc

en
ta

ge
 o

f F
S-

RT
 (%

)

Period (ms)

DRIF S-DRIF MOO

50

60

70

80

90

100

110

150 200 250 300Pe
rc

en
ta

ge
 o

f F
S-

LT
R

 (%
)

Period (ms)

DRIF S-DRIF MOO

Fig. 3. Probability of failures due to soft errors and percentage of feasible
solutions for a frame-based task set running on TK1.

1

10

100

1000

700-800 800-900 900-1000

Po
F

(x
10

-6
)

Period (ms)

DRIF S-DRIF MOO

0

20

40

60

80

100

120

700-800 800-900 900-1000

Pe
rc

en
ta

ge
 o

f F
S-

RT
 (%

)

Period (ms)

DRIF S-DRIF MOO

50

60

70

80

90

100

700-800 800-900 900-1000Pe
rc

en
ta

ge
 o

f F
S-

LT
R

 (%
)

Period (ms)

DRIF S-DRIF MOO

Fig. 4. Probability of failures due to soft errors and percentage of feasible
solutions for a general periodic task set running on TK1.

represent multiple workloads ranging from heavy to light.

IX. EXPERIMENTAL RESULTS

In this section, we examine the performance of the proposed
DRIF compared to the S-DRIF and MOO.

A. Experiments on TK1 Chip
We first validated our approach on a TK1 chip with Hetero-

Paired execution model. We compared the proposed DRIF with
MOO and S-DRIF to determine whether DRIF can improve
soft-error reliability without violating temperature, real-time,
and lifetime reliability constraints.

Fig. 3 shows the experimental results when tasks are frame-
based. DRIF and S-DRIF have similar performance when
the workload is heavy, but DRIF achieves a lower PoF than
MOO and S-DRIF in all the cases. The PoF of DRIF is
97.89%, 95.64%, 37.9%, and 18.89% of S-DRIF when the
period is 700 ms, 800 ms, 900 ms, and 1000 ms, respectively.

This reduced PoF guarantees the system can work without
soft errors at least 2 minutes more than S-DRIF, and up to
10 hours. Meanwhile, since our task migration considers the
real-time and lifetime reliability constraints, the percentages
of FS-RT and FS-LTR of DRIF, S-DRIF and MOO are
close, especially when the workload is light. For the soft-error
reliability, the PoF of DRIF is only 29.18%, 51.21%, 16.29%,
and 15.04% of MOO. It means that the system can work
successfully without soft errors 1.1 hours, 0.4 hour, 12.7 hours,
and 100.8 hours more than MOO, respectively.

We extended the experiment to validate DRIF for a general
periodic task set where tasks’ periods and deadlines are equal
but randomly generated in different ranges (see Fig. 4). The
average PoF of DRIF is 81% of S-DRIF and 51% of MOO,
which translates to DRIF allowing the system to successfully
work for 17 minutes more than S-DRIF on average, and
63 minutes more than MOO on average. Comparing to the
results in Fig. 3, DRIF provides less benefits when tasks have
different periods. The reason is that the workload in each
sampling window varies dramatically, and DRIF guarantees
the lifetime reliability constraint with a low core frequencies,
which limits the performance in improving soft-error reliabil-
ity. However, DRIF is still a better approach than S-DRIF
and MOO, and achieves a lower PoF.

We measured the time and power consumption of DRIF on
an ARM core. DRIF consumes less than 1 ms to complete
and we cannot observe power changes when operating DRIF
because the resolution of our power measurement tool is about
0.1 W. Based on these measurements, we claim that the time
and power consumption of DRIF on TK1 can be ignored.

We also compared DRIF with a brute force search based
approach which finds the optimal solution at each sampling
window. This approach, although can guarantee the highest
soft-error reliability at each sampling window, is computation
intensive and cannot be used at the runtime. The execution
time of this approach is about 30 s if running on the TK1’s
HP core. Compared to this approach, the computation time
of DRIF is less than 1 ms even if one profiling window has
100 sampling windows. Since both approaches determine core
frequencies for each profiling window, which is typically in
minutes, the brute force search may not be a good choice to
use at runtime.

Although the brute force search based approach can find
optimal solutions at each sampling window, it is too computa-
tional complicated to apply at runtime. On the contrary, DRIF
determines the core frequencies at each profiling window by
tuning the operating core frequencies one level at one time. Our
experiments show that DRIF can find the best solution starting
from the fifth profiling window. Since the length of a profiling
window is in minutes, not finding the best solution in the first
five profiling windows (less than 10 minutes) has negligible
effect on lifetime reliability and soft-error reliability.

B. Experiments on TX2 Chip

We conducted experiments on TX2 chip to evaluate the
performance of DRIF in the platform with Homo-Grouped



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

MA et al.: IMPROVE RELIABILITY FOR BIG-LITTLE MPSOCS 11

1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6
1E+7

150 200 250 300

Po
F

(x
10

-7
)

Period (ms)

DRIF S-DRIF MOO

0

20

40

60

80

100

120

150 200 250 300

Pe
rc

en
ta

ge
 o

f F
S-

RT
 (%

)

Period (ms)

DRIF S-DRIF MOO

50

60

70

80

90

100

110

150 200 250 300Pe
rc

en
ta

ge
 o

f F
S-

LT
R

 (%
)

Period (ms)

DRIF S-DRIF MOO

Fig. 5. Probability of failures due to soft errors and percentage of feasible
solutions for a frame-based task set running on TX2.

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

150-200 200-250 250-300

Po
F

(x
10

-7
)

Period (ms)

DRIF S-DRIF MOO

95

96

97

98

99

100

101

150-200 200-250 250-300Pe
rc

en
ta

ge
 o

f F
S-

RT
 (%

)

Period (ms)

DRIF S-DRIF MOO

50

60

70

80

90

100

110

150-200 200-250 250-300Pe
rc

en
ta

ge
 o

f F
S-

LT
R

 (%
)

Period (ms)

DRIF S-DRIF MOO

Fig. 6. Probability of failures due to soft errors and percentage of feasible
solutions for a general periodic task set running on TX2.

execution model. On this platform, DRIF scales core frequen-
cies and migrates tasks to increase soft-error reliability under
temperature, real-time and lifetime reliability constraints.

Similar to the experiments on TK1, we validated DRIF for
i) a frame-based task set (see Fig. 5) and ii) a general periodic
task set (see Fig. 6). For the frame-based task set, the PoF of
DRIF is 47.25%, 81.95%, 0.1%, and 0.003% of S-DRIF when
the period is 150 ms, 200 ms, 250 ms, and 300 ms, respectively.
This low PoF guarantees the system can successfully work
158 hours more than S-DRIF on average and up to 24 days.
Thanks to the dynamic task migration, DRIF dynamically
selects the most appropriate cores to execute tasks. DRIF can
also dynamically power off any idle cores to reduce power
consumption and allow active cores running at high core
frequency. Hence, the benefits of DRIF are clearer than the
experiments on TK1 in Fig. 3. Comparing to MOO, DRIF
achieves a lower PoF in all cases, and leads to a system
that can successfully work about 6.6 days more than MOO on

average and up to 26 days. In terms of satisfying real-time
and lifetime reliability constraints, both DRIF and S-DRIF
achieve a similar percentage of FS-RT and FS-LTR to MOO
especially when the workload is light.

Fig. 6 shows the performance of DRIF when the workload
is a general periodic task set. The PoF of DRIF is about
98%, 86%, and 0.001% of S-DRIF when periods of tasks
in ranges 150 ms–200 ms, 200 ms–250 ms, and 250 ms–300 ms,
respectively. It means that DRIF guarantees the system suc-
cessfully work without soft errors 7.6 days more than S-DRIF
on average, and up to 22.8 days. Meanwhile, the soft-error reli-
ability improvement of DRIF over MOO is similar to that over
S-DRIF. Comparing to MOO, DRIF increases the system’s
successful execution time about 7.6 days on average, and up
to 22.8 days. Finally, the execution time of DRIF is less than
1 ms either on the ARM core or the Denver core. The power
consumption of DRIF on TX2, similar as on TK1, is also
too small to be observed. In summary, the above experiments
confirm that our approach DRIF has a better performance in
improving soft-error reliability in all cases, especially when
the workload is light.

X. CONCLUSION

Focusing on two execution models of “big–little” type
MPSoCs, we proposed a dynamic reliability improvement
framework to maximize soft-error reliability under tempera-
ture, real-time, and lifetime reliability constraints. We designed
a computational efficient tool to check whether the lifetime
reliability caused by a thermal profile is larger than a pre-
specified constraint. In order to reduce power consumption, we
empirically studied the power features of the high-performance
and low-power cores and established a task migration guideline
to indicate the most appropriate and power efficient core to
execute tasks. Based on these contributions, our framework
dynamically migrates tasks between cores and adjusts the core
frequencies to satisfy all constraints. The results on chips
supporting different execution models show that our approach
is effective in increasing soft-error reliability under constraints
compared to other representative approaches. As future work,
we plan to extend our approach to more general task models
and consider MPSoCs with GPU.

REFERENCES

[1] W. Wolf, A. Jerraya, and G. Martin, “Multiprocessor system-on-chip
(MPSoC) technology,” IEEE Trans. Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 27, no. 10, pp. 550–561, Oct. 2008.

[2] ARM, “big.LITTLE technology: The future of mobile.” [Online].
Available: https://www.arm.com/files/pdf/big LITTLE Technology
the Futue of Mobile.pdf

[3] Nvidia, “Variable SMP (4-plus-1) a multi-core CPU architecture
for low power and high performance.” [Online]. Available: https:
//www.nvidia.com/content/PDF/tegra white papers

[4] A. Hartman, D. Thomas, and B. Meyer, “A case for lifetime-aware
task mapping in embedded chip multiprocessors,” in Proc. Int. Conf.
Hardware/Software Codesign and System Synthesis, Oct. 2010, pp. 145–
154.

[5] T. Chantem, R. Dick, and X. Hu, “Temperature-aware scheduling and
assignment for hard real-time applications on MPSoCs,” IEEE Trans.
VLSI Systems, vol. 19, no. 10, pp. 1884–1897, Oct. 2011.



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. X, X XX

[6] L. Huang, F. Yuan, and Q. Xu, “On task allocation and scheduling
for lifetime extension of platform-based MPSoC designs,” IEEE Trans.
Parallel and Distributed Systems, vol. 22, no. 12, pp. 789–800, Dec.
2011.

[7] A. Das, R. A. Shafik, and G. V. Merrett, “Reinforcement learning-
based inter- and intra-application thermal optimization for lifetime
improvement of multicore systems,” in Proc. Design, Automation Conf.,
June. 2014, pp. 1–6.

[8] Y. Ma, T. Chantem, R. Dick, and X. Hu, “Improving system-level
lifetime reliability of multicore soft real-time systems,” IEEE Trans.
VLSI Systems, vol. 25, no. 6, pp. 1895–905, Jun. 2017.

[9] G. Liu, J. Park, and D. Marculescu, “Dynamic thread mapping for
high-performance, power-efficient heterogeneous many-core systems,”
in Proc. Int. Conf. Computer Design, Oct. 2013, pp. 54–61.

[10] A. Annamalai, R. Rodrigues, I. Koren, and S. Kundu, “An opportunistic
prediction-based thread scheduling to maximize throughput/watt in
AMPs,” in Proc. Int. Conf. on parallel architectures and compilation
techniques, Oct. 2013, pp. 63–72.

[11] A. Carroll and G. Heiser, “Unifying DVFS and offlining in mobile mul-
ticores,” in Proc. Int. Conf. the Real-Time and Embedded Technology
and Application Symp., Apr. 2014, pp. 287–296.

[12] G. Singla, G. Kaur, A. Unver, and U. Ogras, “Predictive dynamic
thermal and power management for heterogeneous mobile platforms,”
in Proc. Design, Automation and Test in Europe, Mar. 2015, pp. 1–6.

[13] Nvidia, “Jetson Tegra K1.” [Online]. Available: http://www.nvidia.com/
object/jetson-tk1-embedded-dev-kit.html

[14] Samsung, “Samsung Exynos 5 Octa (5410) mobile processor.”
[Online]. Available: http://www.samsung.com/semiconductor/minisite/
Exynos/Solution/MobileProcessor/Exynos 5 Octa 5410.html

[15] Nvidia, “Jetson Tegra X2.” [Online]. Available: http://www.nvidia.com/
object/embedded-systems-dev-kits-modules.html

[16] NXP, “i.MX 8 Family ARM Cortex-A53, Cortex-A72.” [Online].
Available: https://www.nxp.com/products/

[17] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware power
management through shared recovery technology,” in Proc. Int. Conf.
Computer-Aided Design, Nov. 2009, pp. 63–70.

[18] ——, “Energy management under general task-level reliability con-
straints,” in Proc. Int. Conf. the Real-Time and Embedded Technology
and Application Symp., Apr. 2011, pp. 285–294.

[19] ——, “Generalized reliability-oriented energy management for real-
time embedded applications,” in Proc. Design, Automation Conf., June.
2011, pp. 381–386.

[20] A. Coskun, R. Strong, D. M. Tullsen, and T. S. Rosing, “Evaluating
the impact of job scheduling and power management on processor
lifetime for chip multiprocessors,” in Proc. Int. Conf. Measurement and
Modeling of Computer System, Jun. 2009, pp. 169–180.

[21] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware task alloca-
tion and scheduling on MPSoC platform,” in Proc. Design, Automation
and Test in Europe, Mar. 2009, pp. 51–56.

[22] A. Das, A. Kumar, and B. Veeravalli, “Reliability-driven task mapping
for lifetime extension of networks-on-chip based multiprocessor sys-
tems,” in Proc. Design, Automation and Test in Europe, Mar. 2013, pp.
689–694.

[23] T. Chantem, Y. Xiang, X. Hu, and R. Dick, “Enhancing multicore relia-
bility through wear compensation in online assignment and scheduling,”
in Proc. Design, Automation and Test in Europe, Mar. 2013, pp. 1373–
1378.

[24] A. Das, A. Kumar, B. Veeravalli, C. Bolchini, and A. Miele, “Combined
DVFS and mapping exploration for lifetime and soft-error susceptibility
improvement in MPSoCs,” in Proc. Design, Automation and Test in
Europe, Mar. 2014, pp. 1–6.

[25] N. Kapadia and S. Pasricha, “VARSHA: Variation and reliability-aware
application scheduling with adaptive parallelism in the dark-silicon era,”
in Proc. Design, Automation and Test in Europe, Mar. 2015, pp. 1060–
1065.

[26] J. Zhou, X. S. Hu, Y. Ma, and T. Wei, “Balancing lifetime and soft-
error reliability to improve system availability,” in Proc. Asia and South
Pacific Design Automation Conf., Jan. 2016, pp. 685–690.

[27] Y. Ma, T. Chantem, R. Dick, S. Wang, and X. Hu, “An on-line
framework for improving reliability of real-time systems on big-little
type MPSoCs,” in Proc. Design, Automation and Test in Europe, Mar.
2017, pp. 1–6.

[28] B. Zhao, H. Aydin, and D. Zhu, “On maximizing reliability of real-
time embedded applications under hard energy constraint,” IEEE Trans.
Industrial Informatics, vol. 6, no. 3, pp. 316–328, May 2010.

[29] G. Macario, M. Torchiano, and M. Violante, “An in-vehicle infotainment
software architecture based on Google Android,” in Proc. Int. Symp.
Industrial Embedded Systems, Jul. 2009, pp. 257–260.

[30] Electrical Engineering and Computer Science Department, University
of Michigan, “Mibench.” [Online]. Available: http://vhosts.eecs.umich.
edu/mibench//

[31] A. Annamalai, R. Rodrigues, I. Koren, and S. Kundu, “High-
performance and energy-efficient mobile web browsing on big/little sys-
tems,” in Proc. Int. Conf. on High Performance Computer Architecture,
Feb. 2013, pp. 13–24.

[32] P. Pop, K. Poulsen, V. Izosimov, P. Eles, and M. Dept, “Scheduling and
voltage scaling for energy/reliability trade-offs in fault-tolerant time-
triggered embedded systems,” in Proc. Int. Conf. Hardware/Software
Codesign and System Synthesis, Sep. 2007, pp. 233–238.

[33] Y. Fu, N. Kottenstette, C. Lu, and X. Koutsoukos, “Feedback thermal
control of real-time systems on multicore processors,” in Proc. Int. Conf.
Embedded Software, Oct. 2012, pp. 113–122.

[34] M. Fan, Q. Han, S. Liu, and G. Quan, “On-line reliability-aware
dynamic power management for real-time systems,” in Proc. Int. Symp.
Quality Electronic Design, Mar. 2015, pp. 361–365.

[35] J. Huang, J. Blech, A. Raabe, C. Buckl, and A. Knoll, “Analysis
and optimization of fault-tolerant task scheduling on multiprocessor
embedded systems,” in Proc. Int. Conf. Hardware/Software Codesign
and System Synthesis, Oct. 2011, pp. 247–256.

[36] C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar, and B. Veer-
avalli, “Run-time mapping for reliable many-cores based on en-
ergy/performance trade-offs,” in Proc. Design, Automation Conf., June.
2013, pp. 58–64.

[37] A. Das, A. Kumar, and B. Veeravalli, “Temperature aware energy-
reliability trade-offs for mapping of throughput-constrained applications
on multimedia MPSoCs,” in Proc. Design, Automation and Test in
Europe, Mar. 2014, pp. 1–6.

[38] B. Nahar and B. Meyer, “RotR: Rotational redundant task mapping for
fail-operational mpsocs,” in Proc. Defect and Fault Tolerance in VLSI
and Nanotechnology Systems, Oct. 2015, pp. 21–28.

[39] C. Liu and J. Layland, “Scheduling algorithm for multiprogramming in
a hard-real-time environment,” J. of ACM, vol. 20, no. 1, pp. 46–61,
Jan. 1973.

[40] Y. Ma, T. Chantem, X. S. Hu, and R. P. Dick, “Improving lifetime of
multicore soft real-time systems through global utilization control,” in
Proc. Great Lakes Symposium on VLSI, May 2015, pp. 79–82.

[41] Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. Koutsoukos, and H. Wang,
“Feedback thermal control for real-time systems,” in Proc. Int. Conf.
the Real-Time and Embedded Technology and Application Symp., Apr.
2010, pp. 111–120.

[42] Nvidia Development Blog, “NVIDIA Jetson TX2 delivers twice the
intelligence to the edge.” [Online]. Available: https://devblogs.nvidia.
com/parallelforall/jetson-tx2-delivers-twice-intelligence-edge/

[43] FLUKE, “80i-110s AC/DC current clamp.” [Online].
Available: http://www.fluke.com/fluke/iden/accessories/current-clamps/
80i-110s.htm?pid=55352

[44] National Instruments, “NI USB-6216 BNC.” [Online]. Available:
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207100

[45] J. Moreno, M. Ortuzar, and J. Dixon, “Energy-management system for
a hybrid electric vehicle, using ultracapacitors and neural networks,”



0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2883990, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

MA et al.: IMPROVE RELIABILITY FOR BIG-LITTLE MPSOCS 13

IEEE Trans. Industrial Electronics, vol. 53, no. 2, pp. 614–623, Aug.
2006.

Yue Ma (S’16) is currently working toward his Ph.D.
degree in the department of Computer Science and
Engineering at University of Notre Dame, Indiana.
He received his B.S. degree from Chengdu Univer-
sity of Technology, China, M.S. from University of
Electronic Science and Technology of China, China.
He research interests include real-time embedded
systems, reliable system design, power efficiency and
temperature-aware resource management.

Junlong Zhou (S15-M17) received the Ph.D. degree
in Computer Science from East China Normal Uni-
versity, Shanghai, China, in 2017. He was a Visiting
Scholar with the University of Notre Dame, Notre
Dame, IN, USA, during 2014-2015. He is currently
an Assistant Professor with the School of Computer
Science and Engineering, Nanjing University of Sci-
ence and Technology, Nanjing, China. His research
interests include real-time embedded systems, cloud
computing and IoT, and cyber physical systems. Dr.
Zhou has been an Associate Editor for the Journal

of Circuits, Systems, and Computers since 2017.

Thidapat Chantem (S’05-M’11-SM’18) received
her Ph.D. and Master’s degrees from the Univer-
sity of Notre Dame in 2011 and her Bachelor’s
degrees from Iowa State University in 2005. She is
an Assistant Professor of Electrical and Computer
Engineering at Virginia Tech. Her research inter-
ests include real-time embedded systems, energy-
aware and thermal-aware system-level design, cyber-
physical system design, and intelligent transportation
systems.

Robert P. Dick (S’95-M’02) is an Associate Pro-
fessor of Electrical Engineering and Computer Sci-
ence at the University of Michigan. He received
his Ph.D. degree from Princeton University in 2002
and his B.S. degree from Clarkson University in
1996. He worked as a Visiting Professor at Tsinghua
University’s Department of Electronic Engineering
in 2002, as a Visiting Researcher at NEC Labs
America in 1999, and was on the faculty of North-
western University from 2003–2008. Robert received
an NSF CAREER award and won his department’s

Best Teacher of the Year award in 2004. In 2007, his technology won a
Computerworld Horizon Award and his paper was selected as one of the
30 in a special collection of DATE papers appearing during the past 10
years. His 2010 work won a Best Paper Award at DATE. He served as the
Technical Program Committee Co-Chair of the 2011 International Conference
on Hardware/Software Codesign and System Synthesis, as an Associate Editor
of IEEE Trans. on VLSI Systems, and as a Guest Editor for ACM Trans. on
Embedded Computing Systems. He is also CEO of the Stryd, Inc., which
produces wearable electronics for athletes.

Shige Wang (S’02-M’05-SM’11) received the Ph.D.
degree in computer science and engineering from the
University of Michigan, Ann Arbor, in 2004. He is
a Staff Research Scientist at General Motors R&D,
Warren, MI. His current research interests include
system modeling and analysis, software architecture
for parallel processing in automated driving systems,
and embedded real-time control systems.

Xiaobo Sharon Hu (S’85-M’89-SM’02-F’16) re-
ceived her B.S. degree from Tianjin University,
China, M.S. from Polytechnic Institute of New York,
and Ph.D. from Purdue University, West Lafayette,
Indiana. She is Professor in the department of
Computer Science and Engineering at University of
Notre Dame. Her research interests include real-
time embedded systems, low-power system design,
and computing with emerging technologies. She has
published more than 250 papers in the related areas.
She served as Associate Editor for IEEE Transactions

on VLSI, ACM Transactions on Design Automation of Electronic Systems,
and ACM Transactions on Embedded Computing. She is the Program Chair of
2016 Design Automation Conference (DAC) and the TPC co-chair of 2014 and
2015 DAC. She received the NSF CAREER Award in 1997, and the Best Paper
Award from Design Automation Conference, 2001 and IEEE Symposium on
Nanoscale Architectures, 2009.


